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Distance-Regularity and the Spectrum of
Graphs

Willem H. H~~mcrs

Abstract

We deal with the question: Can one see from the spectrum of a graph I' whether
it is distance-regular or not? Up till now the answer was not known when I' has
precisely 4 distinct eigenvalues (the diameter 3 case). We show that in this case
the answer is negative. We also give positive answers in some special situations.
For instance, if I' has the spectrum of a dietance-regular graph with diameter 3
and {~ - 1, then T is distance-regular. Our main tools are eigenvalue techniques
for partitioned matrices.

1 Introduction
Many properties of graphs can be recognized from the spectrum of its adjacency matrix.
Such as bipartiteness, regularity and strong regularity. Here we deal with the question:
Is a graph with the spectrum of a distance-regular graph distance-regular? In case t}ie
distance-regular graph has diameter 1(complete graphs) or 2(strongly regular graphs)
the answer is affirmative. Hoffman [11] constructed a graph cospectral to (which means:
with the same spectrum as) the Iiamming 4-cube H(4, 2), but not distance-regular, show-
ing that the answer is negative if the diameter is at least 4. We shall show (in Section
3) that for several distance-regular graphs with diameter 3, including the tetrahedral
graphs J(n, 3) the answer is ncgative too. This solves a problem of Brouwer, Cohen and
Ncumaicr ['l] (p. `lG3) and di:;provcs an old conjccturc tnentioncd by 13osc .uul Laslcar [ I],
see also Cvetkovié, Doob and Sachs [5] (p. 183).
In Section 5 we give some positive answers to the above question for diameter bigger
than 2, provid~d some additional requirement is fulfilled. For inst~.nce a graph with the
spcctrum of a distance-rcgular graph with diametcr 3 and with thc rurrcct uunilicr uf
points at distance 2 foF each vertex is distance-regular. This gives a common general-
ization of resulLs of Bosc and l.aska.r [1], Cvetkovié [4] and Laskar [12]. To provc thcsc
rrsults wc dcrvclop (in Scction ~4) a Lcx~l for proving rcgularity of a vcrtcx partil,icin uf

a graph based on its spectrum. But íïrst we need somc preliminary results on matrix
partitions.

2 Matrix partitions

ThroughouL the paper A will be a symmetric rcal matrix whos~ rows and columns are
indcxcxl hy ?1 -{o, ... , n}. Lct {Xo, ..., Xd} bc a partition of .~ . Thc charactcristic
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matrix S is the (n f 1) x (d ~- 1) matrix whose jch column is the characteristic vector
oí X~ (j- 0, ..., d). Define k; - ~X; ~ and K - diag(Ico, ..., kd). Let A be partitioned
according to {Xo, ..., Xd}, that is

Ao,o ... Ao,d

A - . . ,
Ad~p ... Ad~d

wherein A;,~ denotes the submatrix (block) of A formed by rows in X; and the colirmns
in X~. Let 6;,~ denote the avcragc row sum of A;,~. Then the matrix B-(b;,~) is called
the quotienf matrix. We easily have

KB - ST AS, ST S- K.

If the row sum of each block A;á is constant then the partition is called regular and we
have A;,~1- 6;áj for i, j - 0, ..., d (~. denotes the all-one vector), so

AS - SB.

The following result is well-known and often applied, see [5],[10].

Lemma 2.1 Ij, for a regular parlilfon, v is an eigenvc~ctor of 13 for an eigcnvahec .1,
fhen Sv is an eigenvector of A for the same eigenvalve a.

Proof. Bv - av implies ASv - SBv - aSv. ~

Suppose A is the adjacency matrix of a connected graph I'. Let ry be a vertex of I'
with local diamcter d and Iet X; denote the nunrber of points at, distance i from ny
(i - 0, ..., d). 'I'hcn { X~~, ...,1C,t} is callcd thc dislancc parlilion of l' around ry. Notc
that in this case we can compute K from B, since ko - 1, k;b;,;~~ - k;~~b;fr,; and
6;tr,; ~ 0 for i- 0, . .., d- 1. if the distance partition is mgular, I' is called distance-
regulararoundy and the qrwticnt matrix L3 is a tridiagonal matrix, called thc interscction
matrix of I' with respect to ry. If I' is distance-regular around each vertex with the same
interscction matrix, then T' is (hy definition) a distance-regular graph with interscrtion
arr:~y

{Ih~.i,-- ,G,t-i.,t',Gi.u,...,b,t.d-~}.

(~Ic,atly thc~ intc~rsccaion arr:cy dc~tcrniinc~, thc inLc~rscc.tiun niatrix, hc,c-autic~ ll h:cti c-uiitiLaul,

row sum k(- kl - bo,r). Lemma 2.1 gives that for a distance-regular graph 1', tlre

eigenvalues of its intersection matrix B are also eigenvalues of its adjacency matrix

A. In fact, the distinct eigenvalues of I' are precisely the eigenvalues of B. Also the
multiplicities (and hence the whole spectrum of I') can be expressed in terms oí the

intersection array. l~or thcsc, and all other results on distance-regular graphs uscd in

this papcr, wc refc~r to Ilrouwcr, Cohen and Neumaicr [2].
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3 Switch partitions
In this section we describe a method to change adjacency in a given graph in order to
obtain another graph with the same spectrum. Let A be the adjacency matrix of a
graph. A switch pcu~lilion { Xo, ...,,~ld} o[ A is a regular partition split into Lwo ~iarts
{Xo, ..., Xh-r }, { X~„ ...,,~d } such that b;a E{0, k„ z k~ } whenever i and j are sepa-
rated ( that is, X; and X~ lie in different parts). A separated pair {i, j} is called a switch
pairif b;,~ - Zk~.

Theorem 3.1 Let I' be a graph with a switch partition {Xo, ..., Xd}. Let I" 6e the graph
obtained from I' by switching, for each switch pair {i, j}, the adjacency relation between
X; and X~ to its complement (that is, edges óecome non-edges and non-edges óecomc
cdges). Then ~' has the. same spec.trum a.4 ['.

Proof. Lct A aud A' bc thc adjaccncy matriccs of I' and I" respc~ctivc~ly. WiLli Lhc, givc~n
partition define

Eo,o ... Eo,d

1'- - . .
l;,c,~

J if {i, j} is a switch pair,
whc~rc~ 1~;;.i - `l.l if b;.i - k; and {i,.l} is w~~iaratc~cl,

O ul,lic,rwitic~.

(As usual, O is the zero matrix and J the all-one matrix.) Put D- diag(Do,...,Dd),
where D; - I if i G h and D; --I if i~ h. Then we easily have that A' - D(A- E)D,
that {Xo, ..., Xd} is also regular for A', and that A and A' have the same quotient
matrix. Therefore, by Lemma 2.1, the eigenvalues of A and A' with eigenvectors in
the range of the characteristic matrix S coincide. Let v be an eigenvector of A with
eigenvalue .1, perpendicular to the coh~mns of S. Then

n'n,~ - n(n - l;)nn,~ - l~~n - l;)~~ - l~nr~ -~::- an~~.
So also the remaining eigenvalues of A and A' coincide. o

In some cases I" is isomorphic to I', but in many cases it isn't. The switching concept of
'Chcorcm i .l tnrned out Lo bc, not ncw. iL was alrcady known to C~odsil and McKay [?],
whu utic~cl it tci ccinf.rnc~t lol,ti uf c~ospc~c~l.ral ~;ra~ihr. In c~atic~ all kc~~riraL~~cl ~r.cirs arc~ tiwitc~h
pairs il. iti tl~c sanic~ :~.ti ~c~icl~~l switching, rcr~ [~i] or [Ia[.

Example 1. Consider the tetrahedral graph J(n, 3) (the vertices are tlre unordered
triples of an n-set SZ; triples are adjacent if they meet in two points). Let Q be a 4-
subset of S2 and take n~ 6. For i - 0, ..., 3 let X; be the set of triples meeting Q
in i points. This clearly defines a regular partition of J(n, 3), moreover it is a switch
partition for h - 3({2,3} is the only switch pair). The switching, explained above,
produces a graph cospectral but not isomorphic to J(n, 3). The new graph is not even
distance-regular. Indeed, consider a vertex x in Xl and a vertex y in X3. Then after

. . . 1;,~,~
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switching x and y have distance 2 with 2 common neighbours if the corresponding triples
meet and 6 common neigbours otherwise.

Many other distance-regular graphs admit switch partitions producing different graphs.
We give two more examples.

Example 2. The Gosset graph is the unique distance-regular graph on 56 vertices
with intersection array {27,10,1;1,10, 27}. It can be constructed as follows. Take for
the vertices twice the set of edges of the complete graph K8. Vertices within a set
are adjacent if the corresponding edges are disjoint and vertices from different sets are
adjacent whenever the corresponding edges intersect in one point. The edges of Ka can
be partitioned into 7 classes of 4 non-intersecting edges. This gives a partition of the
vertices of the Gosset graph into 14 classes of size 4 and it is easily checked that the two
sets of vertices make it a switch partition. It is also easy to verify that, after switching,
for each vertex there is no vertex at distance 3 any more. So we have obtained a graph
with diameter 2 cospectral to a distance-regular graph with diameter 3.

Remark. The Gosset graph is an instance of a Taylor graph. This is a distance-regular
graph with intersection array {rs, (r ~- 1)(s - 1)~2,1;1, (r f 1)(s - 1)~2, rs}. It is the
same as a regular two-graph represented as a double cover of lí,.,tr. If a Taylor graph
admits a clique of size s-~ 1, then any vertex not in the clique is adjacent to none or
half of the vertices of this clique. This gives rise to a switch partition, and the local
diameter of a vertex of the clique becomes 2 after switching (the case n- 6 of Example
1 is of this type). If the graph admits a partition into (s ~ 1)-cliques, the global diameter
becomes 2. Taylor graphs with this property have been constructed by Taylor [16] for
r- s~ whenever s is an odd prime power. For s- 3 we have Example 2.

Example 3. (By A.E. Brouwer, personal communication.) For a distance-regular graph
with k- 2u (k - kr - bo,l and u - bz,r) the distance partition (with respect to any
vertex) is a switch partition. This applies for instance to distance-regular graphs witli
intersection array {2p, 2}r - 1, p, l;l, ~, 2~ - 1, 2p}, the so called IIadamard graphs. For
{~ - 2 we get the array of the Hamming 4-cube, and switching leads to the mentioned
example of Hoffman.

In [9] Haemers and Spence determined all graphs cospectral to distance-regular graphs
up to 27 vertices. Many, but not all, can be obtained by switching. Amoung these graphs
there is one cospectral but not isomorphic to the cubic lattice graph H(3, 3).

4 Regularity and eigenvalues

In this section we give some eigenvalue tools for proving regularity of partitions. The
first result is proved in Haemers [8], Section 1.2 (see also [2], Section 3.3).
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Theorem 4.1 Civen a symmetric partitioned matrix A. Let S and B denote the cor-
responding characteristic and quotient matrix, respectively. Let .~o ~ ... 7.~„ be the
ciqenvalues of A. Then B has rcal eigenvalues po 7... ~ l~d (say). Denote the respec-
tive eigenvectors by vo, ..., vd. 7'Iten the jollowing holds:-

(i) i1; 1 p; ~~„-d.}i (fi G i G d).

(ii) If for some integer k (0 C k G d), we have a; - Ic; for i - 0, . .., k(or p; - .1n-dfi
for i- k, ..., d) then Sv; is an eigenvector of A with eigenvalue lc; for i - 0, .. ., k
(respectively for í - k, . . . , d).

(iii) !f, for some integer k (0 G k G d f 1), we have ~; - p; jor i - 0, . .., k- 1 and
le; -~„-d.~; jor i- k, ..., d then lhe partition is regular.

Thus we have a tool for proving regularity of a partition using eigenvalues. If we want to
prove distance-regtilarity of a graph r, we wish to apply (iii) to its distance partitions.
'I'his, howcvcr, will hardly cver work if the diametcr is bigger than 2, sincc if r is con-
nected, the quotient niatrix 13 has d~- 1 cíistinct eigenvalues (sec '1'hc~orein 4.3), whilst
all but the largest eigenvalue of the adjacency matrix A have in general a multiplicity
bigger than 1, in which case equality in (i) can only hold for uo, {tt and led. So we need
a result like (iii) in terms of these three eigenvalues only.

Lemma 4.2 With the hypotheses of Theorem 4.1, let A be a block tridíagonal matrir
(i.e. A;á - O ij ~i - j ~~ 1) and let v; -(v;,o, ..., v;,d]T denote an eigenvector oj li;
(0 C i G d). If po - ~o, l41 -~i and pd -~„ and if any three consecutive rows oj
[vo vt vd] are independent, thcn the partition is regular.

Proof. By (ii) of Theorem 4.1 ASv; - p;Sv; for i- 0,1, d. By considering the ~ch block
row of A we get

vi,t-iAt,t-il f v;,rAt.tl ~- v;,tttAt.tfil - Itiv;,tG for i- 0,1, d,

(wherein the undefined terms have to be taken equal to zero). Since, for i - 0,1, d and
j- P-1, f, l f 1, the matrix (v;,~) is non-singular, we find Atál E(1) for j - e-1, Q, Ct 1
(and heuce for j - 0, ..., d). 5o the partition is regular. ~

Theorem 4.3 l,et I' be a connccted graph wilh adjacency matt~ix A and eigenvalues
~0 1... 1,~,,. Gcl {Xo, .. ., Xm} 6r, a partilton of the vertices oj r, such that there are
no edges between X; and X~ ij ~i - j ~ 1 1. Get B be the corresponding quotient matrix.
Then B has d~ 1 distinct real eigenvalues po 1.. . 1 {~d (say) and the following holds.

(t) ~o ? Ito, ~t ? ltt, an C l~d.

(ii) ljao - lio, .~i - Iri anrl a„ - Icd. llrcn lhr' parlifime is rcgular.
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Proof. Because I' is connected, b;,;~l 1 0 for i- 0, ..., d-1. Hence, for any real number
x, the upper right d x d submatrix of B- xl is non-singular. Therefore no eigenvalue
has multiplicity bigger than 1. Itesult (i) is part of Theorem 4.1. To prove (ii), we use
Lemma 4.2 and show that every three consecutive rows of [vo v1 vd] are independent.
This will be a consequence of the following claims:

1. All entries of vo can be taken positive.
Indeed, B is non-negative and, since I' is connected, irreducible. Hence by the
Perron-Frobenius theorem ~eo hás a positive eigenvector.

2. For i- 0, ..., d, the eigenvector v; has exactly i sign changes.
This follows from the theory of tridiagonal matrices (see for instance Stoer and
Bulirsch [15], Section 6.6.1): Let p~(x) denote the leading principal j x j minor of
xl - B for j - 1, ..., d and put po(x) - 1. Then we may take

Pi(f~~)v;á - b for i, ~- 0, ..., d.bo,l ' ' i-lá

Moreover, the polynomialsp~ form a Sturm sequence. This implies that p~(p;) has
exactly i sign changes when j runs from 0 to d, proving Claim 2.

3. The sequence (~ó,...,~á) is strictly monotonic.

Write a~ -~ for j- 0, ..., d. From Bv; -~e;v; it follows

v~.i-lbi,i-1 f viábi,i f v~átibi~iti - l~~v;á for á - 0,1, J- 1, ..., d- 1.

This gives for j- 1, ..., d- 1

(ai - ai-1)voá-lbiá-i ~- (a~ - a~fi)voáfibi,iti - (!~o - !i~)~~i~~~

showing that a~ ~ a~~l if a~-1 1 a~ and vl,~ ~ 0( using that voátl and 6~,~t1 are
positive). Similarly we get (in case j- 0)

(~o - cri)vo,ibo.i - ( F~o - l~i)vi,o ~ ~

(using vl,o - 1). Hence ao 1 al. Thus we have, by induction, that the sequence
ao, al, ... is strictly decreasing until vl changes sign. Analoguesly it follows that
the sequence ad, ad-1i ... is strictly increasing until the first sign change of vl.
Since vl has just one sign change, the claim follows.

Now, after dividing the j~h row of [vo vl vd] by voá for j- 0, ... , d, vo becomes constant,
v~ becomes strictly monotonic and vd remains alternating. This implies that dependence
of three consecutive rows is impossible. ~

Remark. Since I' is connected, regularity of the partition means that Xo (and also Xd)
is a completely regular code.
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5 Distance-regularity from the spectrum ~

Assume I" is a graph on n f 1 vertices with spectrum E-{l~oo, . .., l~á'} (the eigenvalues
are in decreasing order; exponents denote multiplicities). Suppose there exitst a feasible
intersection matrix B for a distance regular graph I' giving the same spectrum E. (See
[2], Section 4.1.D for a precise definition of „feasiblen. So we do not require that 1'
actually exists. It will, however, be convenient to talk about properties of I', though
they are in fact properties of B.) Since I' is regular (of degree k- l~o) and connected, E
satifies -

d d

Ïo - 1, ~ f~ - n t 1, (n f 1)!~0 -~ f~F~r . (1)
.-o ~-o

This in turn implies that I" is regular of degree po and connected witly diameter at most
d(see for example [5]; proofs are, however, not difficult, for instance regirlarity follows
from the third equation of (1) by applying Theorem 4.1(iii) to the trivial partition with
only one class of the adjacency matrix of I''). For a given vertex ry of I", let B' denote
the quotient matrix with respect to the distance partition around ry, let kó, ..., kd be the
sizes of the partition classes and let l~ó ~ ... ~~d be the eigenvalues of B' (note that
ICa - l~o - k- kr - k; ). We know that the intersection matrix B of I' has eigenvalues
{~o, ..., {~d. So, if we can prove B' - B, then by Theorem 4.3(ii) I" is distance-regular
around ry(with the same intersection array as I'). Some entries of f~' and B coincide
trivially: boo - l~,o - 0, Mi,o - b~.o - I and bo,~ - fi~,~ - Ir~~(- k). '1'hc following Icmrna
shows that we don't have to go all the way for proving L3' - B.

Lemma 5.1 If k; - k; for i - 2, ..., d-1 and b;,; - b;,; jori- 1, ..., d-2, then B' - B.

Proof. Clearly k; - k; for i- 0,...,d. Using b'o,o - ~, do,r - k, d,r-rk~ - b~-i,rk~-r,
b ~~r - k- 6;,; - 6;,;-r and the same formulas without the prime we find that
6;~ - b;á if i or j is not equal to d or d- 1. Define x- b'd-r,d-1 - bd-l,d-r and
E - [0, . . . , 0,1, - k~]T[0, . . . , 0,1, -1], then

B' - I3-~ xE. (2)

Next we want to apply inequalities for eigenvalrres. Therefore we prefer symmetric ma-
trices and multiply the above equation by K~ on the left by K-~ on thc right (where
K - diag(ko, ... , kd)). Then (2) becomes B' - l3 f xE. Clearly the matrices are sy~n-
metric now, the eigenvalues haven't changed and E is positive semi-definite. Denote the
cigc~nvectors o( Il and 13 by v; aud ir, (- K?v;), respcctivcly (i - 0,...,d). 'I'hc~u n`e is
also an c,il;c~nvc~c-tur uf Il' for thc c~igc~uvalur k(- Ir~ - lio), sincc, ve(- I) is an c,igc,uvc,ctur
of Il' for thc c~igcuvaluc k. ]f x~ 0 wc fincl (using v`o1v`~)

, vi B'v`r v~ Ev`r
i~r ~ 7- - i~l ~ 2 T. .. ! Í~1.vr vr v`r vr
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Theorem 4.3(i) gives {~i G pl, hence Ev'~ - 0. Similarly, z G 0 implics Ev'd - 0. If
Ev`; - 0 then Ev; - 0, which yields v;,d-1 - v;,d. But we saw in proving Theorem 4.3
that this is impossible if i- 1 or d. So x- 0 and B- B'. ~

For a strongly regular r the lemma gives that always B' - B, showing that strong regu-
larity can be recognized from the spectrum. An other direct consequence is the following
result.

Theorem 5.2 Suppose r' has the spectrum of a bipartite distance-regular graph r with
diamcler d, and suppose lhal jor cach vertez ry of r' the numóer k; oj vcrlifes al distancc
i from ry equals k; (i.e. k; has the requined value) for 4 G i G d, then I" is distance-regular
tvith the same. intersection array as I'. --

Proof. If r is biparte then so is r'. Therefore b;.; - 0- b;,; for i- 0, . .., d and
~; ~„~„ k; - ~; ~d k; - ~; ~~~„ k; - ~; ~d k; - ~. Hence k; - k; for i - 0, . . . , d and
Lemma 5.1 applies. ~

In particular we find the known result that a graph cospectral to a bipartite distance-
regular graph with diameter 3 is such a graph.
Since r' is regular of degree Ito, its adjacency matrix A satisfies

(A - pll) .. . (A - pol) E (J) . (3)

Together with the well-known fact that (A~);,; equals the number of closed walks of
length j from i to i, this gives sometimes information on B'. Take d - 3, then ( 3) gives
that A3 has constant diagonal (because every lower power of A has). So the number of
oriented triangles through any vertex equals

1 1 3
i ,(A3)o,o - n f 1 tr(A3) - n-b I~ Í l~3-

i-0

Il~~nf(~ lr~ ~- k(n}~) ~~ c f;li; - b~,~. Of fourti(~, a.v wc saw in Scftion 3, w(~ c'a.nnot, dctc~r-
mine all b;~. But if we require that every vertex of r' has the right number of vertices
at distance 2, we can.

Theorem 5.3 l.cl 1'' Gc a yraph tvilh l1lL .tipPfti'utl! of U dt5t(111fP-tYtl,7Ll(11' gtYlllh I' rnilla
diameter 3 and kz vertices at distance 2 jrom a given vertex.

(i) F,ach vertex oj r' has at lcast k2 i)Crttfe.4 at dtstancC 2.

(ii~ If equalily holds for some vcrlex ry, lhen I" is distattce-n~gular around ry haviug thr
same intersection matrix as r.

(iii) If equality holds jor all vertices then I" is distance-regular.
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Proof. We shall prove ( ii) with the weaker condition that I" has at most kz vertices
at distance 2, then we get ( i) for free. Let {Xo, Xr, Xz, X3} be the distance partition
around ry. Extend Xz with some vertices of X3 until ~X~~ - kz. Then ~X;~ - k; for
i- 0, ..., 3 and the partition still satisfies the condition of Theorem 4.2. Now Lemma
5.1 gives B' - B, proving ( ii), (i) and (iii). O

This generalizes theorems of Bose and Laskar [1] (who proved the result for tetrahedral
graphs), Laskar [10] and Cvetkovié (4] (who proved it for the cubic lattice graph).

Remark. For d- 3, k2 can be expressed in termes of 2: as follows:

( )Z 3
kz - k8, -~2 ek , where B~ - k(n ~ 1) ~ fiF~~ and k- l~o.

3 i-0

So, in the above theorern, we can replace k2 by this expression. If we do so, it is even
conccivablc that thc result r~mains valid for an arbitrary c.onncctcd regular graph with
precisely 4 distinct eigcnvalues.

Corollary 8.4 If I' has diameter 3 and p(- b2,r) - 1, then I" is distance-regular.

Proof. With respect to any vertex ry of I" we have k~b'~,I - k1~,2 - kb1,2 - kzbZ,l - k2.
Clearly b'1 z~ 1, hence kz C kz and Theorem 5.3 applies. ~

A lot of feasible intersection arrays correspond to graphs satisfying the condition of
Corollary 5.4. For example the point graph of a generalized hexagon has d- 3 and
p- 1 and hence it can be recognized from the spectrum whether a graph is the point
graph of a generalized hexagon. The following example shows the use of our result.

Example. Thc spectrum {(q~ - q)r,q~9(v-i)(9'-afl),(-1)Q',(-q)~Q(Q-3)(a'-9}r)} is for
q 1`l the spectrum of a distance-regular graplr with intersection array {q2 - q, q2 - q-

2, q-f 1;1,1, qz - 2q}. Corollary 5.4 gives that a graph with that spectrum must be such
a distance-regular graph. The adjacency matrix E of a projective plane of order q~ with
a polarity with q3 f 1 absolute points has spectrum {(q2-F 1)r,q~y(y~tsy-r),(-q),q(Q'fr)}.

The submatrix A of E induced by the non-absolute points is symmetric with zero-
diagonal and therefore the adjacency matrix of some graph I'. An easy eigenvalue
property (see [8], Theorem 1.3.3) shows that I' has the above spectrum, hence I' is
distance-regular. This gives the unitary nonisotropics graphs (from the ilermitian po-
larity).

Other graphs for which Corollary 5.4 applies are distance-regular graphs with diameter 3
and girth 5, such as the Sylvester graph and the Perkel graph. We also find non-existence
results. For example {5r, (1 -} f)~o, (1 - f)~, -315} is not the spectrum of a graph,
sir~ce it belongs to an intersection array oí a distance-regular graplr with diameter 3 and
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girth 5 that does not exist (see Fon-der-Flaass [6]). These last examples are also special
cases of the following result oí Brouwer and HaPmers [3].

Theorem 5.5 rf r' has the speclrum of a distance-regular graph wilh diamcler d and
girth g~ 2d - 1, then r' is such a distance-regular graph.

Proof. The girth of a regular graph is determined by its spectrum (see [5], but again,
proving it is an easy exercise). So r' has girth at least 2d - 1. Now we easily have
k~ - k; - k(k - 1)`-1 for i- 1, .. ., d- 1. Moreover b; ~ - 6;,; - 0 for i- 1, ... , d- 2.
Now Lemma 5.1 gives the result. ~

As is mentioned in [3], the IasL result shows for axarnple that the Coxeter graph is char-
acterized by its spectrurn.
We end with a remark about graphs for which distance-regularity is forced by its spec-
trum. If such a graph admits a switch partition, switching dcesn't change the eigenvalues
and we find another distance-regular graph. For strongly regular graphs a lot of examples
arc known, most.ly froni Scidcl swil,ching. Th~ro are also so~nc c~xamplc~s for bipartitc~
distaucc~ rc~gular graphs witl~ dianictc~r 3. 'I'hasc~ arc incidc,nc.c graphs of sy~umctric liloc~.k
designs and there exist designs, for instance the recently discovered dc~signs of Spence
[14], with the required structure. Thus Spence finds many designs with the same param-
eters.

Acknowledgement. I thank A.E. Brouwer and E. Spence for many fruitful conversa-
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