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Abstract

The problem of computing an equilibrium in an economy with lin-
ear production technologies is to find prices and activity levels such
that no activity makes positive profits and the market for each com-
modity is cleared. If one normalizes prices on the unit simplex then
this problem is equivalent to the so-called stationary point problem
of the excess demand function in this economy on a particular subset
of the unit-simplex. This problem can be solved by approximating
this stationary point problem by a sequence of linear stationary point
problems (SLSPP). In this way one obtains an iterative algorithm. In
each iteration of this SLSPP the linear stationary point problem is
solved by an algorithm based on ideas of Kamiya and Talman.



1 Introduction

'I'his paper considers the computation of an equilibrium in an economy with linear

production technologies. In Mathiesen [6] it is shown that this equilibrium problem is

equivalent to a nonlinear complementarity problem (NLCP). Mathiesen approximates

this NLCP by a sequence of linear complementarity problems (SLCP). Each linear

complementarity problem (LCP) is a linearization of the NLCP in the solution either

obtained from the previous LCP in the sequence or, if no previous GCP exists, in

an arbitrarily chosen point. Each LCP in the sequence is then solved by the Lemke-

}Iowson algorithm, see [5]. In case the Lemke-Howson algorithm solves each LCP in

the sequence a sequence of approximating solutions is generated, possibly converging

to a solution to the NLCP.

As shown in [7] the Lemke-Howson algorithm may also diverge in an LCP obtained

in the seyuence thereby faili~~g to give an approximating solution to start up the next

iterate of the SLCP. In order to get rid of this possible divergence of the Lemke-

Howson algorithm in each iterate as well as to improve the possibilities for a better

understanding of the thc:oretical properties of an SLCP-algorithm an alternative to

Mathiesen [6] was introduced in Eaves [2]. Eaves shows that the equilibrium problem

in an economy with linear production technologies is equivalent to a stationary point

problem (SPP). Similar to Mathiesen [6] the SPP is approximated by a sequence

of linear complementarity problems and each LCP in the sequence is again solved

by the Lemke-}Iowson algorithm (5]. Furthermore Eaves [2] shows that the Lemke-

Howson algorithm finds a solution in each l,CP obtained in the sequence of his SGCP.

Hence the SLCP-algorithm in Eaves [1] always generates a sequence of approximating

solutions, possibly converging to a solution to the SPP.

In this paper we introduce a sequence of linear stationary point problems (SLSPP)

to solve the SPP. In each iterate of the sequence a linear stationary point problem has

to be solved. This problem is of a much smaller dimension than the LCP~ obtained

in the SLCP of Eaves. The linear stationary point problem obtained in each iterate
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of the sequence is solved by an algorithm which is based on an algorithm introduced

by Kamiya and Talman [3] to compute a solution to linear stationary point problems

on a polytope. Within a finite number of steps every LSPP in the sequence will be

solved. Moreover, to initiate the algorithm a,t every iterate no perturbation of the

starting point is needed as in [2].

In Section 4 of this paper we describe the steps of the SLSPP-algorithm while in

Section 3 we prove that the equilibrium problem in an economy with linear production

technologies is equivalent to a stationary point problem on a polytope. Section 5

discusses convergency issues concerning our algorithm and shows that our method

always succeeds to compute a solution to the linear stationary point problem obtained

in each iteration of the sequence. In Section 6 we compare our SLSPP-algorithm with

the SLCP-methods of Mathiesen [6] and Eaves [2] but first we describe an economy

with linear production technologies.

2 The economy with linear production technolo-

gies

Consider an economy with a finite number of consumers, commodities, and produc-

tion activities. Each consumer in the economy is assumed to have an initial endow-

ment in each of the, say n~ 1, commodities. Let w denote the (n ~- 1)-vector of total

initial endowments of each commodity in the economy where w~ is the endowment in

commodity j, j E { 1, ..., n~-1 }. Given a price vector p E~i~fl `{0} with p~ denoting

the price of commodity j, let d(p) denote the total demand of the consumers where

d~ (p) is the demand for commodity j E{ 1, ..., n f 1}.

Assumption 2.1 The demand function d has the following properties.

i) d ás contánuous án p 1 0.

ii) d is homo,qeneous of degr~ee zero.
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iii~ pT d(p) - pTw for every p~ 0.

At price vector p J 0 market excess demand is denoted by z(p), i.e. z~(p) equals

d~(p) - ca~. The properties of the market excess demand function follow immediately

from Assurnption `l.l.

Property 2.1 The market eacess demand function z has the following properties.

iJ z is continuous in p) 0.

ii) z is homogeneous of de,gree zero.

iiiJ (Walras' law~ pT z(p) - 0 for every p~ 0.

Commodities in the economy can be produced by a finite number of, say l, activ-

ities. Activity j, j E{1,...,1}, is represented by a vector a~ E~2"}~. The column

vector a~ has components a; such that a; ~ 0 implies that activity j has an output

of a; units of commodity s while a; G 0 implies that activity j uses -a; units of

commodity s as an input when the activity level equals one. The level of activity

j is denoted by the nonnegative number y~. If one puts all activity levels y~ into an

(n ~ 1)-vector y and all columns a~ into an (n f 1) ~ 1-matrix A then the vector Ay

denotes aggregate net input-output for all commodities in the economy given the ac-

tivity level vector y E~if. So, given y~ 0, (Ay), ~ 0 implies that commodity s serves

as a net output to the economy as a whole and (Ay), G 0 implies that commodity s

serves as a net input to the economy as a whole. With respect to the activity matrix

A we assume that in case of production there exists at least one commodity serving

as an input to the economy. Formally, we have the following assumption.

Assumption 2.2 If Ay ~ 0 and y) 0 then y- 0.

We assume that the producers running the activities in the economy choose the

activity levels in such a way that the profits made by each activity are maximized.

If the profit pTa~ for some activity j is negative then the producer running activity
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j sets the activity level y~ equal to zero. Raising y~ from zero would bring losses to

Lhe producer. If pTa~ 1 0 then yJ is raised towards infinity by the producer running

activity j while if pTa~ - 0 then any activity level y~ can be chosen such that y~ 1 0.

The economy described above is said to be in equilibrium if the prices of the

commodities in the economy and the activity levels are such that for every commodity

demand is met by the initial endowment of the economy in this commodity and

total net input-outpiit of the activities. This condition implies that in equilibrium

no activity makes positive profit. Therefore the following definition constitutes an

equilibrium in an economy with linear production technologies.

Definition 2.1 An equilibrium in an economy with linear production technologies ís

a price vector p' ) 0 and a vector with activity levels y' ~ 0 such that

i) z(p') - Ay' G 0: market-clearance.

ii~ p'T A G 0: no profils.

The properties of the market excess demand function together with the equilibrium

conditions on p and y imply the following relations between the equilibrium prices

and activity levels in the economy.

Property 2.2 If p' is an equilibrium price vector and y' a vector of equilibrium

activity levels in an economy with linear production technologies then

p'T Ay` - 0.

Proof:

From the market-clearance condition in Definition 2.1 it follows that p'T(z(p') -

Ay`) - p"T z(p') - p'T Ay' --p'T Ay' G 0, a,pplying Walras' law. Furthermore,

multiplying p'T A G 0 by y` ~ 0 gives p`T Ay' G 0. Together with - p`T Ay' G 0 this

implies that p'T Ay' - 0. O
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Property 2.2 says that in equilibrium an activity showing a deficit (p'Ta~ C 0)

is not producing (y~ - 0) while an activity in operation (y~ ~ 0) runs at balance

(p'Ta~ - 0). This also follows from the presumed profit maximizing behavíour of the

producers running the activities.

Property 2.3 If p' is an equilibrium price vector and y' a vector of equilibrium

activily levels in an economy with linear production technologies then

PT(z(P')-Ay')-0.

Proof:

p'r(z(p') - Ay') - p'T z(p') - p'T Ay' - 0 by applying Walras' law and Property 2.2.

0

Property 2.3 says that a commodity in excess supply (z;(p`) -(Ay'); G 0) has a price

equal to zero (p~ - 0) while a commodity with positive price (p~ 1 0) implies market

clearance (z;(p') - (Ay`); - 0).

3 The sequence of linear stationary point prob-

lems

An equilibrium in an economy with linear production technologies as defined in Def-

inition 2.1 cannot be computed directly. First we have to take notice of the fact that

because of homogeneity of degree zero of the excess demand function in the prices

(Property 2.2ii) the existence of an equilibrium price vector p" implies the existence

of a ray of equilibrium price vectors {~p' ~~~ 0}. To overcome this problem we nor-

malize the prices on the unit-simplex S" defined as S" -{p E~t}1 ~~;ti P; - 1}.

Secondly, to compute an equilibrium as defined in Definition 2.1 we only should

take into account prices for which pT A G 0. The prices p E S" such that pT A C 0

have the shape of a polytope. Let SÁ be this subset of .S", i.e. SÁ -{p E~i"}' ~
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pTA c 0, pTe - 1, p~ 0} where e denotes the (n ~ 1)-vector with all components

equal to one. Hence to compute an equilibrium in an economy with linear production

technologies is equivalent to finding a price vector p` E SÁ and a vector of activity

levels ,y' ~ 0 such that z(p') - Ay" C 0. This problem is equivalent to finding a

stationary point of the function f on the set SÁ.

Definition 3.1 Let C be a nonempty subset in ~2k and let f: C-a ik be a function.

A point á in C is a stationary point of f on C íf xT f(x) ~ zT f(i) for all x in C.

The stationary point problem (SPP) of f on C is to find a stationary point of f on

C.

We now prove that the problem to compute an equilibrium in an economy with

linear production activities is equivalent to the SPP of the excess demand function z

on SÁ.

Theorem 3.1 A price vector p' E SÁ is an equilibrium price vector in an economy

with linear production technologies if and only if p' is a stationary point of the excess

demand function z on SA.

Proof:

Let p' E SÁ and y` ~ 0 be an equilibrium in an economy with linear production

technologies. Then

pTZ(P")GPTZ(P")-PTAy~-PT(z(P~)-Ay') GO-PTZ(P )

for all p E SÁ. Therefore p` E SÁ is a stationary point of z on SÁ.

Let p` E SÁ be a stationary point of z on SÁ. Then for all p E SÁ it holds that

pTZ(p') C p'TZ(p`) - 0. This is equivalent to p' solving the optimization problem

given by

max pT z(p')
A
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Take the vector y as the vector with the dual variables to the constraints in pTA C

0, (~ as the dual variable to the constraint eTp - 1, and ~c ) 0 as the vector with dual

variables to the constraints in p~ 0. Then p' being a solution to the optimization

problem above implies that p' fulfils the following first-order conditions:

z(p') - Ay f ,Oe - p

ATp' G 0

eTp" - 1

pTp' - 0, p'T Ay - fi

p~ 0, y) 0, ~3 E~.

(3.2)

Premultiplying z(p") - Ay ~- (~e - p by p" results in ~i - 0. Thus, with p ) 0 it

follows that z(p") - Ay --p c 0. Therefore p' is an equilibrium price vector in an

economy with linear production technologies. O

Theorem 3.1 implies that to compute an equilibrium in an economy with linear

production technologies we have to compute a stationary point of z on SÁ. In order

to solve this SPP of z on SÁ we propose to approximate this nonlinear problem by a

sequence of linear stationary point problems. This SGSPP consists of a sequence of

iterates where in each iterate the nonlinear SPP is linearized in a price vector either

obtained as a solution to the previous iterate in the sequence or, if no previous iterate

exists, chosen arbitrarily from SÁ.'

Consider iteration k of the SI,SPP. In this iteration the algorithm linearizes the

SPP by replacing the excess demand function z with its first-order Taylor expansion

1S~ ~ 0 as follows from Assumption 2.2 and Minkoweky's Separating Hyperplane Theorem:

Ay ~ 0, y~ 0 doea not have a solution y~ 0 impliea that there exiata a vector p~ 0 euch that

pTACO.
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in the price vector obtained as a solution to the previous iterate in case k~ 1 and

chosen arbitrarily from SÁ in case k- 0. Denote this price vector by pk. We allow

pk to lie on the boundary of SÁ and we assume that the excess demand function z

is differentiable in each point p E Sn. Then the first order Taylor expansion of the

excess demand function z in pk, denoted zk, exists and is equal to

zk(P) - z(pk) -~ ~z(Pk)p

for all p E SÁ where Oz(pk) denotes the Jacobian matrix of first order derivatives of

z to p in pk. Notice that Oz(pk)pk - 0.

In iteration k the algorithm solves the linear stationary point problem of zk on

SÁ, denoted by LSPPk. A solution to LSPPk is not necessarily an equilibrium price

vector in the original economy with linear production technologies.

If we are able to solve LSPPk for each k- 0,1, 2, ..., then the SLSPP-algorithm

generates a sequence of prices {p~}k o possibly converging to a solution to the SPP

of z on SÁ and therefore to an equilibrium price vector. In Section 4 we introduce an

algorithm to solve LSPPk for all k - 0,1, 2, ....

4 The algorithm to solve LSPPk

A face of SÁ is determined by

.~(~',G2) -{p E SÁ ~ pTa~ - 0 for all j E t~' and

pi - OforalljE~2}

for certain sets C' C{ 1, .. .,1 } and Q2 C{ 1, ..., n f 1}. We assume without loss

of generality that SÁ is simple, i.e. if .P(~',C2) ~ 0 then its dimension is equal to

n- ~ C~' ~- ~ C~2 ~. The normal cone of .íc(C~', G2), denoted JV(C~', C~~), is then defined

by

N(~l,Cl2) -{~iEG' yiQ~ -~iE4~ F~ie(7) } Qe ~

~i ~ fi (7 E ~1), {ri ~ fi (J E G2), and ~ E ~2}.
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Theorem 4.1 provides for the relation between .P(C1, ~2) and N(Q', G2), and a sta-

tionary point p of zk on SÁ.

Theorem 4.1 A poínt p E SÁ is a statíonary point of zk on SÁ if and only if there

exist sets ~~ C { 1, . . . , I } and ~2 C { 1, . . . , n f 1 } such

zk(P) E N(~', ~2)-

that p E .~(C~~, ~2) and

Proof:

Suppose p E SÁ is a stationary point of zk on SÁ. Then p solves the linear program-

ming problem

max PT zk(p) s.t. ATp C 0 , eTp - 1, p 1 0.
P

The Duality Theorem of Linear Programming implies that this maximization problem

is equivalent to solving the minimization problem

min ,~
P

s.t- zk(P) - Ay f Qe - p

~10, y?0„OE~2.

As p is a solution to the maximization problem there exists a solution y, ~i, and j~

to the maximization problein. Choose G~ to be the set {j ~ y~ ~ 0} and QZ to be the

set {j ~~~ 1 0}. Then the minimization problem implies that zk(p) E J~Í(C1,C~) and

the complementary slackness condition in linear programming gives p E .P(C',C2).

O

The algorithm we propose to solve LSPPk in iteration k is a piecewise linear

path following algorithm starting in pk E SÁ and ending up with a stationary point

of zk on SÁ. Each point p on the path can be seen as a stationary point of zk on

.SÁ(~) :- (1 -,~){pk} f~SÁ for some ~ between zero and one. The parameter ,1 is

a homotopy parameter running from zero to one. If ~- 0 then SÁ(0) -{pk}. So
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pk is a stationary point of zk on SÁ(0) and an end point of the path followed by the

algorithm. When, while following the path, ~ becomes one in a point p E SÁ then p

is a stationary point oí zk on SÁ -.SÁ(1) and p~t' - p is taken as the starting point

for the next iteration.

Let p be an arbitrary point in SÁ(~) for some given ~ between zero and one.

Then, by definition of SÁ(~), p-(1 -~)pk ~- ~q for some q E SÁ. If q is such that it

solves max{pTZk(p) ~ p E SÁ} then Lemma 4.2 shows that p is a stationary point of

zk on SÁ(.~).

Lemma 4.1 Ijp -(1-~)pk~-~q jor sorree ~, 0 G,~ G 1, where q - arg max{pTZk(p) ~

p E SÁ} then p is a stationary point of zk on SÁ(~).

Proof:

Let p-(1 -~)pk f.~q for some ~, 0 C~ G 1, where q- arg max{pTZk(p) ~ p E SÁ}.

I'or every p E SÁ(J~) there exists a q E SÁ such that p- (1 -~)pk -}- ~q by definition

of SA(~). Consequently,

PT z~(P) - ( 1 - .1)(Pk)TZk(P) ~ ~9'TZk(P)

C (1 - ~)(Pk)~zk(P) f ~9~zk(P)

- ((1 - ~)pk f ~9)TZk(P)

- P~zk(P).

Hence p is a stationary point of zk on SÁ(~). O

Choose G' -{ j ~ qT a~ - 0} and C~2 -{j ~ q~ - 0}. Then q E.F(C~', G2) and, by

construction of q, zk(p) E A~(Q',G2). Therefore the algorithm we propose follows a

path of points in SA such that for every point p there exist subsets G' C{1,...,!}

and G2 C{ 1, ..., n f 1} satisfying

1) p-(1 -~)pk ~- ~q for some ~, 0 G~ G 1, and some q E.~(C1, ~C2)

2) zk(P) E N(~i, ~~}.
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Clearly p solves GSPPk when ~- 1 or pk E.P(C1,CJ~), since in these cases also

p E .P(Gr, ~~).

Suppose pk ~.~(Gr,G2) and dim.~(Qr,C2) - m. We can represent each point

q E .~(~', G2) as an affine combination of m f 1 affinely independent points in the

affine hull of .P(G', ~2), denoted aff.P(C,1, CJ~). Let wo, ..., w"` represent these affinely

independent points in aff,F(~', G~). Then, for every q E.~(~', ~2), there exist num-

bers ~j, j - O,l,...,m, such that q-~~`o.~jwj, .1j E~2, and ~~o.~j - 1.

From ~mo~j - 1 it follows that .~o - 1-~m 1.1j. Therefore we can represent

each q- wo, q E .P(G',G2) as a linear combination of linearly independent vectors

u~j - wo, j - 1, ..., m, or q- wo -~ ~~ 1.~j(w' - wo), ~j E~i. Hence, the algo-

rithm follows a path of points in SÁ such that for every point p there exist subsets

G1 C { 1, . . . , l} and ~2 C { 1, . . . , n ~- 1 } satisfying

1) p-(1 -~)pk f awo -}- ~~ 1~j(w~ - wo), for some ~ E[0, 1]

and ~j E ~2, j - 1, . . . , m (4.1)

2) zk(p) E N( ~r, ~2)~

All the points p E SÁ satisfying ( 4.1) are stationary points of zk on SÁ(~). If one

combincs ( 4.1 ) together with zk(p) - z(pk) ~ Oz(pk)p, then p is a stationary point

of zk on SÁ (a) if and only if for some CJ' C { 1, ..., l} and ~2 C{ l, ..., n~- 1} the

system of linear equations
m

.~~x(pk)wo f ~ ~j~z(Pk)(w~ - wo) - ~ yia~ f ~ F'je(J) - Qe - -zÍPk) (4.2)
j-1 jE41 jE4~

has a solution 0 G a G 1, ~j E ~, yj ~ 0(j E Gr), pj ? 0 (j E~2), ~i E~i,

such that p- (1 -~)pk ~- ,1q with qTa~ C 0 for j ~ G1 and qj J 0 for j~ GZ,

where q- wo-}-~m r~j~-I(w~ - wo). This system contains n f 1 equations with n f 2

unknowns leaving us with one degree of freedom. Therefore, assuming nondegeneracy,

system ( 4.2) represents a line segment of solutions to the LSPP of zk on SÁ(a).

As will be shown in Section 5 and assuming nondegeneracy the line segment of

solutions obtained from ( 4.2) has two end points. This line segment will be followed
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liy making a linear programming pivot step in (4.2) in one end point with one of the

variables .~, .~,,,, yj for some j E G', or {~j for some j E CJ~. The other end point of

this line segment is a point p in SÁ where .~ - 1, one of the restricted variables in

(4.2) is equal to zero, or one of the constraints on q is binding.

Case 1: ~ becomes equal to 1. Then p- wo f~m 1 aj(up - wo) E.~(~',~~)

while zk(p) E N(~',~2). Theorem 4.1 implies that p is a stationary point of zk on

SÁ and pkt' - p is taken as the starting point to the next iteration.

Case ~: y~ becomes zero for some t E~'. Then, at p, it holds that

zk(P) - ~ yja~ -~ l~je(7) f Qe.
jEfit`{t} jEi~2

llence zk(p) E N(G' `{t},G2). If pk E.~(~' `{t},C~2), i.e. (pk)Taj - 0 for all

j E~' `{t} and p~ - 0 for all j E G2, then p E .~(~' `{t},Cj~) and Theorem 4.1

implies that p is a stationary point of zk on SÁ. Subsequently pkt' - p is taken as

the starting point to the next iteration. Otherwise, if pk ~.F(G' `{t }, JC~), then

the algorithm maintains the validity of the conditions in (4.1) by generating prices

p-(1 -~)pk f.~q such that 0 G~ C 1, xk(p) E N(~' `{t},C~2), and the vector q an

affine combination in .~(Q'`{t}, C~2) of m~2 affinely independent points wo, ..., w"`t'

in afff(~' `{t}, CJZ). Since the points wo, . .., w"` are already such that affF(C', CJ~) -

aff {wo, ..., wm } one can take wj - wj for j - 0,1, ..., m. Then wm}' must be such

that wm}' E aff.~(Q' `{t}, G2) and wn`}' ~ affF(G', ~2). By definition this implies

that wmt' has to fulfil the conditions

(aj)Twmt' - 0 for all j E~1 `{t}

(at)T,~m}1 ~ ~

eT~m}1 - 1

wmt' - 0 for all j E~~.

For example we can take (a`)Twn`}' --1.

Let C be the matrix containing the basic column vectors -e, -aj (j E ~'), and

e(j) (j E G2) of system (4.2). Then the conditions on w"`}' reduce to
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G.Twmti -
e(h i ) - é(hz)

where h2 denotes the index of the column -e in C, hl denotes the index of the column

-a` in C, and ë(j) is the j-th unit vector having the same length as the number of

columns in the matrix C. Let D denote the matrix containing the remaining basic

vectors of (4.2) as its columns. Then u~n`t' can be determined from

CT e(hi) - ê(h~)u,mtl -
(4.3)

DT - d

for some arbitrarily chosen vector d of appropriate length. Without loss of generality

we take d- 0. Then we take -wn`t' equal to

~m}1 - (BT)-le(ht) - (BT)-Ie(hz) (4.4)

where B-(C D), e(hl) -(ê(ht)T, 0)T and e(h2) -(ê(h2)T, 0)T. Notice that

the inverse of the matrix BT is the transpose of the basis inverse obtained from the

pivoting tableau corresponding to system (4.2). To obtain w"`}' we must therefore

subtract the column of the transpose of the basis inverse corresponding to a` from

the column oF this matrix corresponding to e. The algorithm proceeds by pivoting

the column ~z(pk)(wmt' - wo) into the appropriate pivot system thereby raising the

variable ~m~~ from zero.

Case ~i: tet becomes zero for some t E ~2 in a point p E SÁ. This case is similar

to the previous one. In p it holds that

zk(P) - ~ yja' - ~ f~ie(.7) } ~e.
jE41 jE42`{t}

EIence ZkITJ) E JV(`~~,`J2 ` lt}). If pk E.~(y',`!2 ` lt}), l.e. ( pk)T6~ - ~ fOI all

j E~' and p~ - 0 for all j E~2 ` {t }, then p E.~(~', t~2 `{t }) and Theorem 4.1

implies that p is a stationary point of zk on SÁ. Subsequently pk}' - p is taken as

the starting point to the next iteration. Otherwise, if pk ~ .~(CJ',CJ~ ` {t}), then

the algorithm maintains the validity of the conditions in (4.1) by generating prices

p-(1 -~)pk f~q such that 0 C~ C 1, zk(p) E JV(C1,C2 ` {t}), and the vector q is
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an affine combination in .~(~1,C2 `{t}) of m~ 2 affinely independent given points
o m~~w ,...,w in aff.~(C~', ~2` { t}). Similar to Case 2 we take wj - u~, j - 0, 1, ..., m,

and w"`}' -(Br)-'e(hl) -(BT )-le(h2) where (BT)-I and h~ are defined as in Case

2 while h2 corresponds to the index of the column e(t). The algorithm proceeds by

pivoting the column ~z(pk)(w"`fl - wo) into the appropriate pivot system thereby

raising the variable am~l from zero.

Case 4: For some t~ G' it holds that

~(a~)Tw - ~ ~j(a~)T(ui - w').
j-1

'fhen (a`)Tq' - 0 where q' - wof~~~(~j~.1)(w~-wo) is such that p- (1-~)pk~aq'.

Hence ql E.~(G' U{t}, ~2) C bd.~(~1, G2). The algorithm maintains the validity of

(4.1) by generating prices p-(1- ~)pk -~ ~q such that 0 G~ G 1, q E.~(CJ' U{t}, C2),

and z~(p) E N(~' U{t},~2). Since dim,~(Q' U{t},CZ) - m- 1 we should determine

m affinely independent points aff'f(G' U{t}, ~2). These points, say wo, ..., w"`-1, can

be obtained by a parallel movement of the points wo, ..., wm onto aff.~(C' U {t }, G~)

and deleting one of them in such a way that the remaining m points are affinely

independent as follows.

Let r-(1 -,~o)pk ~~oqo be the previous end point obtained by the algorithm

where qo E.~(~~,'~2) is such that qo -,~o }~~ ~(~o,~o)(w~ - wo) with 0 G.~o G 1

and ~o E~2 obtained from the solution to (4.2) in r. The algorithm moves all points

w~, j- 0, 1, ..., m, parallel to q' - qo onto aff.~(~C' U{t}, G2). This parallel movement

of ur', j - 0, 1, ..., m, results in m f 1 points ur' ~ b~(q' - qo) E afT.~(~' U{t}, C2)

where bj -(a')r,cuj~(as)Tqo, j- 0, 1,...,m. The appendix to this paper shows that

if we delete a point with index g E{0, ..., m} for which ~9 ~ a9 then the remainíng

points constitute m afl'inely independent points in aff.~(G' U{t},C~)

Take w~ - wj -}- bj(q~ - qo), j - 0, 1, ..., g- 1, and wj-' - w~ -}- b- (q' - qo),

j- g~l, ..., m. Then, in the current basis inverse we replace ~z(p'`)wo by the column

~z(pk)wo, Oz(Pk)(w~ - wo) bY Oz(Pk)(w' - wo), 7 - 1,...,g - 1, Oz(Pk)(w~ - wo)

14



by ~z(pk)(w~-1 - wo) for j - g~- 1, ..., m, and ~z(pk)(urq - wo) by the vector with

which the pivotíng step was made. Notice that if the pivoting step was made with

the vector ~z(pk)(wm - wo) then wo, wm-' must be afLinely independent since

~m 1 0-~n,. In that case we can take g- m and Oz(pk)(w"` - wo) does not enter

the basis inverse. The algorithm proceeds by pivoting the column -ai into the new

system thereby raising the variable yi from zero .

Case 5: For some t~~2 it holds that

m

.~wo - ~ ~~(wo - wi ).
~-~

This case is similar to the previous one. Then qi - 0 where ql - wot~~` 1 (~~~~)(w~ -

wo) is such that p- (1 -~)p~ -{- ~ql and ql E.~(~~,CJ2 U{t}) C bd.~(~1,C~). The

algorithm maintains the validity of (4.1) by generating prices p- (1 -~)pk ~~q such

that 0 C~ C 1, q E.~(G1,G2U{t}) and zk(p) E JV(C~,QZU{t}). Similar to Case 4 we

determine m affinely independent points in aff.~(G1,Q2 U{t}) from w~ ~ 6~(ql - qo)

for j- 0,1, .. . , m where bl - wi ~qo and qo as defined in Case 4 , and adapt the

current basis inverse. The algorithm proceeds by pivoting the column e(t) into the

new pivot system thereby raising the variable pt from zero.

The cases 1 to 5 describe the performaiice of the algorithm at the end points of all

possible line segments generated by the algorithm except at pk where the algorithm

is initiated. To show that pk is an end point of a line segment generated by the

algorithm we have to find sets ~' C{ 1, . ..,1 } and CJ2 C { 1, . .., n~ 1} such that

(4.1) is satisfied in pk. This means that according to Lemma 4.2 this line segment

contains points p E Sá such that p-(1 -.~)pk f ~q for some ~, 0 G a G 1, and some

q E.~(~I, ~2) maximizing pTZk(pk) subject to p E SÁ. Clearly q follows from solving

c~ither

15



the Primal or

max pT z(pk) min !7

the Dual

s.t. ATp C 0 s.t. Ay - le -~ (ie - z(pk)

-p C 0 y?0, p?0.

eTp - 1

LetCjo-{j~y~10}andCó-{j ~~C~~O} after solving the Dual. Then assuming

nondegeneracy the sets Go and ~jodefine a face .~(Qó,Go), being a vertex of SÁ, say

wo. In case wo - pk then pk is an equilibrium price vector for the original economy.

Otherwise pk is the end point of a line segment of points p E SÁ such that

1) p-(1-.1)pk~-.~wo,

2) zk(p) E N(Gó,~ó)-

Hence pk fulfils the conditions in (4.1).

Notice that combining these conditions leads to the system

~~z(pk)w - ~ yia~ } ~ l~ie(J) - ~e - -z(Pk)
iEGó iE4ó

(4.7)

having solutions 0 C~ C 1, y~ ~ 0(j E Go), p~ ~ 0(j E~o), and Q E~2. In p- pk,

system ( 4.7) has as solution ~- 0 and y~ 1 0(j E~o), p~ ~ 0(j E~o), Q 7 0

obtained from solving the Dual in (4.5).

The line segment of solutions to (4.7) is followed from p- pk by making a linear

programming pivot step with the column vector ~z(pk)wo in (4.7) thereby raising .~

from zero. While raising ~ from zero the algorithm will encounter another end point

of the line segment when either y~ becomes zero for some j E~o, {~~ becomes zero

for some j E~o, or a becomes one. The performance of the algorithm in such an end

point is described in the cases 1 to 3 above.
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5 Convergency issues

Starting in the point pk obtained from the previous iteration of the SLSPP or, in

case no previous iteration exists, chosen arbitrarily from SÁ, the algorithm follows in

iteration k a path of points either ending up with a solution to the LSPPk or possibly

ending up in a secondary ray. In the previous section we described the performance

of the algorithm in all possible end points of the line segrr..ents of the path followed by

the algorithm. During the description we encountered cases in which the algorithm

ends up with a solution to the LSPPk. These cases are summarized in Lemma 5.1.

Lemma 5.1 Let p- (1 -.1)pk f ~q be an end point of a line segment of points

generated by the algoráthm with q E.F(C1,G~) and zk(p) E JV(Gt,C2) for some ~1 C

{ 1, ...,1} and ~2 C{ 1, ..., n f 1}. Then p' is a solution to the LSPPk if one of the

following cases holds:

í) a - 1.

iij yi - 0 for some t E Q1, (pk)rai - 0 for all j E G~ `{t}, and p~ - 0 for j E C~2.

iíi~ pt - 0 for some t E~2, (p~)Ta~ - 0 jor all j E t~~, and p~ - 0 for j E~2 `{t}.

The algorithm dces not find a solution to the LSPPk if it ends up in a so-called

secondary ray in the pivot system (4.2). This means that the pivot variable can be

raised towards infinity without violating any of the constraints on the variables in

(4.2). Theorem 5.1 shows that the algorithm cannot end up in a secondary ray.

Theorem 5.1 For all possible sets C~ ~ C{ 1, ..., I} and C~ C { 1, ..., n f 1} and all

p E Sq" the system of equations

~~z(P)wo f ~ ~i0z(P)(ur~ - tá) - ~ yia~ } ~ l~ie(J) - Qe - -z(P) (5.1)
J-1 iEGI iEG2

does rzot contain a ray of solutions satisfying 0 G~ G 1, ~i E~Í, yi ~ 0

(7 E~1), pi ~ fi(J E G2), Íj E~2, such that p -(1 -~)pk ~- ~q where q-

wa -}- ~"` ~~i~-1(w~ - wo) such that qTai G 0 for j~ C~ and qi 1 0 for j~~2.
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Proof:

Suppose ( 5.1) contains a ray of adrnissable solutions ~o f a.~', ~o f~.1~, yo ~ Qy~ (j E

~~)~ l~ofal~~ (J E~2), ~afa~il for a ~ 0. Then ~o, .1a, yo (7 E~1), l~o (7 E~Z), ia

is an admissable solution to (5.1) and ~1, ~~, y~ (j E CJ1), p~ (j E G2), Q' is a solution

to the homogeneous system of equations
m

.1~z(P)wo ~ ~ ~i~z(P)(wJ - u'o) - ~ TJiaJ } ~ l~ie(1) - ~e - 0. (5.2)
J-~ 1E4~ 7EG~

1t is obvious that ~1 - 0 as .~' ~ 0 would imply that there exists some cr ) 0

such that ~o ~}- aa' 7 1. Suppose ~} ~ 0 for some i E{ 1, ..., m}. For cx ) 0,

let P(a) - p -{- ~o(wo - P) ~- ~m ~ (~o ~ a~~ )( wJ - wo). Since wo, . . . , wm are affinely

independent we must have that ~m 1 a~ (wJ - wo) ~ 0. Hence for some h E{ 1, ..., m}

we have that ph(n) ~ ph(0) when c~ ~ 0. Since p(a) is linear in a this implies that

for large enough a either ph(a) G 0 or ph(a) 1 1. This contradicts the fact that p(~)

lies in SÁ for all a 1 0. Hence ~; - 0 for all i E{ 1, ..., m}. Premultiplying (5.2)

with qo - wo ~~~ 1.1~ (~u)-' (w~ - wu) such that (qo)T a~ G 0 for j~ C'j'and qo 1 0

for j~~~ gives ~3' - 0. Then it follows that

~ l~;e(j) - ~ y;a'. (5.3)
)E~iT iE4~

Notice that y~ 1 0 (j E~') as well as ~C~ 1 0 (j E~Z). This follows from yo-~cYy~ (j E

G') and po f c~ie~ (j E~2) being a solution to (5.1) for all ~~ 0. Indeed, as yh G 0

for some h E G' or p~ G 0 for some j E~2 would imply the existence of an a~ 0

such that yh f~yh C 0 or po -f crp~ C 0 thereby violating the constraints on yh and

~a~ in (5.1). Then ~~Eq, p~e(j) ~ 0 and with (5.3) it follows that ~~Eq, y~aJ 1 0 and

y~ ? 0 for all j E~' . Hence Assumption 2.2 implies that y~ - U(j E~~ ). Therefore,

with (5.3), it follows that ~c~ - 0(j E C2).

f3ut now we are left with the result that ~' - 0, ~~ - 0, y~ - 0(j E G1), p~ -

0(j E~2), and Q' - 0. Hence no secondary ray can occur which is in contradiction

with the assumption underlying this proof. o
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Theorem 5.1 guarantees that each line segment on the path contains exactly two

end points. Assuming nondegeneracy at an end point of a line segment just one of

the five cases described in Section 4 can occur. Therefore the starting point is the

end point of a unique line segment whereas each other end point of a line segment

is either an end point of a uniquely determined other line segment or a solution to

LSPPk.

Every line segment on the path in SÁ is determined by the line segment of solutions

to (4.'l) for some uniyuc CJr C{1,...,!} and ~CZ C{1,...,n f 1}. As Gr and C2 are

both subsets of finite sets the total number of line segments is finite. Hence starting

in p - pk the algorithm generates a sequence of different line segrnents. This sequence

must be finite. Therefore the algorithm terminates within a finite number of steps

with a solution to LSPPk.

6 Conclusions

[n this paper we have introduced an SLSPP-algorithm to compute an equilibrium

in an economy with linear production technologies. An SLSPP-algorithm consists of

iterations in which the stationary point problem determining an equilibrium in an

economy with linear production technologies is linearized by taking the first-order

Taylor expansion of the excess demand function z in the price vector either obtained

from the previous iteration or, if no previous iteration exists, in an arbitrarily chosen

price vector from SÁ. In each iteration this results in a linear stationary point problem

which we solve by the algorithm introduced in Section 3. In Theorem 5.1 we proved

that this algorithm finds a solution for a.ll possible starting points in SÁ. Therefore

the SLSPP-algorithm we introduced in this paper certainly generates a sequence of

prices {pk}k o, possibly converging towards an eqtrílibrium in an economy with linear

production technologies.

Contrary to the existence of convergence to an approximating price vector pk}1
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in each iteration k of the algorithrn we are not able to show global convergence. In

Mathiesen [6] some empirical results are given suggesting global convergence for his

SLCI~ algorithm. However, Mathiesen [6] also gave some examples, namely Scarf's

unstable equilibria (see Scarf [7] for details), where his SLCP-algorithm failed to con-

verge. Mathiesen's SLCP-algorithm dces not even need to converge in each iteration

thereby possibly failing to generate a sequence of prices {p~}k o. Furthernrore Math-

iesen also has to choose amor~g different LCPs to solve (aependent on the numeraire

choice) in each iteration.

Our algorithm can also be seen as an improvement of the algorithm introduced

in Eaves [2]. Like we do Eaves also normalizes prices on the unit-simplex in each

itc~ration instead of taking some commodity as a numeraire. Then Eaves introduces

an algorithm which generates a path in SÁ by incorporating the nno-profitn-conditions

in the pivot system. This results in a pivot system consisting of n-F 1 f 2 equations

in each iteration contrary to our pivot system which only consists of the rmarket-

clearance~-conditions and hence results in a system of only n f 1 equations. Therefore

our algorithm processes the information much more efficiently than Eaves' algorithm.

To give an idea of this difference in efficiency suppose one intends to compute an

equilibrium in an economy consisting of 3 commodities and 1000 activities. Then our

algorithm generates the path using a pivot system consisting of 3 equations. Eaves'

SLCP however employs a pivot system consisting of 1004 equations in each iteration!

In iteration k the linearized excess demand function was denoted by zk. Premul-

tiplying zk by pk}' results in (pkf')rzk(pkfr) -~i. This (j isn't necessarily equal

to zero. In some way Q says something about the inaccuracy of the obtained ap-

proximation in pkf'. In Mathiesen [6] the inaccuracy in iteration k follows from

p,trza(pktr) - p~}lz,(pktr) with commodity s being the numeraire commodity. In

iteration k the market clearance condition with respect to the numeraire commodity

s is not taken into account. Therefore z;(pk}') can take any value at the end of

iteration k, while ~i can take any value at the end of iteration k in our algorithm.
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The possibility that the algorithm has to start at the beginning of some iteration

on the boundary with the price of some commodities equal to zero may cause problems

in Mathiesen's SLCP, Eaves' SLCPas well as our SLSPPbecause in general z~(p) --~

0o when p~ converges to zero. Mathiesen and Eaves suggested to perturbe pk by

taking the modified price vector pk-' f t(pk - pk-r), 0 G t G 1, instead of pk as a

starting point for iteration k. This perturbation of the starting point can cause the

algorithm to zigzag along the boundary as some of Mathiesen's numerical examples

showed.

As Eave.s algorithm as well as our algorithm generate only prices in the subset SÁ

of S" it may also occur that t,he starting point of the algorithm in some iteration lies in

the boundary of SÁ with only binding nno-profit"-conditions. This causes no problems

for our algorithm. The performance remains exactly the same as described in Section

9. In Eaves' algorithm the starting point has again to be perturbed. Because this case

may often occur when applying the algorithms this feature of our algorithm can be

regarded as an improvement of Eaves' SI,CP. In Mathiesen [6] the Lemke algorithm

[4] was applied to solve the LCP in each of the iterations of the SGCP. The main

drawback of applying Lemke's algorithm is that it lacks the possibility to start in

an arbitrary starting point, causing a loss of information when proceeding from one

iteration of the SI,CP to the next one. Furthermore Mathiesen [6] had to restate

the original equilibrium problem to a form suitable to apply the Lemke algorithm.

'I'his last feature as well as the fixed starting point imposed by applying Lhe Lemke

algorithm contributed to a large extent in the problems encountered when using the

SLCP of Mathiesen.

In order to get rid of the problems encountered with Mathiesen [6] and Eaves [2] we

showed that the original equilibrium problem in an economy with linear production

t,echnologies is equivalent. to t,hc~ stationary point problem of z on the subset SÁ of

S" instead of rewriting this problem to a form fit for applying an already existing

algorithm. This SPP was approximated by a sequence of linear stationary point
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problems. To solve this linear statíonary point problem in each iteration of the

sequence we introduced a new algorithm based on the ideas of Kamiya and Talman

[3]. They improved already existing algorithms to solve a stationary point problem

on a polytope like Yamamoto [9]. Applying this algorithm to our problem would

imply that in cases 2 and 3 of our SLSPP-algorithm described in Section 4 we would

be obliged to calculate a sequence of vertices of SÁ. This means solving a sequence

of linear programming problems similar to the case when we had to show that the

starting point was an end point oí the path followed by the algorithm. The fact that

Kamiya and Talman [3] presented an alternative avoiding the calculat,ion of vertices

of SÁ but using affinely independent poínts instead made application of their ideas

to our equilibrium problem very worthwile.

Appendix

Lemma 6.1 Let wo, wl, .. ., wtt` 6e a,~nely independent points in ~t"t'. Civen ó; E~2,

define the points w~, w1, . .., wm as

-w~fót(91-4~~

fori - 0,1,..., m with ql ~ qo such that

n,
qo-wof~~o(wh-wo}h

h-1

and
m

41-wof~~h(wh-wo).
h-1

Get g E {0, 1, ..., m} 6e such that ~9 ~ ~9. Then the points w', á- 0, 1, ..., g- 1,

g~- 1, ..., m, are af~inely independent.

Proof:

Let ~3;, i- 0, 1, ..., g- 1, g-~ 1, ..., m, be such that
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f3;w ,~ ~
~-o. ~~g

~ ~;-o.
i-0~ i~g

Then we have to prove that ,(~; - 0 for all i~ g. Substituting wi into this expression

gives

~ Q~w~ ~ 1 ~ ij;ó~~ ~L.(~h - ~h)(wh - wo)J - o-
'-~~ '~9 ` ~-~~ '~9 `h-1

Defining ó as

b- p;b,~ ~
~-o~ ~~g

this expression reduces to

m m

~ Q~wt ~ ~ ~(~h - ~h )(wh - wo) - 0.
i-o, i~g h-1

Rewriting this result in a suitable way gives

m ny

~ (ai ~ ó(a; - ao))w~ ~- (ao - ó ~(~h - ah))w ~ ó(a9 - a9)wg - o.
'-~~ '~9 h-1

I,et

y; - Q; f b(.1; - 10) for all i~ O,g,
m

~YO - ~0 - ó ~(~h - ~h)i
h-1

7g - ó(~1 - ~o)-9 9

Then

m m

ico i-o, i~g

and

m

~y;w'-0.
i-o

Qi -o
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By affine independence of wo, w', ..., w"` it follows that y; - 0, i- 0,1, . .., m.

Therefore

Q;-~ó(a; -,1o)-0foralli~0,g,

QO - ó~h 1(~h - ~h) - ~i

ó(i19-~9)-0.

We took g E{0,1, ..., rn} such that ~9 -~9 ~ 0. Therefare 6- 0. But then ~; - 0

for all i ~ g.

O
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