
CRM ~~.~~,
~szs - ~~~`~~~~
1992 Z ~ ~
542

~~~~~~ ~''~~ IÍIIIIIIIIIIII~IIII~l7NN~lpb~~l~



VERIFICATION AND VALIDATION OF
SIMULATION MODELS

Jack P.C. Kleijnen R~r
~~.~~ ~,~~

~~~~FEw 542

Refereed by Prof.dr.ir. C.A.T. Takkenberg



. k c,~
~. ~..í . ,,..` .

~~i;~~..i~3~,-~,r,i~ ijÉ~

ÍÉ t~~.:.' ~s s-~~.~



kenmerk: 320.92.177

VERIFICATION AND VALIDATION OF SIMULATION MODELS

Jack Y.C. Kleijnen
Department of Information Systems and Audíting

Katholieke Universiteit Brabant
(Tilburg University)

P.O. Box 90153
5000 LE Tílburg, Netherlands
(Bitnet: kleijnen~dkub.nl)

March 1992



1

Verification and validation of simulation models

Jack P.C. Kleijnen
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Brabant (Tilburg Universíty), P.O. Box 90153, 5000 LE Tilburg, Netherlands.

Abstract: Thís paper gives a survey of techniques used for the verification
and valídatíon of models, especially simulation models. Moreover, this paper
introduces a novel way of applying basic regression analysis to validate a
model.
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1. Introduction

Once we have programmed a simulation model, we must verify that no
programming errors have been made. Next we must ask if the model is a valid
representation of reality. Unfortunately, there are no perfect solutions for
the problems of verifícatíon and validation. Note that these problems occur
not only ín simulatíon models.

Sargent (1991) states "the conceptual model is the
mathematical~logical~verbal representation (mimic) of the problem entity
developed for a particular study; and the computerized model is the
conceptual model implemented on a computer. The conceptual model is developed
through an analysis and modelling phase, the computerized model is developed
through a computer programming and implementatíon phase, and inferences about
the problem entity are obtained by conductíng computer experiments on the

computerized model in the experimentation phase."

This paper is based on Kleíjnen and Van Groenendaal (1992). It is
organized as follows. In Sector 2 we díscuss verification, that is, how to
díscover programming errors? In Section 3 we examine validation: how to
investigate whether the model is a good representation of reality? In Section
4, we give conclusions, followed by a substantial list of references.
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2. Verífication

Once we have programmed the simulation model, we may try to check whether

any místakes have been made, as follows.
(í) We can calculate some results manually, and compare these data with
results of the simulation program. Getting all intermediate results from a
computer program is called tracíng. Even if we do not wish to calculate
intermediate results by hand, we can still 'eyeball' the program's trace and
look for 'bugs'. Simulation software provides tracing facilities and more

advanced 'debuggers'; see Pegden, Shannon, and Sadowski (1990, pp. 137-148).
Moreover, we may verífy certain modules of the simulation program. For

example, we may check the pseudorandom number generator, if we had to program

it ourselves or íf we do not trust the software supplíer's expertise
(Kleíjnen and Van Groenendaal, 1992, díscuss pseudorandom numbers in detail).

GPSS~H automatically computes chi-square statistics to test the hypothesis

that the pseudorandom numbers used are uniformly distributed; see Schriber

(1991, p. 317). We may compute the average of a sampled input variable such

as service time, and compare that average wíth its expected value. Random

deviations between average and expectation can be used to improve the

estimated output, which leads to the variance reduction technique known as

control variates. Systematic deviations between the (observed) average and

the (theoretical) mean may be tested through the t test. Such systematic

deviations occur when the user mixes up the variance and the standard
deviation of the normal dístribution. The user may further specify the wrong

unít of ineasurement, for example, seconds ínstead of minutes (so the results

are wrong by a factor 60). Instead of testing the mean, we can test the whole

distribution through a goodness-of-fit test such as the well-known chi-square

test.

(ii) The final output of the símulation program may result only after (say)

a hundred thousand customers have been processed and the steady state has

been reached. That result can be verífied by running a simplified version of

the program with a known analytícal solution, províded we can find such a

version. Any textbook on queuing theory presents steady state expectations

for several output measures of the M~M~n model. For certain queuing networks
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we can compute steady state solutions numerically (see Lavenberg, 1983). In

the steady state the system is stíll stochastic (but the probability law that

governs the stochastic process no longer depends on the initíal state). So

we should use mathematícal statistics to test that the expected value of

(say) x, the simulation program's average output, equals the computed

steady state expectation {~ .

Ho : E(X) -l~ . (1)

Note that we underline random variables. To test this hypothesis we often

assume normality, and estimate the variance x. Kleíjnen and Van

Groenendaal (1992) explain how to estímate this variance. If, for example,

we use m subruns to compute the estimated variance sx of x, then the test

statistic becomes

x - ~a - x - ~a
- - r

-x ~~ Jm
(2)

If the simulation has multiple responses (as is usually the case), then we

can apply Bonferroni's inequality to preserve the overall 'experimentwise'

error rate. Multivariate techniques are alternatives to the combínation of

univariate techniques and Bonferroni's inequality; see Balci and Sargent

(1984b) and Kleijnen and Van Groenendaal (1992). We shall return to error

rates in the discussion of (3).

In Monte Carlo studies on the performance of statistical procedures, we

often know the analytic solution, províded distributions are normal or sample

sizes are large. For example, Kleijnen and Van Groenendaal (1992) show how
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to verify parts of a Monte Carlo computer program, applying (2). For some
models we know the theoretical output, provided the inputs are deterministíc.
Examples are the economic models in Kleijnen and Van Groenendaal (1992). In
that case we can verify the correctness of the símulation program, at least
for one set of inputs.

(iii) To verify the computer program of a dynamic system we may use
animatíon. So we present the user a moving picture of the simulated system.

The user is well qualified to detect errors in the simulated behavior. These

errors may be either programming errors or modeling errors; the latter type

will be discussed below.

Kleijnen and Van Groenendaal (1992) present the following exercise.

Simulate average waiting time (say) w of the M~M~1 model, startíng the

símulation in the empty state. To test the validity of the simulation, test

the null-hypothesis Ho : E(w) - pw , where ~aW denotes the analytically

computed steady-state mean waiting time. Eíght cases result from combining

(i) 'long' versus 'short' simulatíon runs (steady-state versus transient

simulation); (ii) 'light' versus 'heavy' traffic (short versus long warm-up

period); (iii) a'few' versus 'many' metareplications (low versus high power

of the validation test).

Simulation programs have special problems and opportunities. Software

engineers have developed procedures for writing good computer programs and

for verifying software ín general: modular programming, chief programmer's

approach, structured walk-throughs, correctness proofs, and so on; see Baber

(1987), DeMillo, McCracken, Martin, and Passafiume (1987), and Whitner and

Balci (1989). The book by DeMillo et al, has a comprehensive bibliography.

3 Validation

Once we believe that the simulation model is programmed correctly, we ask:
is this a valid model? By definition, a valid model gives a'good'
representation of reality. This raises several questions. Some of these
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questions are quite philosophical; for example, do we really know reality or
do we have only flickering ímages of reality (as Plato stated)? Ignoring
these philosophical questions, it is obvious that we must make our knowledge
of reality 'operational'; that is, we must explicitly formulate the laws that
we thínk govern the simulated system, and we should measure inputs and
outputs of the real system (the system concept implies that we subjectively
decide on the boundary of the system and on the attributes we want to
quantify). Sometimes it is difficult or impossible to obtain these
measurements. For example, in a simulation of the recovery of the US economy
after a nuclear attack, it is (fortunately) impossible to get thesc. data. In
símulation we often examine several system variants (in order to select a
'good' varíant), but usually we have data only on the existing variant or on
a few historical variants. In the military, however, it is usual to conduct
field tests in order to obtaín data on future variants. Kleijnen and Alink
(1992) present a case study. Shannon (1975, pp. 231-233) briefly discusses
field tests, too. Sometimes simulation is meant to predict not relative
responses, which correspond to different system variants, but absolute
responses. In the latter case, validation ís more difficult.

To validate the simulation model, we feed it real-life input data in
hístorical order (assuming that those data are indeed available); this is
sometimes called 'trace driven' simulation. We run the simulation program,
obtain the simulation output, and compare that output to the real-life output
of the existing system. So we do not sample the simulation ínput (from the -
raw or smoothed - histogram of real-life input values); instead we use the

historical values in historical order: ((x-T, x-T,1, .. , x-1, xo) where Ttl

denotes the síze of the historical sample. The further we go back into the
past, the more data we get and the more powerful the validation test will be,
unless we go so far back that different laws governed the system. For
example, in many econometric models we do not use data prior to 1945. The
output data of the real system and the simulated system can be plotted such
ttiat the horizontal axis denotes time (t--T,-Ttl,...,-1,0) and the vertícal

axís denotes the observed and simulated values respectively. We usually
'eyeball' these timepaths to decide whether the simulation model adequately
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reflects the phenomena of interest. For example, do the simulation data
indicate an economíc downturn in a business cycle study; do the simulation
data show saturation behavior (such as exploding queulengths) in a queuing
study?

Instead of eyeballing the time seríes, we can use mathematícal statistics.
The problem with the statístical analysís of simulation output data is that
these data form a time series, whereas elementary statistícal procedures
assume identically and independently distributed (i.i.d.) observations.
Kleijnen and Van Groenendaal (1992) show how to deríve índependent
observations, so that elementary statístical theory can be applied. For
example, let us denote the average waiting time on day i in the simulated and

the real system by wiand vi respectively, with i s 1,...,n. Suppose further

that we use the historical arrival times to drive the simulation model
(Kleijnen and Alink, 1992, discuss a case study in which there are no

historical inputs available). Hence we can define the 'paired' differences di - wi - vi.

Then the t statistic is

á-á
~-i - ~~~ ' (3)

where d is the average and sd ís the estimated standard deviation of d

(so d is the average of the difference between two average waitíng times

per day). If for á~ 0 the calculated value of tn 1 is significant, then

we reject the model. If á- 0 gíves a non-signíficant t~ 1 then we

conclude that the símulated and the real means are 'practically' the same so
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the simulation is 'valid enough'. Strictly speakíng, the simulation is only

a model (not reality), so a large enough sample size n would show that b

is not exactly zero. When testing the valídity of a model through statistics
like (3), we can make 'type I' and 'type II' errors respectively; we may
reject the model while the model is valid, and we may accept the model while
the model is not valid, respectively. The type I error may be called the
model builder's risk; the type II error is the model user's risk. The power

of the statistical test increases as the model specification error D

increases. A significance or 'critical' level a means that the type I

error equals ~. Obviously the type II or ~ error increases as Q

decreases, given a fixed sample size n. To decrease both error probabilities
we can increase the sample size n and decrease the variance of the simulated

system, var( w), through variance reduction techniques. Balci and Sargent

(1984b) give a theoretical tradeoff analysis among these factors (sample

síze, and so on).

A most stringent validation test requires not only that the means of the
model and the historical observations are identical, but also that if a
historical observation exceeds its mean then the corresponding model
observation (that is the observation that uses the same inputs as the

historical observation did) tends to exceed its mean, too. l.or example, v

and w should not only have the same mean but also be positively

correlated. To investigate this correlation we can plot w versus v. We can

formalíze this graphical approach using least squares and we can apply a

test, if certain statistical assumptions hold and there are enough
observations to make the test powerful enough. Testing the hypothesis of

positively correlated v and w is simple if v and w are bivariate
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normally distributed (which is a realistic asswnption in the example, because
of a central limit theorem). It can be proved that such a bivariate normal
distribution implíes

E(W~~ - ~)' ~o t ~1~. (4)

So we can plot w as a function of v, and use ordinary least squares to
estimate the intercept and slope of the straight line that passes through the

'cloud' of points (vi,wi); the formulas are given in any statistics text.

Our stringent test calls the model valid if the following composite

hypothesis holds:

Ho: ~o - 0 and ~1 - 1, (S)

which implíes E( w)- E( v)(as tested through equation 3). Moreover it

can be found in any statistics text that

aN
~~ -p á .

v

This equality implies that if ~1 - 1 and p ~ 1 then ow ~ o„

(6)

, that is,

if the model is not perfect then its variance exceeds the real variance. (If ~1

- 1 and a„ - o~ then p - 1, which is an unrealistic case; if ~1 -

1 and oN G a„ then p ~ 1, which violates the statistical model.) To



9

test [he hypothesis of (S), we compute the Sum of Squared Errors (SSE) with
and without that hypothesis (the 'reduced' and [he 'full' model
respectively), and compare these two values, as follows. Based on the full
model (4) we compute

wi - ~ t ~1 vi ,

which yields

SSEfall - l.~i (wi

(7)

(8)

Next we compute the SSE under the composite hypothesis of (5) (obviously a

restricted model gives a higher SSE). That hypothesis implies w- v, so

z
SSEreduced - 1 (Wi - Vi) ' (9)

It can be proved that the following expression is an F statistic with degrees
of freedom 2(the number of parameters ín the hypothesis of equation 5) and
n- 2(the degrees of freedom of the SSE for the full model, where the factor
2 occurs because two parameters are estimated in that model):

FZ~n-2 -
(SSEreduced - SSEfull),2

SS~full~~

If the computed F statistic is signifícantly high, we reject the hypothesis
in (5) and conclude that the model is not valid. For details on this F test
we refer to Kleijnen (1987, pp.156-157).
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We may formulate a less stringent validation requirement: the means are
not necessarily equal, but the model and the real responses are posítively
correlated. This requirement makes sense if the model is used to predict
relative responses (as in sensitivity analysis), not absolute responses. To
test this hypothesis we formulate the nu11-hypothesis

Ho:~150. (11)

To test this null-hypothesis we use the well-known t statistic. This means

that we reject the null-hypothesis of (11) and accept the model if there is

strong evidence that the model and the real-life responses are positívely

correlated.

Note that statistical analyses as in (3) through (11) require many

observations. In validation, however, there are often not many observations

on the real system.
In a more sophisticated analysís we estimate the autocorrelation structure

from the simulated and the historical time series respectively, and compare

these two structures. Spectral analysis is the technique developed for the

estimation of autocorrelation functions. Unfortunately, that analysís is

rather sophisticated and requires long time series.

A simple technique is the Schruben-Turing test, which runs as follows. We

present a míxture of computer output and real-life output to one or more

users, and we challenge them to identify (say) the data that was generated

by computer. Of course, they may correctly identify some of the data by mere

chance; this, however, we can test statistically. Turing introduced this

procedure to validate Artificial Intelligence computer programs: which data

is generated by computer, and which is provided by humans? Schruben (1980)

applied thís concept to the validation of simulation models. He discusses

several statistical tests and case studies.

Above we mentioned that goíng far back into the past may yield historical

data that are not representative of the current system; that is, the old

system was ruled by different laws. Similarly, a model is adequate only if

the values of its input data remain within a certain area. One example is
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provided by metamodeling: a regression model of first order is a good
approximation of a simulated M~M~1 system, only íf the traffic load is 'low'
(see Kleijnen and Van Groenendaal 1992). In practice, there are many input
variables, and we should use experimental designs combined with regression
analysis (or Analysis of Variance, ANOVA) to detec[ the important factors.
For the important factors we must obtaín accurate information on the values
that may occur ín practice. For example, we applied experimental designs and
regression analysis to a model of the greenhouse effect of carbon dioxide

( COZ ) and other gases. The computed sensitivity estimates should have the

right signs: some factors are known to increase the global temperature. The
magnitudes of the sensítívity estimates show which factors are important so

accurate informatíon must be collected or - if the factors are controllable -
their emissions should be restricted. For details see Bettonvil and Kleijnen
(1991), Kleijnen and Alínk (1992), and Kleíjnen, Rotmans, and Van Ham (1992).

Note that íf a factor is qualítative, then we can estimate t}ie effects of

the quantitative factors per scenario. If these estimates do not vary with

the scenario, then there are no interactions between the quantitative and the
qualitative factors.

Some authors, for example Banks (1989), claim that a model should remain
valíd under 'extreme' conditions. We, however, state that a model is valid

only within a certain experimental domain. For example, Bettonvil and

Kleijnen's (1991) sensitivity analysis shows that the ecological simulation

model is valid only if the factors range over a relatively small area.

Zeigler (1976, p. 30) emphasízes the concept of experimental frame, which he

defínes as 'a limited set of circumstances under which the real system ís to

be observed or experímented with'. He observes that 'a model may be valid in

one experimental frame but invalid ín another'.

Sensitivíty analysis should be applied to find out which inputs are really

important. Collecting information on those inputs ís worth the effort. If

nevertheless it is impossible or ímpractical to collect reliable information

on those inputs, risk analysis may be applied. A probabilíty distribution of

inputs is then derived from the users' expert knowledge, which yields a
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probabílity distribution of output values; see Kleijnen and Van Groenendaal
(1992). The relationship between sensitivity and risk analyses requires more
research; see Kleijnen (1990).

Note that model 'calibration' means that a model's parameters are adjusted
such that its output resembles the real system's output. Obviously, those
latter data can not be used to validate the model (we also refer to cross-
validation, discussed in Kleijnen and Van Groenendaal, 1992).

The validation of simulatíon models ís closely related to the validation
of other mathematical models, such as models in regression analysis,
ínventory control, and linear programmíng. We have already mentioned some
typical aspects of simulatíon models; for example, the time series character
of its inputs and outputs (because simulation is dynamíc), and the random
noíse ín stochastic simulation and Monte Carlo models. Other models share

some of these characteristícs with simulation models. For example, an
econometric model may also be dynamic and stochastic. Another typical aspect
of simulation is that its models are based on common sense or on dírect

observation of the real-life system; that is, the latter system is not a
black box. For example, a simulation model of a queuing system represents

intuitive knowledge about the system: a customer arrives, looks for an idle
server, and so on. Connecting the modules for system parts gives the total

simulation model, whích grows in complexity and - hopefully - realism (also

think of financíal corporate models). Such a bottom-up approach cannot be
followed in other models. Note that animation may help to obtain 'face

validity'. In some applications, however, the simulation model is given by

the theories of a certain discipline (for example, economics), and these
models may then be black-box models. The validation of black-box models is

more difficult, since we can measure input and output data only. The emphasis

in valídation is then on prediction, not explanation.

The model's validity is determined by its assumptions. Therefore these

assumptions should be stated in the model documentation. (Being explicit
about one's assumptions is the difference between a scientist and a

politician, we think.) In practice, however, many assumptions are left

ímplicit. The importance of documentation is discussed at length by Fossett,

Harrison, Weintrob, and Gass (1991). They defíne assessment as 'a process by
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which interested parties (who were not involved in a model's origins,
development, and implementation) can determine, with some level of

confidence, whether or not a model's result can be used in decision making'

(Fossett et al., p. 711). Important components of assessment are verification
and validatíon. They further define credibilíty as 'the level of confidence

in [a simulation's] results' (Fossett et al., p. 712). They present a

framework for assessing the credibility of a simulation; this framework

comprises 14 factors (these factors are also discussed in this paper,

explicitly or ímplícitly). They apply this framework to three military weapon

simulations (Kleijnen and Alink, 1992 present another military case study).

Gass (1984) proposes to produce four manuals, namely for analysts, users,

programmers, and managers respectively.

4. Conclusion
Validatíon and verification of simulation models have been discussed ín

several textbooks, for example, Banks and Carson (1984), Law and Kelton

(1991, pp. 298-324), and Pegden et al. (1990, pp. 133-162). These textbooks

give many additional references. We also refer to the production-planning

case study in Kleijnen (1988) and the cigarette fabrication case study in

Carson (1989). Dekker, Groenendijk, and Sliggers (1990) discuss the

verífication and validation of models that are used to compute air pollution;

these models are needed to íssue permits for building new factories and the

like. Validation of system dynamics models is discussed in Kleijnen (1980,

pp.137) and Wolstenhome (1990, pp. 58-60). Banks (1989) proposes control

charts, which are used in quality control. Reckhow (1989) discusses several

more statístícal techniques. Balci and Sargent (1984a) give a detailed

bibliography.

Models resemble information systems. Actually, models are a key element

in some types of information systems, namely Decision Support Systems (DSSs).

The problems of developing 'good' informatíon systerns are notorious; see

Davis and Olson (1985).

Thís paper demonstrates the importance of mathematical statistics in

simulation. Nevertheless we believe that the developers and users of a
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simulatíon model should be convinced of íts validity, not only by statistícs
but also in many other ways, some of which were presented above. In
conclusion, modelíng - including simulation - has elements of art as well as
science.
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