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Abstract
This paper deals with the stability of periodic polling models with

mixed service policies. The interarrivals to all queuea are indepen-
dent and exponentially distributed and the service and the switch-
over times are independent with general distributions. The necessary
and sufficient condition for the stability of such polling systems is es-
tablished. The proof is based on the stochastic monotonicity of the
state process at the polling instants. The stability of only a subset of
the queues is also analyzed, and, in case of heavy traffic, the order of
explosion of the queues is given.

Keywords : polling system, stability, Markov chain, stochastic
monotonicity, heavy traffic.

1 Introduction

This paper deals witli periodic polling systems with mixed service policies
and occurrence of switch-over times. In such systems, the server attends to

'This work was aupported in part by a Fellowship of the Netherlands Organization for
Scientific R.esearch NWO-ECOZOEK.
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the queucs according to a polling table in a cyclic way. The queuea may
be served at different stagea in a cycle. Each stage ia ruled by a service
policy, not necessarily the same for all the stages in a cycle. Particularly, the
same queue may be served according to different policiea at different stages.
We consider general service policiea eatiafying some properties apecified later;
these properties are satisfied by the main service policies, like the exhauative,
the gated and the semi-exhaustive policies in their pure and stochastically
limited versions, and the time-limited policy without preemption.

The stability condition for auch syetems is known for a long time ((5]
,[9]). In two recent papers independent of our work, the stability of the
(strictly) cyclic polling system is addressed. Altman et al. (1] use the Lya-
punov function technique to derive sufficient conditions, but impose some
restrictive assumptions on the service policies. Georgiadis and Szpankowski
[8] consider the l-limited gated policy at all queues, and use a stochastic
dominance technique and the Loynes stability criteria for an isolated queue.
Both approaches are limited with respect to the covered service policies and
to the cyclic strategy of the server. Moreover, no complete proof of the nec-
essary and sufficient condition has been provided up to now, at least for the
periodic systems with mixed and (more) general service policiea.

The polling syatem is said to be stable if it admits a stationary regime
with integrable cycle time. Our proof of the necessary and sufficient condition
for the atability of the system is atraightforward. This enablea us to handle
the periodic system and mixed service policies in a general format. For the
sufficient part, the proof is essentially based on the stochastic monotonicity of
the Markov chain representing the state of the system at the polling instants.
This property is interesting in itself, and, to our knowledge, has not been
noticed up to now. Our main reault ia the following neceasary and sufficient
condition for the stability of the polling system:

p f max( ~~ ~G;) S G 1

where S is the mean of the total switch-over time in a cycle, p-~~ a~Q~
is the total traffic load of the system, a~ is the arrival rate to queue j, and
G~ is the mean of the maximal number of customers that may be served
per cycle in queue j (,~~ ~GJ - 0 if G~ - oo; see Sections 3 and 4 for more
details). This analysis allows to give the stability condition for only a subset
of the queues, when the whole system is not stable. In particular, in case
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of heavy trafHc, the order in which the queues become unatable is given,
providing some insight in the working of the polling syatem. Our method
extends to non deterministic routing of the server between the queues, like
the Markovian routing for example ((lï]).

The paper is organized as followa. In the next Section, we describe the
model. Section 3 is devoted to a formal definition of service policies and to
a classification of them. In Section 4, the crucial stochastic monotonicity of
the Markov chain representing the state of the system at the polling instants
is proved and dominant sub-syatems are defined. In Section 5, the necessary
and sutTicient condition for the atability of the system is established and the
stability of only a subset of the queues is studied.

2 Model Description
We consider the following model. A polling system with c infinite buffer
queues, indexed by j E{ 1, 2, ... , c}, is served by a single server. The server
attends to the queues in a repeating sequence of a stages, defined by the
polling table

t : {1,...,a} ~ {1,...,c}

where t(i) is the queue attended to by the server at atage i(see e.g. [5]). A
stage is the period of time during which the aerver works continuously on a
single queue and a cycle is the period of time needed to accomplish a con-
aecutive stages. Queue k is attended to by the server ak times in a cycle, at
the successive stages k1 G kz C... c kak (ak 1 0 for all k and ~k-1 ak - a).
Stage i of cycle n will be referred to by stage (n, i) or atage (n, k~) when it
brings the 1-th visit to queue k during cycle n. The succession in time of the
stagea is expresaed by the lexicographic order on (n, i). Stage (n, i f 1) for
i- a means stage (n-~ 1,1), and stage (n, i-1) for i - 1 means stage (n-1, a).

A service policy is attached to each stage (for all cycles) irrespective of the
queue which is served, and not necessarily the same for all stages. It deter-
mines the number of customers who are or may be served during the stage,
depending on the length of the queue at the polling instant. General service
policies which satisfy the properties stated in the next section are allowed.

At, completion of stage ( n, i), or if queue t(i) is empty upon arrival of the
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server, the switch of the server to queue t(i - ~ 1) (resp. t(1) when i- a)
requires a awitch-over time s~,; 1 0. The sequences (sn,;)n, 1 C i C a, are a
independent sequencea of i.i.d. random variables, having for each i a general
distribution with finite mean S; 1 0. The total awitch-over time in a cycle
has mcan S - ~; ~ S;.

Finally, the arrival processes Nk ,1 C k G c, to the queues are c independent
Poisson processes with intensities ak ~ 0 respectively; Nk(u, v] denotes the
number of amvala to queue k in the time interval ( u, v]. The service times
required are c independent sequences (ok ),n ,1 G k G c, of i.i.d random
variables, having for each k a general distribution with finite mean ak. The
traffic load of queue k is pk -.~kok and the total traffic load is p~ -~k-1 pk.
We assume pk C 1 for all k to ensure the stability of each queue when it is
operating as a clasaical M~G~1 queue in isolation.

3 Service policies

3.1 Deflnition and required properties
A service policy determines which customers ahould be served during a stage.
The service policies that we consider are required to satisfy the next four
properties:
~ P1 The service policies do not depend on the past history of the service
process, for example the number of customers being already served or the
time spent serving them.
~ P2 The selection of a customer for service is independent of the required
service time and of possible future arrivals.
~ P8 The server serves at constant rate. He leaves immediately a queue
which is or becomes empty, but provides service with a positive probability
once there are "enough" customers in the queue.
~ P4 The service policies are assumed to be monotonic as defined below in
assumption A4.

Property P1 is a lack of inemory property. P2 is similar to the lack of antic-
ipation property of Wolff (13]. The first part of P3 is the work-conservation
property of Levy et al. [10]; the threshold on the number of customers in the
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second part of P3 is usually one, but other posaibilities are not excluded.

For a formal definition, consider a queue with Poiason amval process N,
i.i.d. service timea ( am)m with mean o, and traffic load p. Suppoae a atage
begins at time 0 according to a service policy while x customers are waiting
in the queue. Call:
f(x) the (random) number of customers that are served during the stage,
v(x) the duration of the stage,
~p(x) the number of customers left in the queue at the end of the stage.
The three random functions (f, v, cp) characterize the service policy. More-
over, from property P3, v and y~ are related to f for all x by

!(s)

v(x) - ~ Qm (1)
m-1

cp(x) - x- f(x) f N(0, v(x)] (2)

Thcrcíorc, we associate any service policy with the random function

f : St xN ~N

induced by the service policy, where f(., x) - f( x) is defined above, and we
refer to the service policy as policy f.

Consider now a atage starting at (stopping) time T while Q customers are
waiting and D cuatomera have already been served, and call
F the number of customers who are serned in the stage,
V the duration of the stage,
~ the number of customers left in the queue at the end of the stage.
Let .FT be any (stopped) a-field containing the history of the service process
up to T, but which is independent of the process N(T, T~- .] of arrivals after
T (which starts afresh after T as an independent Poisson process) and of the
service times (QOt');~o of the customers that have not been served by time
T. The four properties can be formally stated as the following assumptions:

a A1 (F, V, ~) is conditionally independent of ,FT given Q, and has the distri-
óution of ( f(Q), v(Q), ~p(Q)) where the random functions (f, v, So) are taken
independent of Q.
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~ A2 (F,V, ~) is independent of ((O'D}Ft');~o , N(T f V,T ~- V f.]).
~ AS Equations ( 1) and ( 2) hold, f(0) - v(0) - ~p(0) - 0 and there exists
x~ 0 such that E( f(x)) ~ 0.
~ A4 ( f(x), v(x), ~p(x)) is Gd-monotone in x.

Let us recall briefly the definition of the Gd-monotonicity for random vec-
tors, called also stochastic monotonicity or monotonicity in distribution. The
(partial) order C on 1R" is given by x G y if x; c y; for all i. A real function
h defined on ~4" is said to be C-monotone when x G y impliea h(x) G h(y).
The stochastic order for multidimensional diatributions and random vectors,
denoted by Gd, is then defined as follows: for two distributions Pl and P~ on
~, Pl Gd P~ if j h dPl G f h dPz for all c-monotone functions h for which
the integrals are well-defined. For random vectors, XI Gd X2 if their distri-
butions satisfy Pl Gd Pzi a sequence (X„)n is Cd-monotone if X„ cd X„tl
for all n. For more details, we refer to [12]. For the other assumptions, A1
reflects P1 by the fact that apart from Q, (F, V, ~) is function only of the
arrival process N(T,T f. ] after T and of the service times (aD}');~o of the
customers that have not been served up to time T; but these are indepen-
dent of . fT, and in particiilar of Q. A2 and A3 reflect P2 and P3 by similar
arguments.

~j~. It follows from A2 that the distribution of (F, V, ~) is insensi-
tive to the order of service of the customers. Hence the numbering of the
customers in ( 1) does not need to be in the order of arrivals. For determinis-
tic policies, when f(x) is a fixed integer for all x, a service policy satisfies A4
if and only if it is monotonic and contractive in the sense of Levy et al. [10].
For stochastic policies, the stochastic monotonicity of f(x) alone implies that
of ( f(x), v(t)) but not of ~p(x).

V and ~ are related to F by

DtFV - ~ ~;
~-Dfi

~ - Q-F-FN(T,TfV]
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A2 allows the use of Wald's identity to calculate the expectationa of V and
of N(T,T ~ VJ -~F, N(~i-i ~o}~~~iat Qo}~J in ( 3) and ( 4), yielding:

E(V) - E(F)o (5)
E(N(T,T f VJ) - E(F)p (6)

Expectations in ( 5) and ( 6) may be infinite. Nevertheless, this will not
be the case when Q is integrable. Indeed, let v be the random function
(the particular f) induced when the queue is working as a classical M~G~1
queue, or equivalently if the service policy is the pure exhaustive policy: v(x)
-respectively v(Q)- is the number of customers that are served during a busy
period initiated by x-respectively by Q- customers. The fact that the server
serves continuously during a stage, required in P3 and expressed in ( 1)-( 2),
implies that f(x) c v(x). Hence, from A1, it holds that F Cd v(Q), and in
particular -

E(F) c E(v(Q)) - E(Q)(1 - p)-'

Therefore, if Q is integrable, so is F and, from ( 5), V.

(7)

3.2 Limited and unlimited types of policies
Let f be a service policy. By the monotonicity assumption, as x gces to
oo, ( f(x), v(x)) converges in distribution to a(possibly degenerate) random
vector (F`,V'). When F' and V' have proper distributions, these are the
least upper bounds in the sense of the Cd-ordering for the number of cus-
tomers that may be served during a stage and the duration of a stage ruled
by policy f respectively, whatever the state of the queue to be served is.
More precisely, F' would be the number of customers that are served in a
stage if there is an infinite number of customers waiting in the queue, and
V' would be the duration of the stage. On the other hand,

0 c lim E(f(x)) - E(F') C o0

and, from ( 5),
lym E(v(x)) - E(V') - E(F')o

The integrability or non-integrability of F', and accordingly of V', will play
an important role in the analysis. Therefore we introduce the classification:
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Definition 1 The polícy f is said of limited type when F' is íntegrable and
of unlimited type otherwise. In the first case, F' and V' are called the óounds
of policy f .

For the derivation of the necessary and sufficient condition for the stability
of system, in Section 5, we need the next technical lemma.

Lemma 1 Let (Q„)„ be a sequence of random variables conve~ing in dis-
tribution to a (possibly degenemte) integer-valued random variable Q. Let
( f, v, ~p) 6e random functions independent of this sequenoe and such that
( f(x), v(x), ip(x)) is Gd-monotone in x. Then (Q,,, f(Q„), v(Q„), cp(Q„))„
conve~ges in distributíon to (Q, f(Q), v(Q), ~p(Q)). If moreover (Q,,, n~ 1)
is Cd-monotone, then -
t) ltmntiooE(f(Qn)) - E(1(Q))~

ii) When E(F') G oo, E(f(Q)) G E(F') if and only if there exists y such
that P{Q G y} ~ 0 and E(f(y)) G E(F').
iiiJ When E(F'} - oo, E(f(Q)) G oo implies that Q has a proper distribu-
tion, i.e. that limty~P{Q G x} - 1.
4i~ When E(F') G oo, and if Q has a defective distribution, so is the limiting
distribution of Q„ - f(Q„).

Proof: The first assertion of the lemma is obvious because ( f, v, cp) is in-
dependent of (Q„)„ and by the convergence in distribution of Q„ to the
integer-valued Q. When this convergence is Gd-monotonic, the convergence
of the expectations in i) follows. Moreover, from A1 and for all x E IN,

E(f(Q„)) ? E(Ï(Q~)1{q„~s})
? ~ E(f(k))P{Q„ - k}

k~s

1 F,(f(x))P{Q„ 1 x}

Taking limits in n,

E(f(Q)) - 1~,~ E(Í(Q„))
? E(f(x))P{Q ? x}

Hence
(8)

E(f(Q)) ? lim E(f(x))P{Q ~ x} (9)
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ii) When E(F') G oo the right hand side of ( 9) is E(F') limr~,o P{Q ~ x},
and E( f(Q)) G E(F') implies limzy~ P{Q ~ x} G 1. Hence, there exists
ya, the smallest one, such that P{Q ~ yo f 1} G 1 and P{Q ~ yo} - 1; yo
satisfies P{Q c yo} - 1 - P{Q 1 yo f 1} ~ 0 and from ( 8) E(f(yo)) G
E(f(Q)) G E(F'). Conversely,

E(f(Q)) c E(f(y))P{Q c y} ~ E(F')P{Q ~ y}
G E(F')

as soon as y having the properties stated in ii) exists.
iii) When E( f(Q)) G oo - E(F') - lims.-,~ E(f(x)), ( 9) implies that
limz~~ P{Q 1 x} - 0 and that Q has a proper distribution.
4i) When F' is integrable, the smallest integer z such that P{F' c z} ~ 0
is well defined. Because f(x) Cd F' for all x 1 0, it holds:

~
P{Qn -.f(Q,n) 1 x} - ~ P{f(x) G y- x}P{i~wn - 1J}

y-st1
~

~ ~ P{F' G y- x}P{Qn - y}
- v-zf1
~ P{F` G z}P{Qn 1 x f z}

by simple monotonicity arguments. Taking limits first as n - . oo then as
x--i oo ín the last inequality shows that if the limiting distribution of Qn is
defective, so is that of Qn - f(Qn). o

3.3 Main service policies
Here we follow Levy et al. [10] to review the main service policies appearing
in the literature. The associated random functions f and the types in view
of definition 1 are indicated. In the following, v(x) still denotes the total
number of customers served in a busy period initiated by x customers in
an M~G~1 queue. L denotes a positive and integer-valued random variable,
independent of the arrival process and of the service times. For any (pure)
service policy, the L-limited policy refers to the policy of service which is
similar to the pure policy except that the server does not serve more than L
customers.
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~ Gated policies: Only customers that are present at the beginning of
the stage are considered for service.
- For the pure gated policy, by which all present customers at the beginning
of the stage are served, f(x) - x, F' - oo and the type is unlimited.
- For the L-limited gated policy, f(x) - min(x,L) and F' ~ L. Exam-
ples of limited type are the 1-limited gated for deterministic L- 1 and the
Bernouilli-gated for L having a geometric diatribution.
- For the Binomial-gated, by which every present customer is served with
some probability p, f(x) has a Binomial distribution with parameters (x, p)
and the type is unlimited (F` - oo).

~ Exhaustive policies: Customers that are present at the beginning of
the stage and customers arriving while service is provided are considered for
service.
- For the pure exhaustive policy, by which the server continues serving until
the queue is emptied, f(x) - v(x}, F' - oo and the type is unlimited.
- For the L-limited exhaustive policy, f(x) - min(v(x), L) and F" - L. For
example, the Bernouilli-exhaustive policy is of limited type.
- The Binomial-exhaustive policy, by which every present or arriving cus-
tomer is served with probability p, has unlimited type (F' - oo).
- The time limited policy without preemption sets a limit in time to
the duration of stage, and if this limit is reached, the service of the customer
under service (íf any) is not prempted, but no more customers are served.
It is a particular L-limited exhaustive policy. Indeed, let r be the (random)
limit in time and define L- R(r) ~-1, where R is the counting measure of a
zero-delayed renewal process having the distribution of the service times as
interarrival distribution, and is independent of r. Then f(x) - min(v(x), L),
F' - R(r) f 1; the type is limited if r is integrable and unlimited otherwise.

~ Decrementing policies: They are similar to the exhaustive policy except
that the server continues serving until the number of customers present in the
queue becomes zero or is reduced by a prespecified (random) number L of cus-
tomers. These policies are also called semi-exhaustive policies. For these poli-
cies, we have f(x) - v(min(x,L)), F" ~ v(L) and E(F') - E(L)(1 - p)-'.

All these policies are allowed in our model, as shown by the next lemma.
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Lemma 2 All the policies that are quoted above satisfy asaumptions AI-A,~.

Proof: We establish the lemma only for the L-exhauative policy, for which
f(x) - min(v(x),L). Because L is independent of the amval process and
of the service times, and by the clasaical properties of the M~G~1 queue,
it is easy to see that A1, A2 and A3 are satiafied. The monotonicity in
A4 is easily proved by a coupling argument on the sample paths. Suppose
x f 1 customera are present upon arrival of the server, with service times
ao, ..., as. Let the server start serving customers 1, ..., x and all arriving
customers ( the offsprings of the x customers, in the terminology of Fuhrmann
and Cooper [7)) until the limit L is reached or only customer 0 remains in
the queue: the total number of customers that are served is thus f(x). Then
serve the remaining customer 0 and hia offspring until L is reached or the
queue is emptied: the total number of customers that are served is now
f(x f 1). Clearly, f(x ~- 1) - f(x) if v(x) ~ L and f(x f 1) ~ f(x) -~ 1
otherwiae. Therefore f(x f 1) ~ f(x) and obviously v(x f 1) ~ v(x). It
remains to compare ~p(x) and cp(x f 1): when the first is positive, f(x) 1 L
and ~p(x-~ 1) - ~p(x) f 1; otherwise, the first is 0 and the second non-negative.
Because the distribution of ( f(x), v(x), cp(x)) is not affected by the order in
which customers are served, the lemma is established for the L-exhaustive
policy. Similar proofs hold for the other policies. ~

4 The mathematical model
Let f; be the service policy ruling stage i at which queue t(i) is visited, and
let F;' and V' be the bounds of policy f;. For further needs, we distinguish
the queues that are served by a policy of unlimited type at least at one atage
from the queues that are served by policies of limited type at all stages. This
is done by assuming that the c queues in the system system are numbered
such thatl:
- queues 1, ... , b are ruled 6y a policy of unlimited type at least at one stage
- queues b -} 1, ..., c are ruled by policies of limited type at all stages and are
numbered such that ak~~ is non-decreasing in k E {b f 1, ..., c},

lIf neceesary, the queuee are renumbered in this way and the polling table is adapted
accordingly to preaerve the route of the eerver.
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where
ok

Gk :- ~ E(Fk, )
~-i

(10)

is the mean of the maximal number of customera that may 6e served during
a cycle in queue k.
Note that Gk - oo when k C b, but is finite otherwise. We do not exclude
in the model the case b- 0 where all the involved policiea have limited type,
or the case b- c where every queue is ruled by a policy of unlimited type
once at least.

4.1 The embedded Markov chains
We describe the system by the lengths of the queues at the polling instants.
At time t, these are represented by the random vector

M(t) - (Q~(t),...,Q~(t))
where Qk(t) is the length of queue k. Dk(t) is the cumulative number of cus-
tomers that have been served in queue k up to time t.

Stage ( 1,1) starts at time 0. Call T,,,; the polling instant of stage (n, á).
Then, by the periodic strategy of the server,

0-T1.1c...GTn,;GT,,,it1C...GT,,,aGT„tl,lc...

We introduce the following notations at the polling instant T,,,;: M,,,; for
M(T,,,;), Q,,,; for the length Q,~;~(T,,,;) of the queue t(i) to be served and D,,,;
for Dt~;l(T,,,;). Moreover we call
F,,,; the number of customers served ín stage (n, i),
[~,,,; the duration of stage (n, i),
~,,,; the number of customers left in queue t(i) at the end of stage (n, i).
Note that

(Fn.s~Vn.i,~n,~) ~ (f~(Qn.~),vr(Qn.r),~r(Qn.~)) (11)

with ( f;, v;, ~p;) independent of Q,,,;. For the queue k- t(i) served at stage
(n, i), it holds

Qk(Tn~if~) -~~,~ f Nk(Tn.~ f U.,,c, Tn,i ~- Vn,; -~ sn.~l (12)
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More generally, for any stage (n, i) and any queue j:

Tn,itl - Tn,i ~ Vn,; -~ sn,; (13)

Q;(Tn,i~Fl) - Qi(Tn,í) - N;(Tn,i,Tn,i ~ Vn,: ~ Sn,;] - Fn,; ó;,l~;l (14)

D;(Tn.ítl) - D;(Tn.;) f Fn,~ ó;.aíl (15)
where b;,~ is the Kronecker symbol. Summing up equations ( 13), ( 14), over
a whole cycle, we get for all n and all k:

a

Tntl,l - Tn,l - ~ Vn,i ~ sn,í
i-1

ak

Qk(Tntl,l) - Qk(Tn.l) - N(Tn.1, Tn-Fl,l] - [J Fn,k,

1-1

(16)

(17)

Similar relations hold when any other stage is taken as reference for the be-
ginning of a cycle. The next proposition and corollary establish the Marko-
vian behavior of the system at the polling instants. The history of the
service process up to time Tn,; is given by the stopped o-field .Fn,; gener-
ated by the arrival processes to all queues up to Tn,;, by the service times
ak , 1 G m G Dk(Tn,;) and all k, of the customers that have already been
served by time Tn,;, and by the switch-over times (s,n,~) for (m, l) C(n, i-1).

Proposition 1 The sequence (Mn,;)n,; is a Markov chain.

Proof: At the random instant Tn,;, the server starts serving queue t(i) (if not
empty, otherwise he starts switching to queue t(i f 1)) according to policy
f; while the state of all queues is given by Mn,;. The arrival processes af-
ter Tn,; are Poisson and are independent of .Fn,;; the service times and the
switch-over times involved after Tn,; are also independent of ,Fn,;. Because
these quantities are mutually independent, it follows that given Mn,;, the
evolution of the system after Tn,; is independent of .Fn,; which ensures the
Markov property of the sequence (Mn,;)n,;. ~

This Markov chain is in general not homogeneous because its transitions de-
pend on (n, i) through i by the policy f; and the queue t(i) which is served.
But for i fixed, they do not depend on n.

Corollary 2 For all i fixed in {1, ..., a}, (Mn,;)n is an homogeneous, irre-
ducible and aperiodic Markov chain with siate space ~V`.
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Proof: Let i be fixed. (M,,,;)„ is a subaequence of the Markov chain (M,,,;),,,;
and is thus also a Markov chain which ia homogeneous because i is now fixed.
It is irreducible because all atatea communicate. Indeed, m-(m1i ..., mb)
can be reached in one atep from the atate (0, ..., 0): thia ia realized when first
no arrivals occur to all queues during the whole cycle but the last switch-
over time s,,,t-1 (such a cycle consista of switch-over timea), and then the
last switch-over time is positive and (ml, ..., ms) arrivals occur during it,
all this having a positive probability (in particular becauae the arrival pro-
ceases are Poisson). On the other hand, (0, ..., 0) is reached in (posaibly)
many steps from any state (ml, ..., m~) with positive probability too: this
is realized when there are no arrivals until it happens (the time needed to
clear the totality of the work induced by the (ml, ..., m~) customers present
is integrable). By the same arguments, the state (0, ..., 0) is aperiodic and
so is the (irreducible) Markov chain. O

4.2 Monotonicity of the model
Call ~r; the transition operator of the Markov chain (M,,,;),,,; for each given
i, defined by

x;h(m) - E(h(M,,,;fl) ~ M,,,; - m)
for any m-(ml, ..., m~) E IN` and any real function h defined on IN` for
which the expectation exists. The transition opemtor ~; of the Markov chain
(M,,,;)„ is then the product:

~~ - ~;-~ . . . ~1 xa . . . ~r~ti ~r

a; is derived from equations ( 11)- ( 14). Having those in mind and for ease of
notation, we express ~r; in a few steps for tensor product functions h-~~ 1 hi
(this class of functions characterizes completely ~r;, extension to general h is
immediate). Let m~k - ( ml, . . . , mk-1i mk~l, . . . , m~) be the ( c - 1)-tuple
obtained by removing the k-th component from m. Define on Rt x 1N` x R~
the function H; by

N~(u~ r~m~tl~l, s) - E( hi(r)(r f 1V:(~)(Tn,r ~- u, Tn,; -~ u f s)) (18)
II~~~lrlh~(m~ -F- N~(Tn.~~ Tn.~ f u~- s)) )

which dces not depend on T,,,; by the propertiea of the Poisson procesa.
Because the switch-over time s,,,; is independent of Tn,; and of the arrivals
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procssses, the integral in s of the function Hk with reapect to the diatribution
of s,,,; (which does not depend on n) is the function K; given by:

K;(u, r, m~tl')) - E(H;(u, r, m~~t'), 3~,;)J (19)

The arrivals to the queue t(i) after T,,,; f V,,,; and to the other queues after
T,,,; are independent of (M,,,;, V,,,;, ~,,,;). Given M,,,; - m, the conditional
distribution of (V,,,;,~,,,;) is the distribution of (v;(mtl;)),cp;(mil;))). Hence
( 11)-( 14) lead to the following expression of ~;:

u.h(m) - f K-(u r m~tl')) dP 1 u, r~ i e , v~ m i(~)).w~~me(~))( )
u,r

(20)

An operator a is Cd-monotone if for all distributions Pl Cd Pz, ~Pi Cd ~Pz.
This holds whenever ~rh is C-monotone for any G-monotone function h-
~~-1hi ([12], pages 27 and 63).

Lemma 3 For a!1 i, a; and ic; are Cd-monotone.

Proof: We first prove the assertion for ~~. For ease of notation and without
losa of generality, suppose t(1) - 1 and put T- T,,,;. Let h-~i-1h( be a
G-monotone function. The random vector

(r-~Nl(Tfu,Tfufs],mztNz(T,T~ufs],...,m~~N~(T,T-}ufs])

has independent components, and all of them are all Cd-monotone in (u, m~l, s);
the vector is thus Gd-monotone in (u, r, m~l, s). For any h -~~-1h~ G-
monotone, Hl given by ( 18), expectation of the function h of the vector
above, is C-monotone too. Similarly, Kl, given by ( 19), is C-monotone.
Finally, from ( 20}, ~r;h is also G-monotone: it is in m~~ by the monotonicity
of Kt for ml fixed, and in ml by the monotonicity assumption on the ser-
vice policies. Hence ~rl is Cd-monotone. The same proof holds for ~r; when
i~ 1. The product of Cd-monotone operators being also Gd-monotone, the
Cd-monotonicity of Á; follows.t7 -

The crucial monotonicity property of state process at the polling instants
is a consequence of the previous lemma:
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Proposition 3 Suppose Ml,~ -(0, ..., 0). Then for all i fized, M,,,; is Cd-
monotone in n. In particular, F,,,; and Vw,; are Cd-monotone in n. -

Proof: Let P,,,; be the distribution of M,,,; when the initial distribution Pl,l
is Dirac at ( 0, ..., 0). Because all components of M~,1 are non-negative,
Pl,i Cd Pz,l and by lemma 5, for all i~ 0,

pl ;-~;-1 ...,riPi i Ge xr-i ... xiPs,i - Ps,~

By immediate induction, P,,,; Cd P„}l,; for all ( n, i), and M,,,; is Gd-monotone
in n for i fixed. This implies the Gd-monotonicity of all components of Mn,;
and in particular of Q,,,;. The monotonicity of the service policies implies
then the Gd-monotonicity of (F,,,;,V,,,;) in n for i fixed.D

4.3 Dominant sub-systems

When a huge number of customers is waiting, the duration of a stage depends
strongly on the type of the service policy which is used.

Suppose a queue, served by a policy of unlimited type at least at one stage,
is saturated: there is an infinite number of customers waiting at time 0 in
the queue. At the beginning of such a stage, the queue is still saturated and
the duration of the stage is non-integrable, if not infinite. This will be seen
to exclude any stationary behavior of the system.

Consider now a queue, say queue k, which is served by policies of limited
type at all the stages, say fk, at stage k~ for 1 G 1 G ak. Suppose the queue
is saturated at time 0. Then, the queue stays saturated for ever because at

each stage (n, k~) the number F,,,k, ~ Fk~ of customers that are served is inte-

grable. But the polling system still "worksn because the durations V,,,k, d Vk~
of these stages are integrable. The sequences V,,,k, constitute ak independent
sequences of i.i.d. random variables. Moreover, these sequences are indepen-
dent of all the quantities relative to the other queues in the system, and of
all the switch-over times. Therefore, for the service of the other queues, the
saturation of queue k is equivalent to the replacement of the stages devoted
to it by additional switch-over times having the same properties as the origi-
nal switch-over times. In this way, a sub-system where the number of queues
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is reduced by 1 is obtained. This procedure of saturation may be applied to
several queues. R.eferring to the numbering of the queuea, we suppose in the
following b C c.

Let S be the initial polling system. For e E {b, b f 1, ..., c}, call S` tlte
polling (sub-)system of the queues { 1, ..., e} resulting from the saturation of
the queues {e f 1, ..., c}, served according to the same polling table and to
the same corresponding service policies as in S. For S`, when stage i brings
a visit to one of the e first queues (t(i) C e), queue t(i) is served like in
S, according to the policy f; attached to stage i; on the other hand, when
t(i) ~ e, no queue of S` is served but the server becomes unavailable for a
period of time distributed like the bound V' for the (limited type) policy f;,
followed by the switch-over time s,,;. To facilitate the comparison of these
sub-systems, we keep these periods of unavailability apart of the switch-over
times. But for S`, they are included in the time during which the server is
not serving in a cycle, or total Tswitch-over time~, whose mean is now:

S` :- S f ~ a~G~ (21)
;-~f i

The polling system S` is similar to S and all our previous results apply to it.
The state of S` is described by the sequence Mn,; -(Qi(Tn,;), ..., Q~(Tn,;))
at the npolling" instants Tn,; with (n, i) E N' x{ 1, ..., a}. In particular, for
each i, (Mn.;)„ is a Markov chain and is Cd-monotone in n when the initial
state is empty (here we mean that queues 1, ..., e are empty at instant 0).
Let us specify the transitions x; of this Markov chain. Let h` -~~-,hr and
m` -(ml, ..., m~) E N` (we also write m` for the e first components of
m E N`):
- when t(i) G e, put hi - 1 for l~ e in ( 18)- ( 20). Then the functions H; ,
K; and x;h` depend on m only through m`. Repeating the arguments which
led from ( 11)- ( 14) to ( 20), the operator ~r; defined by ( 20) is seen to give
the transitions of Mn,; too:

~~h`(m`) .- E(h`(Mn,cti) ~ M~,: - m`)
- a;h`(m`) when t(i) G e

- when t(i) 1 e, stage ( n,i) corresponds to a period of unavailability of the
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server with duration V,;,;. Then only new arrivals may occur to S`. Adapting
the arguments, we get:

~r; h`(m`) - f K;(u, m`) dP~.~ (u) when t(i) ~ e
u

It is easy to see that the proof of lemma 3 extends to x; to establish its
Cd-monotonicity.

The systems S` satisfy a dominance property as we shall demonstrate in
the next lemma. By Me~`, we denote the e first components of a vector M
having g 1 e components.

Lemma 4 For all e G g óoth in {b, ..., c}, S` dominates S9 in the sense
that ij Mi,~i Cd Mi,] then Mn~; Cd Mn; jor all (n, i).

Proof: It is enough to compare S and S`. Since S` may be considered
as a sub-system of S`tl, the assertion of the lemma follows by transitivity.
Because the sequence Mn~; of the e first components of M,,,; is not a Markov
chain, we need some calculations. We proceed by induction. Let first i- 1
and suppose Mi~i Gd Mi,l. Let h` -~i-1h~ be G-monotone; a;h` and ~r; h`
are then C-monotone. Suppose now Mn~~ Cd Mn,l.
- When t(1) c e, say t(1) - 1, ~rlh`(m) given by (14) depends only on m`
and coincides with ~rih` . Thus,

E(h`(Mn~~)) - ~ P{M,,,1 - m} ~rlh`(m)

C

m

- ~ P{Mn,] - m} Alh`(m`)
m

- ~ ~rlh`(m`) ~ P{M,,,1 - m}
m' m~}i,...,m~

~ Alh`(m`) P{Mn~i - m`}
m'
~ alh`(m`) P{Mn,] - m`}
m'

E(h`(Mn,2))

the inequality resulting from the G-monotonicity of a;h` and~~~ ~ -
Mn.] ~d Mn,]'

from that
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- When t(1) ~ e, say t(1) - c, ulh`(m) depends only on (m`, m~). R.emember
that Q,,,1 :- Qt~l~(T,,,1) - Q~(T,,,1) here. Then,

E(h`(Mn~~)) - ~ P{Mn.l - m} alh`(m)
m

- ~ P{M,,,t - m} ~lh`(m`, m~)
m

- ~ ~lh`(m`,m~) ~ P{Mn,l - m}
me,m~ mef i ....,m~-1

- ~ 7flh`(m`, m~ ) P{M n'1 - m`, Qn,l - m~}

But Ki, defined by (13) for h`, does not depend on r and is increasing in u;
thus

Alh`(m`,m~) - f Kl(u,m`) dPvi~m~)~Vi~m~)(u,r)
u,r

- I K~ (u, m` ) dPv1 ~mcl(u)
u

G I Ki (u, m`) dPy~ (u)
u

- ~`h`(m`)i

because vl(m~) Cd Vi . The last term does not depend on m~ any more.
Therefore, -

E(h`(Mn~z))
~ { ~~~c P M,,,, - m`, Q,,.1 - m~} f Kl (u, m`) dPy~ (u)

u

- ~ P{Mn~i - m`}aih`(m~)
m`.mc

m~
C ~ P{Mn ~ - m`}~rih`(m~)

m~
- E(h`(Mn,z))

This completes the proof of the fact that Mn~2 cd Mn.Z as soon as Mn~i Gd
Mn I. R.epeating the proof for i~ 1 and by immediate induction, the asser-
tion of the lemma follows. O
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5 Stability of the polling model

The polling model is said to be stable when the lengths of the queues at the
polling énstants admit properstationarydistributions and when the stationary
cycle time has finite expectation. Only when both conditions are satisfied,
one can construct a stationary model on a probability apace. In particular,
the integrability of the stationary cycle time ensures the existence of inte-
grable regeneration points of the system, like for example the polling inatants
Tn,l at which the Markov chain Mn,l returns to the empty state ([2]).

5.1 The sufficient condition

We suppose here the system empty at time Tl,l - 0; because we deal with
Markov chains, this is not restrictive because the existence or not of a station-
ary distribution does not depend on the initial distribution. The assumption
pk C 1 for all (the queues) k ensures that for all (n, i) and all k, the polling
instant Tn,;, the lengths Qk(Tn,;) of the queues, Fn,;, and Un,; are integrable.
Indeed, from ( 7), the integrability of Qn,; implies the integrability of Fn,;
and of Un,;, which imply the integrability of Tn,;~l and of Qk(Tn,;tl) for all
k, and so on.

Let Gn,k be the mean of th~ numóer of customers that are served at queue k
during cycle n:

ak

Gn~k ~- ~ E(Fn~~1)r-i
Taking expectations in ( 16)-( 17) and using ( 5)-( 6), we obtain

~
E(Tntt,~ - Tn.~) - ~ o~Gn,~ f S (22)

~-i
E (Qk(Tntla) - Qk(Tn~l)) - ~kE(Tnf1,1 - Tn,1) - Gn.k

-~k r~ a~Gna t Sl - Gn,k (23)
`,-~ J

By the stochastic monotonicity at the polling instants, established in propo-
sition 3, all relevant quantities are Gd-monotone. Their expectations are

20



then non-decreasing and in particular,

E(Qk(Tnf~a) - Qk(Tn,l)) ? 0

Inserting the last inequality in ( 23) leada to the system of inequalities:

(24)

G,,,k C ak ~~ OjGna -b S~ , 1 c k C C (25)
`~-1

Gn,k is also non-decreasing in n and is bounded by Gk, defined in ( 10) and
finite for k~ 6; the limit

Gk - lim Gn,kn-.~o
is thus finite for k~ 6, but may be infinite for k C b. The condition of the
next lemma excludes this. Define for 6 C k C c: -

k

Pk:-~Pi
j-1

Lemma 5 If pb G 1, then Gj C oo for all k G 6 and

~ ~jGj ~ Pb ~ [~ QjGj ~ S~

;-~ 1 - Pb j-Lbf.i

Proof: Multiplying ( 25) by ak and summing up,

b c
~ QkGn,k ~ P6 ~ QjGn,j } S
k-1 j-1

(26)

6 e

(1 - Pb) ~ akGn.k C pb ~ QjGn.j } S' (27)
k-1 - j-bt1

The expression on the right hand side is positive and bounded by
~

Pb(~ o;G~fS)Goo
j-bt1

Therefore
6 6

li[ri ~ okGn,k - ~ akGk - o0
k-1 k-1

21



implies 1- Pb C 0. Thus pb C 1 implies the finitenesa of ~k-1 okGk and
consequently of Gk for 1 C k G b. Moreover, ( 26) followa by taking limits
asn-aooin(27). O - -

Suppose now that pb G 1. Then, by the previous lemma, Gk is finite for
all k. Taking limits in ( 25), we get for all 1 C k G c

Gk C ak I~ o;G; -~ SJ (28)
`~-i

Inserting ( 26) in ( 28) leads, after straightforward calculations, to the system
of inequalities:

(1 - pb)Gk G,~k ~-~ o;G; f S I , 6 c k c c (29)
bf 1 1 -

By a triangularisation procedure, ( 29) implies the system of inequalities

(1 - pk)Gk C ,1k ~ Q;G; f S , b C k C c (30)
(j-kf1

as shown in the appendix.

Up to now in this sub-section, we have only considered the initial polling
system S. Similar definitions and (in-)equalities hold for the (dominant)
sub-systems S`, and are obtained by adding to all involved quantities the
superscript e or ~ according to k C e or k 1 e, respectively. In particular,
lemma 5 holds: pb G 1 implies Gk G oo for all k G 6. The subsequent in-
equalities relative to S` involve the e variables Gk for k G e while for j 1 e,
G; - G~ is fixed. For S`, the system of inequalities ( 30) reads:

(1 - J1k)(ik C .~k ~ ~ Ul~i7 } `5e~
~-k~l

where S` has been defined in ( 21).

For b G e G c, let C` be the condition

, 6GkCe (31)

C` : p~ f C S` c 1 (32)
~
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It is easy to see that C`tl implies C`, because the queuea are numbered auch
that a~~Gï is non-decreasing in j. With the convention a~~~ - 0 if G~ - oo,
or equivalently j C 6, C` is

P~ f m~~(a~~G;)S` G 1

In particular, Cb reduces to pb c 1, and C- C` is

C: p~ ~- ma~ (a~~G;) S G 1 (33)

We have the following:

Lemma 8 Condition C` implies that Gk G Gk jor all b C k G e.

Proof: The proof is immediate from ( 31). Indeed, for all 6 G k G e, it holds

Gk C(1 - pk)-'ak ~~ a,G~ f S~~
`~-kt1

C (1 - pk)-l~k ~ ~ U1Ca~ } `St~
~-kt1

- (1 - Í~k)-I~k,Sk

But from Ck which is implied by C`,

(1 - pk)-'í`kSk G Gk O

The next theorem provides the sufficient condition for the stability of the
polling system S.

Theorem 4 Ij condition C is satisj~ied, that is ij

P~ f max(J1~~~)S G 1
i~~~~

the polling system S is stable.
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Proof: C implies that pb G 1 and that condition C` is satisfied for each
b G e G c. The atrategy of proof is to show that all the dominant aub-
systema S` are then stable, inductively on e. For all these systema, we
suppose the initial state to be the empty state. By the monotonicity, this
enaures the existence of limiting diatributiona for the lengths of the queues at
the polling instants of each stage, but these may be degenerate (not proper)
distributions.

First, consider the system Ss. Each queue ia served according to a policy
with unlimited type at least at one atage, say stage rk for queue k. When
py G 1, according to lemma 4, Gk G oo for all 1 G k C b and in particular,
limn-.~ E(Fn,,4) G oo. By lemma 1-iii), Qn,,k converges in distribution to a
proper random variable Q;w. This implies that for every queue k and for all
ki, Qn k~ converges in distribution to a proper random variable Qki. Indeed,
suppose the opposite, say Qn,k~ has a defective limit in distribution; from
lemrna 1-4i), it follows that Qn,k, - Fn,k, has a defective limit too. But,
because,

e ) e -~.e
Qn,lo-s - Qn,k, n,k,

the limit of Qn ~ is also defective; by induction, the limit of Qn.k~ is defective
for all ki, and in particular that of Qn,,k which is a contradiction. On the
other hand, between the the polling instants of stage 1 and the first stage kr
devoted to queue k in a cycle, only arrivals to queue k may occur (if kl - 1,
these stages coincide); thus Qk(Tn,l) Cd Qk(Tn,k, ) and Qk(Tn,l) admits also
a proper limiting distribution. Thus all components oí (Mn,~ )n have a proper
limiting distribution; this implies that the Markov chain (Mn,l)n is ergodic,
and converges to its atationary distribution independently of the initial state.
Indeed,

~
lim P{Mn,r G mb} ~ 1-~ lim P{Qk(Tn,r) ~ mk}n-~oo - n--~oo -k-1

where the right hand side is positive when all mk are chosen large enough:
this excludes transience or null-recurrence. It follows that the cycle times
converge in distribution to the stationary cycle time, which turns out to be
integrable because Gk G oo for 1 G k G b. Hence Sb is stable. Moreover,
for all 1 C i C a, the Markov chain ( M~,;)n is ergodic: if pi is the invariant
distribution of Mn.r, El; - A;-r -.~ uip~ is a probability and ia invariant for
Mn,;.
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Let us now suppose that S`-1 is stable and impose C` (e ~ b). From
lemma 4, Mn~;-' Cd M~,;' for all (n, i). But because (M~,;' )n is ergodic and
has a proper limiting distribution, so has (Mn~;-')„ for all i. On the other
hand, for the last component Q~(Tn,;) of Mn;, we know from lemma 6 that
G~ C G~. Thus there exists a stage e~, say e~ - r, such that lim„y~ E(Fn,,) C
E(F;). By lemma 1-ii) there exists y such that lim,,.y~ P{Q~(Tn.,,) C y} ~ 0.
Like previously, it implies the ergodicity of the Markov chain (Mn,r),,: for
ml, ..., m~-1 chosen large enough,

lim P{Mn.r C (mi,...,m~-~,y)} ~ 0n~~

Moreover, the cycle time has then an integrable limiting distribution. Thus
S` is stable and, by induction, the proof is complete. ~
Remark. When b- c, the previous proof reduces to the first two paragraphs,
and the stability is established without having recourse to the dominant sub-
systems ( which are then not defined).

5.2 Necessity of the sufficient condition

To establish the necessity of the condition of theorem 4 for the stability of
the system, we need the following technical lemma ([11])

Lemma 7 Let (Q„)„ be a stationary sequence of non-negative random vari-
ables. If Q~ - Ql is integrable, then E(Q„tl - Q„) - 0, even when the Q„'s
are not integrable.

Proof: Because (Q„)„ is stationary, there exists a shift B on the canonical
probability space of the sample paths of the process (Q„)„ which preserves
the probability measure (see [3] page 19). To avoid additional notations, we
suppose that our variables are defined on this canonical probability space.
By the stationarity, it suífices to prove that E(QZ - Ql )- 0. Let Z be the
a-field of the invariant events. Put Q- Q1, and define for any constant b
the integrable random variable R6 - min(Q, b) 0 9- min(Q, 6). Then, by the
ergodic theorem,

1 n-1
E(Rá~Z) a-'~ llm -~ Rb o Bk

n~oo n k-0
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1 n-1
lim -~(min(Q, b) 0 8k}1 - min(Q, b) 0 9k)

nyoo n k-0

liym n (min(Q, b) o B" - min(Q, b))

0

Thus E(Ró) - 0 for all b. But ~Ró~ C ~Q o 9- Q~ which is integrable. By the
Lebesgue convergence theorem, for c--. oo, we obtain

E(nw s- Q~ ) - E(Q o 6- Q)
- limó-.ooE(Ra)
- 0 0

The next theorem establishes the necessity of condition C for the stability of
the polling system S.

Theorem 5 Condition C is necessary for the stability of the polling system
S.

00 : Suppose the polling system S is stable. Put for all i the stationary
distribution as initial distribution of the Markov chain (M,,,;),,: these chains
are then stationary and all states are positive-recurrent. Hence, P{Qk(Tn,;) -
0} ~ 0 for all k and all ( n, i). The cycle time being stationary and integrable,
Gk ~~`1 E(Fn,k, ) does not depend on n for all k, is finite for k G b, and by
lemma 1-ii) ( if part with y- 0), Gk G Gk for k 1 b. In particular, G~ G G~.

On the other hand, from equations ( 17), for all k E{ 1, ..., c},

ak

-~ Fi,k~ C Qk(Tz,i) - Qk(Ti,i) C Nk(Ti.i, Tz,i)
r-i

where both bounds are integrable. Thus, the previous lemma applies and
E(Qk(Tntl,l) - Qk(Tn,l)) - 0 for all n and all k. Taking expectations in
( 17) leads now to an equality in ( 25), and ( 27) reads:

6 e

(1 - P6) ~ ~jGj - Pb ~ QjGj ~ S

j-1 j-Dt1
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It implies that pb G 1 because the right hand aide is positive. Moreover, all
inequalities in ( 26) and ( 28)-( 30) become equalities; in particular ( 30)
becomes:

(1-Pk )Gk-~k l ~ a;G;fSI , 6GkGc (34)
`~-kt1 J

For k- c, it provides

G~ - (1 - P~)-'~~S G G~

which is condition C. O
The remark following the proof of theorem 4 holds here too.

The system of equations ( 34) is easy to solve; its determinant is 1- p
and it has as unique solution

Gk- ~ks ,fOT 1 CkGc1-p (35)

It is the mean number of customers served per cycle in queue k in stationary
regime, already known by balance arguments.

5.3 Local stability condition
By local stability, we understand the stability of only a subset of the queues.
It is clear from the two previous sub-sections that condition C` is the neces-
sary and sufficient condition for the stability of the (sub-)polling system S`
in that S` is completely similar to S. The point here is to suppose that the
polling system S is not stable, that is condition C is violated, and to deter-
mine which of the queues are not stable. Nevertheless, it is clear from the
previous analysis that all the queues { 1, ..., b} are simultaneously stable or
unstable, according to py G 1 or pb ~ I respectively, and that in the second
case, the mean cycle time converges to oo, excluding any stable behavior of
the system. Thus we suppose pb G 1 to ensure the integrability of the cycle
times, the queues {b f 1, ..., c} contributing for integrable stage durations
anyway.
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Hence, we focus on the behavior of the queues { b -f 1, ..., c} in an insta-
ble polling system S starting with an empty system at time 0. By the
monotonicity property, all lengths (Qk(T,,,;))„ of these queues converge in
distribution as n-~ oo, but the limit may be defective. Define

~c :- max{j : pj f~~ S G 1}
~

The previous set is not empty because pb G 1, and K is well-defined. Thus
condition CK is fulfilled, but for any k~ cc, Ck is not. It is easy to see that
for any k ~ ~c,

Pt ~- pk -F~ G. ~ aj Gi ~ pKf i f G.~ ~ ~jGi
k 6~tCjCc,jqEk Rf~ Kt2GjCc

By analogy with the sub-systems S`, the sub-system of the queues { 1, ..., b, k},
obtained when all the other queues j 1 b, j~ k, are saturated, is stable if
and only if the term on the left hand side above is less than 1. Thus, this
sub-system is instable while S6 is stable. Arguments as in the second part
of the proof of theorem 4 show that the length of queue k must go to 0o in
distribution. It can be shown in the same way that none oj the queues k 1 ~c
can be stable in any sub-system containing it and queues { 1, ..., 6}. On the
other hand, SK is stable, (M,;,;)„ is ergodic and by lemma 4, (Mn~; )„ con-
verges in distribution to a proper distribution for all i. Thus all the queues
k G K are stable. In particular, this shows that condition CK is the right
condition to ensure the stability of queue ~c. For example, the additional
conditions given by in [4] for the individual stability of queues ruled either
by the 1-limited policy, or by the semi-exhaustive policy are sufficient but
not necessary.

Finally, suppose that S is stable. Multiply the arrival rates to all queues
by a common factor o: 1 1 and let a increase. This leads eventually to a
heavy trafTic aituation. From the previous lines, it is easy to see that the
order of explosion oj the queues is the decreasing order of ,1k~Gk ( in case of
equality, explosion is simultaneous), that is the order in which the conditions
Ck fail to hold.
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Appendix

Here we prove that for all e, b c e G c, the system of the e first inequalities
of ( 29) imply the system of the e first inequalities of ( 30). The two systems
have the same first inequality: (1 - p~.l)Gb~l G~b.i.l (~~-6tz ~;G; f S)
The second inequality of ( 29)is
(1 - P6 - Pbt~) -rT6tZ C ~6t2 (Q6i~1Gbf1 } L.,jobt3 ~7G) } `~)

Inserting the first inequality, the first two inequalities of ( 29) imply
(1 - Pe - Pets )G6f2 ~ ~6tY (lp~~(~j-6tZ Ojiij } `~) ~ ~j-6t3 Oj ,~sj ~ `~)

Rearranging, we get
(1 - P6 - P6tZ 11-ó~)) G6t2 C~6t211~ (~j-6f3 a7Gj ~ S)
But

~1 - P6 - Pbtsll~;)~ (1 - P6f1) - (1 - P6)(1 - Pbts)
and the second inequality of (30) is obtained. Iterating these algebraic ma-
nipulations, it is shown exactly in the same way and by induction that the
e first inequalities of ( 29) imply the e first inequalities of ( 30). The fact
that only the first e variables and only the e first inequalities are involved to
show this implication allows to do the same for the systems of inequalities
associated with S` and to obtain (31). o
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ERRATA Research Memorandum FEW 559
Tilburg University, The Netherlands.

-Page 15, lines 10-11:
This holds whenever ~h is C-monotone for any C-monotone function h(cf.
[12], page 63). -
-Page 15, line 18:
the vector is thus Gd-monotone in (u, r, m~', s). For any function h G-
monotone, Hl given ....
-Page 18, line 15:
and suppose Mi~i Gd Ml,l. Let he be a function of ine only, C-monotone;
~r,he and ~r; he ..... -
-Page 26, line 17:
Gk -~ik, E(Fn,k,) does not depend on ....
-Page 26, line 18:
lemma 1-ii) (if part with y- 0, which is valid without the assumed mono-

tonicity of (Qn)n), Gk G Gk for k 1 b. In particular, G~ G G~.
-Page 28, line 5:

-Page 28, line 9:

~c :- max{j : p~ f~: S~ G 1}
~

( ~K
Pb -F- pk f Gt I ~ a;G; -1- S~ ? PKti -~ G„}' ~~ o;G; ~- S

k `b~1GjGc,;~k Kfl Kt2GjCc
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