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HORIZONTAL MIXED DECOMPOSITION

B.R. Meijbooml)

Subfaculty of Econometrics, Tilburg Univereity, The Netherlands

Abstract

In this contribution a new decomposition approach for block-angular pro-

gramming problems is presented. Historically, decomposition methods are

either price or reaource directive. The present paper integrates the two

in the sense that part of the common conatraints are coordinated by pri-

ces, while, at the same time, the other part of the common constraints

are coordinated by dírect allocationa. We find increasing lower and de-

creasing upper bounds for the optimal value and globally feseible solu-

tions with improving value can easily be obtained.

The resulting algorithm has an appealing economíc interpretation in
terms of mixed price-budget oriented planning in a two-level organiza-
tion.

1) The author ia grateful to Prof. Dr. J.F. Benders for many fruitful
discussions and useful suggestions. The idea for the convergence proof
is mainly due to J.P. Boly and C.P.M. van Hoesel.
The research is supported by a grant frmn the Common Reaearch Pool of
the Tilburg University and the Technical University Eindhoven ( Samenwer-
kingsorgaan KHT-THE) in the Netherlands.
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Horizontal mixed decomposition

1. Introduction

Alock-angular T.P problems can be decomposed in various ways.
Both problem and solutlon method often have an economic interpretation
in terms of a multilevel organization. Therefore classifications of de-
composition algorithms are frequently based on the .distinctíon "price-
directive" versus "resource-directive". This paper containe a hybrid

algorithm in the sense that the pricing operations and resource alloca-
tion operations occur simultaneously. Following Obel (1978), who has

introduced this mixed approach, we wíll epeak of "horizontal mixed de-
composítion". The present method is essentially an extension to the
theory because we explicitly analyse the master problem. Similar ideae,

with emphasis on the economic implications, have been found in a working
paper by Atkins (1979).

After the introduction of the problem (aection 2), it is refor-

mulated (section 3) and then replaced by two approximating formulations
(section 4) so that an iterative two-level solution strategq can be ap-

plied (section 5). Realization of near-optimal solution values by glo-
bally feasible solutions is then discussed (section 6) followed by the

economic interpretation of the algorithm (section 7).
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2. Problem formulation

The class of problems to be analysed is of the form

Maximize clxl -E '.. f cnxn

s.t. Alxl f.., f Anxn C a (~)

Alxl t... f Bnxn C b (,t~t)

D x C dn n n

xl,..., xn ~ 0

Here: a, b, cj, d~ (j~l,...,n) are known vectors,

A~, B~, D3 (~j31,...,n) are known matrices,

x~ (j~l,...,n) are variable vectors,

all of appropriate dimensions.

It is well known that problem (2.1) can be viewed as a model of

a divisionalized organization (Dírickx and Jennergren (1979, chapter 6).

The common constraints (~) en (~~) express the common use of certain

resources by all divisions. In this paper we will develop a two-level

solution algorithm in which the common resources (~) are coordinated by

prices while the common resources (~~) are coordinated by allocations.

This treatment of the common constrainte (~) and (~~) will be referred

to as horizontal mixed decompositíon.

Before we present our algorithm, a few asaumptiona and defini-

tions are in order.

We presume the exiatence of a feseible solution of problem (2.1). The
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dívisional feasible regiona X~, which are defined se X~:-

{xj ~ D~x~ G dj, x~ ~ 0}are assumed to be bounded. So (2.1) has a finite

optimum.

For j- 1,...,n, the aet Y~ is defined as followa:

Y~ E Y~ : -{x~ I xj E X~, B~x~ G Y~} f~ (2.2)

Set Yj will be called the set of feasible allocationa for diviaion j

concerning common resourcea (~~).

For notational convenience, the aet Y is introduced:

n
Y:~ {(yl,...,yn) ~ E yj G b; y~ E Y~, j- 1,..., n} (2.3)

j~l

Set Y will be called the set of globally feasible allocationa concerning

common resources (~~).

3. Reformulation of the original problem

We define the Lagrangian function relative to the common con-
strainta (~):

n n
L(x,n):a E c x f n(a- E A x)

~~1 ~ ~ ~el j j

where x replaces xl,...,xn. Now the (Lagrangian) dual of (2.1) is:
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Min Max L(x,n)
n~0 x (3.1)

n
s.t. x~ E X~, j~ 1,...,n, E B~xj G b

j-1

Optimal solutions (x, n) to the minmax problem (3.1) are saddle points
of L(x, n). The next theorem provides for necessary and eufficient con-
dítions for the existence of a saddle point.

Theorem 1:

A vector x-( x,..., xn) is a solution to the LP problem (2.1) if and

only if there exists a vector n ~ 0 such that (x, n) is a saddle point
of L(x,n).

Proof: see Appendix A.

Now the usefulness of a saddle point le evident: if (x, n) is a saddle
point of L(x,n), then x solves the original problem (2.1).

If we use the set Y(see formula (2.3)) and introduce the func-

tions ~~(y~,n) defined as

~j(yj,n):- Max{(c~-nA~)x~ ~ x~ E X~, Bjxj t y~},

j a 1,...,n, problem ( 3.1) can be rewritten as

n
Min Max E ~3(y~,n) ~- na
n~0 yEY j~l

(3.2)

Problem (3.1) and (3.2) are equivalent because, for every n~ 0, the

inner maximization problema are equivalent ( see Laedon (1970, p. 462)).
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The functions ~~(y~,n) are concave in yj and convax in n. Moreover, they

are even piecewiae línear in both yj and a.

Due the the presvmed existence of a finite optimum to (2.1), the origi-
nal Lagrangian L(x,a) has a saddle poínt. So the functíon
n
E~j(y~,n) i- na has a saddle point, too. Aence, it is allowed to re-j:l

verse the order of maximization and minimization ín (3.2) (see Zangwill
(1969, p. 45-46), thereby obtaining:

n
Max Min E ~~(yj,n) f na
yEY n~0 jal

n
Min v s.t. v ~ E~~(Y~,n) f na, y E Y
a~p jal

In [he sequel, (3.2) will be referred to as (D), the dual problem, and
(3.3) as (P), the primal problem. The problem (P) and (D) have the same
optimal solutions. Equivalent formulations of (P) and (D) are

n
Max w s.t. w c E~~(Y~,n) f Ra, a~ 0
yEY ~-1

and

respectively.

4. Relaxation of both primal and dual problem

(3.3)

(3.4)

(3.5)

In this section, tangential approximation is applied to derive
appropriate relaxed versions of (P) and (D).
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Suppose we have at hand r tuples (nk,yl,...,yn), k~ 1,...,r of

trial prices and allocations with respect to the common resources (~)

and (~~), respectively. Let nk ~ 0, y~ E Y~, j ~ 1,..., n, and
n
E yk ~ b for all k.

j~ 1 ~ n
From w C E~~(y~,n) t na, n~ 0, it follows that

j-1

n
w C E~~(Y~,nk) f nka, k ~ 1,...,r

jal

Similarly

n k
v~ E ~~(y~,n) t na, k - 1,...,r

j~l
(4.2)

The r right-hand sides of (4.1) are not easily handled so we apply a

further relaxation. Tangential approximations are readily obtained by

solving the subproblems

Maxímize (cj-nkA~)x~
s.t. a~ xJ ~ Y~

For let x~ be an optimal solution, let u~ be an optimal dual solution

associated to the constraint g~x~ ~ y~~ while the optimal solution value

is ~~(y~, nk), by definition. Then it is a trivial task to ehow that

mj(Y~.nk) c~j(Yj.nk) f uj(Y~-Yj). Y~ E Yj
(4.3)

(See Geoffrion (1970, p. 381) or Dirickx and Jennergren (1979, p. 69).



7

The right-hand sidea of (4.2) can also be approximated

n
na f E ~~(Y~.n) ~ fk f(n-nk) Aaj-1

where (k a 1,..., r):

n n
fk:~ E m(yk,nk) t nka ~ E (c -trkA )xk f nka

~-1 ~ ~ ~~1 ~ ~ j

n
Aá:z a- E A~ xj

j~l

(See Appendix B.)

(4.4)

(4.5)

Combining (3.6), (4.1) and (4.3) leads to the following relaxed

primal problem:

Max w

s.t. w c fk f E u~(y~-y~) , k~ 1,...,r
jal

(Yl....,yn) E Y

(4.6)

From (3.7), (4.2) and (4.4), we derive the following relaxed dual pro-
blem:

Min v

s.t. v~ fk f(n-nk) ~á , k~ 1,..., r (4.7)
n ~ 0
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We conclude this section with a useful statement concerning the
optimal solution values of (4.6) and (4.7).

Let wp be the optimal solution value of (3.4), let vD be the optimal
solution value of (3.5). We know that wD ~ vP. Now, íf vr and wr are the
optimal solution valuea of (4.5) and (4.6), respectively, it holds that

vr t vD ~ wP G wr (4.8)

So the optimal solution value of the original problem líes between vr
and wr.

5. Solution strategy

Our algorithm approximates the solutíon of (P) and (D) by sol-

ving relaxed versions of (P) and (D), and adding new constraints to the

relaxated problems when necessary.

Let e~ 0 be the desired accuracy. Suppose one has arríved at a

relaxed primal and a relaxed dual problem of the form (4.5) and (4.6),

respectívely, each with r constrainta. We call these problems (Pr) and

(Dr). Solve (Pr) and denote the optimal solution and objective function

value b ~1 ~1 Y. n~l and v are the optimaly(yl '"''yn ) and wr. Similarl r

solution and objective function value to (Dr).

If wr - vr ~ e, we may terminate. Now we can generate a globally fea-

sible solution with value ~ vr (see section 6).

Otherwise, if wr - vr ~ e, solve the following subproblems:
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Max (cj-n~lA~)x~
s.t. B~ x~ c yj 1

x~ E Xj

This yields x~1~ u~rtl~ ~j(y~ 1~ nr~l)~ j~ 1,...,n, from which appro-

priate constraints to be added to (Pr) and (Dr), can be deduced. The

augmented problema are called (P~1) and (D~1).

If we solve (P~1) and (D~1), w~l and v~l will come out. These are,
possibly better, upper~lower bounds for the optimal objective function

value of the original problem as

~r c ~r-F 1 c ~T1 a wP c wrF.l c wr

Now it is clear that, by succeseively solving (Pr) and (Dr) and

adding new constraints to them, we expect to fínd shrinking intervals

[vr, wr], r~ 1,2,..., which contain the optimal objective function

value. Indeed, the dífference between vr and wr converges to zero. A

convergence proof is given in Appendix C.

The algorithm can be summarized as follows:

Summary of algorithm:

n
Step 0. Choose nl ~ 0, and y~ E Y~, j~l,...,n, such that E yj c b.

j-1

Set r:- 0.

Step 1. For j z 1,...,n, solve (5.1), which yields x~1~ u~ 1 and

~j(yj 1, n~l).
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Step 2. Compute f~l and Dá 1, and add appropriate constraints to (Pr)
and (Dr) thereby obtaining ( P~1) and (Dr,f,l), respectively.

Step 3. Set r:~ r f 1 and solve (Pr) and (Dr) which yields wr, vr,
rfl rFl rtlyl ,...,yn , n .

Step 4. Optimality test:

if wr - vr ~ e then terminate, otherwise return to step 1.

Up till now, we have treated the set Y as if it is completely

known. In practical applications it is usually impossible to obtain the

set Y(or the sets Y1,...,Yn) in explicit form. The literature, in par-

ticular Geoffrion (1970, section 3.1), offers several useful methoda to

generate the sets Y1,...,Yn during the iterations of the juet described

algorithm. Especially in the present, linear case, each Y~ can be speci-

fied without approximation by a finite collection of linear equalities.

Each of these inequalities can be added to (4.6) "when needed".

This aspect even more stresses the importance of the algorithm as an

information collecting procedure.

6. Generation of globally feasible solutions

So far, we have described a procedure which simultaneously gene-

rates a decreasing sequence of upper bounds as well as an increasíng

sequence of lower bounds for the optimal solution value. Moreover, both

sequences, i.e. (~r)1~ and ( wr)1, converge to this value. In this aec-
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tion, we will show that, without much extra effort, a globally feasible
solution can be computed.

The relaxed dual Dr is simply an LP problem and can be written

as

Minimize v

s.t. v- n Dá ~ fk - nk ~á, k- 1,...,r
n ~ 0

Dualization yields

r
Maximize E ak(fk-nk~k)

k~ 1 a

r
s.t. E ak 1

k-1

- F. ak ~k
k~l a

G O
ak ~ 0

which i s equivalent to (recall (4.5)):

Maximize E 1k E cj xj
kal jal

s.t. E ak
kz 1

E ak E A~ xj ~ a
ksl jzl

ak i n



12

Now let (ál,..., ár) be an optimal solution to (6.1). Its solution value

is equal to vr, the optimal value of Dr. If we define

r k "kx E ~ x, j ~ 1,..., n
~.3 k31 3

(6.2)

then (X1~,,,~ Xn) is feasible to (2.1), due to the convexity properties,

and it has solution value vr.

Summarizing, we can derive a globally feasible solution by a

convex combination of previously generated divisional solutions. The

weighting factors are exactly the optimal dual variables associated to

pr, and the solution value is equal to the optimal value of Dr.

An alternative way to generate a globally feasible solution,

with value ~ vr proceeds as follows. Compute (j-1,..., n)

r r
ar - E ák A xk, br :~ E ák yk

~ . k31 ~ ~ j km 1 ~

where (al,..., ar) is again an optimal dual solution to (Dr).

for each j ~ 1,...,n the problem

Maximize c~x~

-rs.t. A~x~ c a~

rB~x~ c bj

Because X(as defined by formula (6.2)) is feasible
~

mal value of (6.4) is at least c~ Xj, Hence

values of each of the problems ( 6.4) ie at least

(6.4)

to (6.4), the opti-

the sum of the optimal
n
E cjxj~v.

~~1 r

(6.3)

Now solve



13

7. Economíc interpretation

As noted before, the original problem (2.1) can be viewed as a

model for a divisíonalized organization. The blocks D~x~ c d~, xj ~ 0

(jal,...,n) are associated with divisions and the common constraints (~)

and (~~) reflect the interdependencies (e.g. allocation of common re-

sources) between them. Furthermore, we pres~mme that there is a central

unit at the top level of the organization, that is aware of these inter-

dependencies but does not have complete information on the divisional

constraints. Identifying the objective functíon of (2.1) with the goal

of the firm, to be atrived after by the central unít, we observe that

the central unit cannot immediately realize that goal due to the lack of

knowledge on divisions. Instead, a planning procedure by which top-

management gathers information, must be applied. Aelow we describe such

a procedure. It is based on the decomposition algorithm as outlined in

the previous sections.

The essential feature of the method ís that

- the (~) interdependencies are coordinated by prícea, while

- the (~~) interdependencies are coordinated by direct allocations cq.

budgets.

Hence, we provide for a mixed price-budget directive planning procedure.

For explanatory purposes, we will assume that the (~) and (~~)

interdependencies are due to the common uae of certain resources by all

divisions. The goal of the firm is assumed to be profit maximizatlon.

The planning procedure is formed by a number of planning ses-

sions. At the start of a new planning session, the central unit aends a

price nr for the (~) resourcea and allocations ( or budgets)
yl' "''yn



14

for the (~~) resources to the divisions. These are asked to compute
their maximum profit ~j(yj, nr), the required amount Aj xj of (~) re-

sources under the price nr and a marginal valuation u~ of the budget
y~ for ( ~~) resources ( j 3 1,...,n).

Formally, each division solves ita problem

Maximize (c -nrA )xj ~ ~
s.t. Bjxj c y1

xj E Xj

(7.1)

and reports the maximum objective functíon value ~j(y~~nr)~ the optimal

dual variable u~ with respect to the constraint gj xj c y~ and the quan-
títy Aj x~, where x~ is the optimal solution to (7.1).

Based on the divisional responses, and information gathered in

previous sections, the central unit can derive a lower bound vr and an

upper bound wr for the maximum attainable profit ( i.e. the optímal value

of the original problem (2.1)).

The maximum attainable profit lies between theae bounda, so the central
unit can terminate the procedure as soon as their difference haa become
small enough. The central unit finds a partitioning of the (~) and (~~)
resouces under which the divisions together will at least realize a pro-
fit of vr, if the previous claims for ( ~) resourcea, i .e. Aj xj,
k- 1 r and the revious bud ets for k,..., , p g ( ~~) resources, i.e. yj~

k~ 1,..., r, are adequately weighted. Weighting factors with this pro-

perty, which apply to both types of reaourcea and are uniform over the

divisions, can be obtaíned by a alight modification of the computational

procedure for vr. Formally, let ál,..., ár be these weighting factora.

Now the central unit must compute (j e 1,...,n)
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r r
ar :- S ák A xk, br :~ E ák yk .

~ k-1 ~ ~ ~ k~ 1 ~

If each divisíon optimally uses these final amounts of common resources,

it solves the problem

Maximize c~x~

s.t. Ajxj ~ aj

Bjx~ ~ b~

The sum of the divisional profits will be at least vr.
On the other hand, if the central unít is not satisfied with the

bounds vr and wr, i t can update the prices and allocations leading to

new bounds v~l and w~l. It will hold that

~r ~ ~rfl ~ OPT ~ wrtl ~ wr

where OPT denotes the maximum attainable profit. So the more information

the central unit gathers, the better it approximates the maximum attain-

able profit.

Now we will pay some attention to the way the central unit de-

rives the prices, budgets and profit estimates. As a matter of fact, the

prices nr and the lower bounds vr on the one hand, and the allocations
yr~.~.~ yr and the upper bounde wr on the other hand follow from two1 n

separate computations. Firstly, we will consider the pricea nr together

with the lower bounds vr-
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Suppose we are at the end of the r-th planning sesaíon. So the

central unit has at hand the divisional responses of aession 1,2,..., r.

From the divisional responses of each session aeparately, the central

unit can form a linear function which approximatea the profit as func-

tion of the internal prices n. Hence, combining the divisional informa-

tion as collected in all previous sessions up till now, the central unit

derives a piecewise linear approximation of the profit function with

respect to changes in the prices for (~) resources. The collected infor-

mation is used in a"pessimistic" way, aince the approximating profit

function lies "belo~' the correct profit functlon. As a result, the es-

timated profit vr is a lower bound for the actual maximum attainable

profit. In the course of the procedure, the piecewiae linear approxima-

ting function becomes better and better, hence giving rice to improved

lower bounds v~l, ~ etc.ri- 2

The determination of subsequent wr and yi,.,,, yn proceeds in a

símilar way. The only difference is that here the central unit works

with an improving piecewise linear approximatíon for the profit function

with respect to changes in the allocations for (~~) resources, which

always lies above the correct profit function. Hence a decreasing sequ-

ence of upper bounds wr is the result.

8. Conclusion

Our maín purpose has been to derive a two-level decompoaítion
method with prices for some resources and allocationa for other resour-
ces occurring simultaneously. Furthermore, we were particularly interea-

ted in the computation of the prices and budgets. As a matter of fact,
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this computation provided for an upper and lower bound for the optimal
value of the problem at hand. Moreover, the lower bound, which increases
during the iteration sequence, ie directly asaociated to a globally fea-
sible solution. In other words, during the iterationa globally feasible
solutions can be obtained with increasing solution value.

The author is aware that, from a computational point of view,

several improvíng modifications could be incorporated. However, the con-

tribution of the present paper is that it provides for the correct ma-

thematical foundation of mixed coordination by pricea and budgeta in a

general two-level organization. Each of the subproblems, at the top le-

vel as well as at the divisional level, has a clear appealing economic

interpretation in terms of a planning procedure. Secondly, the mixed uae

of prices and budgets is a most realiatic option when comparing the pre-

sent planning procedure with planning in real-world organizations (e.g.

see Atkins (1973), Obel (1981)).



lA

References

Atkins, D.R. (1973). Managerial decentralization and decompoaition in
mathematical programming. Operational Reaearch Quarterly, 25, no. 4, pp.

615-624.

Atkins, D.R. (1979). Decentralizations by joint price and budget cotr-
trols: the problem and an important special case. Unlversity of British
Colianbia. Working paper.

Dirickx, Y.M.I. and L.P. Jennergren ( 1979). Systems analyais by multi-

level methods: with applicatione to economics and management. New York:

Wíley.

Geoffrion, A.M. (1970). Primal resource-directive approaches for optimi-

zing nonlinear decomposable systema. Operations Reaearch. May-June 1970.

Lasdon, L.S. (1970). Optimization theory for large systems. London:

Collier-MacMillan.

Obel, B. (197R). A note on mixed procedures for decompoaing linear pro-

gramming problems. Math. Operationeforach. Statist., Ser. Optímízation,

9, no. 4, pp. 537-544.

7,angwill, W.I. (1969). Nonlinear programming: a unified approach. Engle-
wood Cliffs N.Y.: Prentice Hall.



19

Appendix A. Proof theorem 1

Consider the problem

Maximize px

s.t. Ax t a

Bx c b

x ) 0

(A1)

with optimal solution x, Due to duality theory for LP, there exist u~

~ that solve the dual problem i.e.

Minimize ua f vb

s.t. uA t vB ~ p

u,v ~ (1

(A2)

Furthermore, it holds that u(Ax-a) s 0 and x is an optimal solution to

Maximize (p-uA)x

s.t. B x C b

x ~ 0

Now define:

L(x,u):- px - u(Ax-a) , Bx C b, x ~ 0, u~ 0.

Then: ( x~u) is a saddle point of L(x,u).

(A3)

Hence, we must prove that
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L(x,u) c L(x,u) c L(x,u)

for all x with Bx C b, x~ 0, all u~ 0.

As x solves (A3), we have (p-uA)x c( p-uA)x, so L(x,u) c L(x,u).
Secondly, u(~-a) a 0 whereas -u(Ax-a) ~ 0, so L(x,u) t L(x,u).
Summarizing, we have ehown that if (A1) has an optimal solution x~ then

there exist an u ~ 0 such that (x~u) is a saddlepoint of L(x,u).

Reversely, if L(x,u) has a saddlepoint (x,u) then x solves the
original problem (A1). This statement is even true for convex program-
ming problems, see Lasdon (1970, p. R5).

Appendix B. Further relaxation of problem (4.2)

We will show that for each k~ 1,..., r the following inequality
holds:

~~(Y~,n) ~ ~~(Y~,nk) f (nk-n) A~x~

with (obviously) equality for n- ak.

Recall the definition of ~~(y~,n) (section 4).

For all xj satisfying B~xj C y~ , xj E Xj, it holds that

(B1)

~~(y~,n) ~ (c~-nkA~)x~ f (nk-n)A~xj
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In particular

mj(Yj,n) ~ (c~-nkA~)x~ f (nk-n)A~x~

which is equivalent to

~j(Y~.n) ~ ~j(Y~,nk) f (nk-a)Ajxj .

Now that we have proved (B1), it easily followe that

E~~(Y~,n) t na ~ E(~~(Yj,nk) t(nk-n)A~x~)
jsl jsl

so

n
E~~(Y~.n) f na ~ fk t( n-nk)Aa

j-1

n n
where fk: E~~(Y~,nk) f nka, Aá:e a- E A~x~ ,

~-1 j-I

(B2) is exactly inequality (4.4).

(B2)

Appendix C. A convergence proof for the algorithm as presented in sec-

tion 5

In this appendix we wíll prove convergence of the algorithm as

presented in section S. Two more assumptíons are required. After the

proof, a sufficient condition for one of them is given.
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Theorem:

if we assume that

1. the sequence (nr)1, is bounded,

2. the u~ are uniformly bounded (i.e. 0 t uj G M),

then the algorithm of section 5 converges in the aense that
wr - vr i p, r-~ W.

Proof:

We already know that vr C vr}I C vn - wP G wr}1 c wr. In the sequel we

will prove that wr - vr i 0 on a subset of indicea. Of course, this im-
plies that

lim vr - vD - wP - lim wr.
r-.m r-.~

The reasoning proceeds as follows.

The sequence (nr,Yl' "''yn)1 converges on a subset of indices, as the

nr and all yr come from bounded sets. (The boundednesa of Y follows from
~ n

the compactness of each X~ and the global restriction E y~ c b.) The
j-1

convergent sub-sequences are denoted by
r ~ r m

(n s) and íY s) . j - 1,..., n.
sal ~ snl

As v ~ frs } (~rsfl-rrs)Ars
r~l a

and w c frs ~- E ujs(yjsfl-Yjs).
r~l ~sl

we have
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0 t w - ~ t(nrsfl-nrs)Ors f E ujs(y~r~l - y~s)
rsfl rstl a j-1

For s i m, the right-hand side of this expression converges to 0 as
„r r

Das and u~s are bounded. (The boundedneas of ~as ia simply due to the
boundedness of the sets X~, j- 1,..., n.) Hence

v - w ~ 0 ,r rs s
s a m

and the proof is completed.

Now we present a sufficient condition for assumption 1 in the
theorem.

Suppose that there exists a known, feasible solution X1~,,,~ Xn such
n

that E A~ x~ ~ a. The knowledge of this "interior point" can be usedj-1
as follows.

From (3.1) it is clear that

vD ~ min L(x,n) for every fixed feasible x
n~0

As a consequence, we are allowed to add the constraint v~ L(x,a) to Dr,
r~ 1,2... Each Dr remains to be a relaxed dual problem.
With respect to the algorithm, we suppose that, upon initialitation, Dr

with r s 0 has only one constraint, viz.

n n
V i E C X f n(a - E A X)

~~1 j j ~~1 ~ j

which will be maintained throughout the subsequent iterations. An imme-
diate consequence of this modification is that the sequence (nr)m

1
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n
will be bounded. To prove this, define: P:~ E c~ x~ ; ni:a the i-th

j-1
n

component of nr; ~i :~ the i-th component of a- E A~ x.
Now we have:

0 c n~l pi G E n~l 41 G vr - P C vn - P
i

r~lso N C ni G(vnP)Ii01), as Ai ~ 0

In other words, all future ni are bounded.
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