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Abstract

Games associated to congestion situations �a la Rosenthal (1973) have pure Nash

equilibria. This result implicitly relies on the existence of a potential function. In

this paper we will provide a characterization of potential games in terms of coor-

dination games and dummy games. Secondly, we extend Rosenthal's congestion

model to an incomplete information setting, and show that the related Bayesian

games are potential games and therefore have pure Bayesian equilibria.
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1 Introduction

The situation in which di�erent agents make use of the same set of facilities and where

the using costs are expressed in terms of a function depending on the number of users has

been described by Rosenthal (1973). He also showed that the associated strategic game

has a pure strategy Nash equilibrium. This result is implicitly due to the existence of a

potential function for this class of games, as has been shown by Monderer and Shapley

(1993).

In this paper we �rst derive a characterization of (weighted) potential games in terms

of coordination and dummy games, which enables us to compute the dimension of the

linear space of weighted potential games. In the second part we propose a generalization

of Rosenthal's model, which gives the possibility to model broader classes of economic

and real life situations. In fact we consider situations with incomplete information, in

which an agent can be of several types and has, according to each type, a speci�c goal.

On the other hand we will allow the di�erent individuals to have di�erent cost functions,

introducing a vector of weights. A weighted congestion model has been proposed also by

Milchtaich (1994) but, as will be shown later, the role of the weight vector in our model

is quite di�erent.

It turns out that the congestion games associated to weighted Bayesian congestion

situations are Bayesian potential games and, under the common prior assumption, this

implies the existence of a pure Bayesian equilibrium (van Heumen,Peleg, Tijs and Borm

1994). These results are illustrated by a booking game. The paper concludes with an

example which shows that Bayesian potential games need not have a pure Bayesian

equilibrium when the common prior assumption (Harsanyi (1967-68)) is violated. This

was posed as an open question by van Heumen et al. (1994).

2 Potential Games

In this section we will provide a new characterization of weighted potential games, which

have been introduced by Monderer and Shapley (1993). As a result of this characteriza-

tion by means of coordination and dummy games, the dimension of the class of potential

games is easily calculated.

2.1 A characterization of weighted potential games

Let G = hN; fAigi2N ; fuigi2Ni be a game in strategic form, where N is the �nite set of

players, Ai is the �nite set of actions available to player i and ui :
Q
i2NAi ! IR is some
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von Neumann- Morgenstern utility function for player i. The game G is called a weighted

potential game if there exists a function P :
Q
i2NAi ! IR and a vector w 2 IRN

++ such

that

ui(ai; a�i)� ui(a
0
i; a�i) = (P (ai; a�i)� P (a0i; a�i))wi

for all i 2 N; ai 2 Ai; a
0
i 2 Ai and a�i 2 A�i :=

Q
j2NnfigAj.

We now consider the following two families of games: �WC and �D.

Let �WC be the class of strategic form games G = hN; fAigi2N ; fcigi2Ni for which the

utility function of player i is such that there exists a vector w 2 IRN
++ and a function

P :
Q
i2N Ai ! IR with for each i 2 N : ci = wiP . Such games are called the weighted

coordination games.

Let �D be the class of strategic form games G = hN; fAigi2N ; fdigi2Ni in which the

utility function of a player does not depend on his own actions. So, for each a�i 2 A�i,

there exists a k 2 IR such that di(ai; a�i) = k for each ai 2 Ai. These games are called

dummy games.

In the following theorem we will use the above notions to characterize the class of

weighted potential games.

Theorem 2.1 G = hN; fAigi2N ; fuigi2Ni is a weighted potential game if and only if

ui = ci + di

for all i 2 N where ci and di, are such that hN; fAigi2N ; fcigi2Ni 2 �WC and

hN; fAigi2N ; fdigi2Ni 2 �D.
1; 2

Proof. We will just prove the only if part. Let G = hN; fAigi2N ; fcigi2Ni be a weighted

potential game, then there exist w 2 IRN
++ and P :

Q
i2N Ai ! IR with :

ui(ai; a�i) = wiP (ai; a�i) + ui(a
0
i; a�i)� wiP (a

0
i; a�i)

for all i 2 N; ai 2 Ai; a
0
�i 2 Ai and a�i 2 A�i.

1Using the sum characterization it is easy to get a new axiomatic characterization of the potential

maximizer, following the line originally proposed by Peleg, Potters and Tijs (1994).
2An analogous result has been recently obtained by Slade (1994) in a contest of oligopolistic compe-

tition , where the potential function is called "�ctitious objective function".
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Taking ci(ai; a�i) = wiP (ai; a�i) and di(ai; a�i) = ui(ai; a�i)�wiP (ai; a�i), it follows that

hN; fAigi2N ; fcigi2Ni is a coordination game and hN; fAigi2N ; fdigi2Ni is a dummy game

since ui(ai; a�i)� wiP (ai; a�i) = ui(a
0
i; a�i)� wiP (a

0
i; a�i) for all i 2 N; ai 2 Ai; a

0
i 2 Ai

and a�i 2 A�i. 2

The notion of weighted potential game can be illustrated by means of the following

Example 2.2 In the following 2 � 2 game, which is a simpli�ed version of Rousseau's

stag-hunt game (1971), a player has to decide whether to cooperate to hunt a stag (action

S) or to go o� on his own and hunt rabbits (action R).

S R

S

R

2
4 10; 20 0; 6

3; 0 3; 6

3
5

If the weight vector is w = (1; 2), then a weighted potential exists and is given by

P =

2
4 10 3

3 6

3
5

For player 1 the payo� matrix is

2
4 10 0

3 3

3
5 = 1

2
4 10 3

3 6

3
5 +

2
4 0 �3

0 �3

3
5

w-pot. game w-coord. game dummy game

and likewise for player 2

2
4 20 6

0 6

3
5 = 2

2
4 10 3

3 6

3
5 +

2
4 0 0

�6 �6

3
5

w-pot. game w-coord. game dummy game
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2.2 On the dimension of the linear space of potential games

Consider the family �N;m of strategic form games with �xed player set N = f1; :::; ng

and �xed action space A =
Q
i2N Ai with mi = jAij and m = (m1; : : : ;mn). Clearly the

family �N;m can be identi�ed with the function space (IRN )�i2NAi of maps from
Q
i2N Ai

into IRN in a natural sense, according to the fact that the game is \known" if for every

action pro�le a 2
Q
i2NAi the utility vector (u1(a); u2(a); :::; un(a)) is given. Therefore

we have that for the family �N;m

dim(�N;m) = dim(IRN)�i2NAi = n
Y
i2N

mi:

In theorem 2.1 we have characterized (weighted) potential games as the sum of coordi-

nation games and dummy games. Using that result, we will derive the dimension of the

linear space of potential games.

Let P�N;m � �N;m denote the subclass of potential games with N players and

m = (m1; :::;mn), where mi = jAij. As a corollary of theorem 2.1 we have that

P�N;m = �N;mC + �N;mD (�)

where �N;mC is the class of coordination games and �N;mD is the class of dummy games.

We can now prove the following

Theorem 2.3 For the linear space of potential gamesP�N;m :

dim P�N;m =
nY
i=1

mi +
nX
i=1

(
Y
j 6=i

mj) � 1

Proof. Because of (�) we have that

dim(P�N;m) = dim(�N;mC )+dim(�N;mD )�dim(�N;mC \�N;mD ). The dimensions of the right

hand side of the equation can be easily computed, identifying �N;mC with the function

space (IR)�i2NAi, and �N;mD with the function space (IR)�i6=1Ai � : : :� (IR)�i6=nAi .

Then dim((IR)�i2NAi) = �i2Nmi and dim((IR)�i6=1Ai � : : :� (IR)�i6=nAi) =
P

i2N

Q
j 6=imj.

Now it su�ces to show that dim(�N;mD \�N;mC ) = 1. Using the de�nition of coordination

and dummy games a game hN; fAigi2N ; fuigi2Ni in (�N;mD \�N;mC ) has the property that

there exist u :
Q
i2N Ai ! IR such that ui(a) = u(a) for all i 2 N; a 2

Q
i2N Ai because it

is a coordination game and u(a) = u(b) for all a; b 2
Q
i2N Ai since it also is a dummy

game. It means that (�N;mD \ �N;mC ) can be identi�ed with IR. 2
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Remark 2.4 It is straightforward to show that the same result holds even in the com-

putation of the dimension of the linear space of weighted potential games with �xed

weight vector.

3 Congestion situations and Bayesian potential

games

Rosenthal (1973) considers congestion situations where each agent wants to achieve an

individual objective by choosing a suitable subset of a set M of common facilities. The

using cost of each separate facility depends on the number of users.

Congestion situations give rise to potential games and, conversely, each �nite potential

game can be derived from a congestion situation (Monderer and Shapley, 1993). An

important property of potential games is the existence of a pure Nash equilibrium. In

this section we look at a general type of congestion situation which gives rise to Bayesian

potential games with pure Bayesian equilibria. Our congestion model constitutes a

generalization of Rosenthal's one.

Example 3.1 (The highway game). Consider the network of roads depicted in Fig. 1.

Agent 1 is in city A and has to go to city B. Agent 2 is instead in city C and, depending

on his type, has to drive either to A or to B. The cost each player has to a�ord to get

to his target depends on the time spent on the road, which is obviously an increasing

function of the number of users of the same street 3. For example, as it is depicted

in Figure 1, using the facility AC alone requires 3 units of time, while if the users are

two, the time required increases up to 8 units etc. Let agent 1 be a businessman and

agent 2 be retired, then the disutility of wasting time for agent 1 is bigger than that for

agent 2 and this can be modelled using a vector of weights, like for example w = (2; 1).

Furthermore we assume that when each agent reaches his own target he gets a reward

which depends on his type and on the the roads he has used. To give an intuition to

this second point, one might imagine that choosing a certain road gives the driver the

opportunity to enjoy a very nice landscape, something not possible otherwise. In our

example we will assume in particular that the rewards are given by

r1(C;AB) = 5 r2(A;CA) = 5 r2(B;CB) = 2

r1(C;ABC) = 4 r2(A;CBA) = 4 r2(B;CAB) = 3

3As we will see, this assumption is not required to prove our results.
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Figure 1: The highway game

and zero otherwise, where r1(C;AB) = 5 means that the utility of player 1, who has to

reach city C will increase by 5 units if he uses facility AB. The question to be answered

is: what is a self enforcing way for each player to reach his own target?

The general model underlying this kind of situation is called weighted Bayesian conges-

tion situation and can be described as follows:

[N;M; fTigi2N ; p; frigi2N ; fckgk2M ; w]

where

� N = f1; 2; : : : ; ng is the �nite set of players.

� M = f1; 2; : : : ;mg is the �nite set of facilities.

� Ti is the �nite set of types of users i 2 N , which specify the goal of each player.

� p 2 �(T ) is a probability measure on T :=
Q
i2N Ti.

� ri : 2
M � Ti ! IR; ri(ai; ti) is the reward of player i for using the facilities in

ai 2 2M if his type is ti.

� ck : f0; 1; : : : ; jN jg ! IR+ is the cost function depending on the number of users of

facility k.

� w 2 IRN
++ is a interpreted as follows: player i has costs wick(`); ` 2 f0; 1; : : : ; jN jg

for factor k if there are ` users.
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We are now going to de�ne a Bayesian game (with common prior) corresponding to the

weighted congestion situation described above. The general form of a Bayesian game G

is given by

G = hN; fAigi2N ; fTigi2N ; p; fuigi2Ni

whereN; fTigi2N and p play the obvious roles and the set of actions is de�ned byAi := 2M

for all players i 2 N and the utility function ui : (2
M )N � T ! IR for all i 2 N by

ui(a; t) = ri(ai; ti)�wi

X
k2ai

ck(nk(a1; : : : ; an)) (��)

for all a 2 (2M)N and t 2 T , where nk(a1; : : : ; an) is the number of users of facility k

according to the chosen facility sets. It means that in our model the role of the weights

is to extend Rosenthal's framework allowing di�erent cost functions for each player.

The problem of how to model a player speci�c contribution to the congestion has been

considered also by Milchtaich in a recent paper (1994). In his framework however,where

the weights are used to model the fact that a car and a heavy truck play di�erent roles

in inducing a congestion, it is impossible to guarantee the existence of a pure strategy

Nash equilibrium if not all weights are equal.

Formally, given a Bayesian game G = hN; fAigi2N ; fTigi2N ; p; fuigi2Ni a strategy of

player i is a map xi : Ti ! Ai. A strategy pro�le x 2 X :=
Q
i2N Xi is called a (pure)

Bayesian equilibrium of the game G if for for all i 2 N; ti 2 Ti and ai 2 Ai:

X
t�i2T�i

p(t�ijti)ui(fxj(tj)gj2N ; t) �
X

t�i2T�i

p(t�ijti)ui((fxj(tj)gj2Nnfig; ai); t)

where p(t�ijti) is the conditional probability
4 player i puts on t�i, assuming that his own

type is ti.

For a Bayesian game G = hN; fAigi2N ; fTigi2N ; p; fuigi2N ; i the corresponding ex ante

game bG is de�ned by

bG = hX1; : : : ;Xn; bu1; : : : ; buni
4This conditional probability can be de�ned if the assumption is made that every player puts positive

probability on each of his types. We restrict ourselves to games for which this is the case.
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where for all i 2 N;Xi = (Ai)
Ti is the strategy set for player i and bui(x) =P

t2T p(t) ui((xj(tj))j2N ; t) is the payo� function.

Harsanyi (1968, II, p. 321) proved the following theorem:

Theorem 3.2 For any Bayesian game G with common prior x is a Bayesian equilibrium

of G if and only if x is a Nash equilibrium of the ex ante game Ĝ.

In theorem 3.4 it will be shown that the game associated to a weighted Bayesian

congestion situation is a weighted Bayesian potential game in the sense of the following

De�nition 3.3 Let G be a Bayesian game. G is called a weighted Bayesian potential

game if there exist a function q : A� T ! IR and a vector w 2 IRN
++ such that, for every

i 2 N; a 2 A; bi 2 Ai, and t 2 T

ui(a; t)� ui((a�i; bi); t) = wi(q(a; t)� q((a�i; bi); t))

The function q is called a weighted potential for G.

Theorem 3.4 Let G = hN; fAigiinN ; fTigi2N ; p; fuigi2Ni be a weighted Bayesian game

arising from a weighted Bayesian congestion situation [N;M; fTigi2N ; p; frigi2N ; fckgk2M ; w].

Then G is a weighted Bayesian potential game.

Proof. De�ne

q(a; t) =
X
i2N

ri(ai; ti)

wi

�
X
k2M

nk(a)X
`=0

ck(`)

Then, using (��)

wiq(a; t)� ui(a; t) =
X
j 6=i

rj(aj; tj)wi

wj

� wi

X
k2M

nk(a�i)X
`=0

ck(`)

This means that wiq(a; t)� ui(a; t) does not depend on the action ai. Therefore q is a

weighted potential for G. 2

Remark 3.5 As we have said, Monderer and Shapley (1993) have proved that each �nite

potential game can be derived from a congestion situation in the complete information

case. We do not know yet if this is true also in presence of incomplete information.
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Remark 3.6 Our result can be easily extended to consider type dependent weights, but

this could give rise to interpretation problems (see the highway game for an example).

Therefore we prefer to con�ne all the private information present in our model to the

type dependent targets.

We now apply the previous results to the highway model and obtain the associated

highway game, which is described as follows:

hf1; 2g; fAC;CA;CB;ABC;CBA;CABg; ffCgg; fA;Bgg; p; fu1; u2gi

where the common prior p will be speci�ed later and u1; u2 are the utility functions of

the players. The cost matrices are, depending on the type of each player

A B

CA CBA CB CAB

C
AC

ABC

2
4 11; 3

6;�2

1; 1

10; 3

3
5

2
4 1; 1

8; 2

11; 7

8; 3

3
5

In other words, if player 2 likes to go to city A (he is of type A) using road CA and

player 1 uses the same facility to go from A to C, then player 1 supports a disutility of

11=16-5 and player 2 of 3=8-5.

Consider now the following (common) prior

A B

p = C
h

1
2

1
2

i

The associated ex ante game is therefore:

CA;CB CA;CAB CBA;CB CBA;CAB

AC

ABC

2
4 6; 2

7; 0

11; 5

7; 0:5

1; 1�

9; 2:5

6; 4

9; 3

3
5

There is only one pure strategy Nash equilibrium, which suggest to player 1 always to

use road AC while player 2 has to use road CBA, if his type is "A", and road CB if his

type is B. Considering the associated ex ante potential, this strategy pro�le turns out to

be also the potential minimizer.
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CA;CB CA;CAB CBA;CB CBA;CAB

AC

ABC

2
4 0

0:5

3

1

�1�

3

2

3:5

3
5

4 Inconsistent priors

In this paper we have considered a weighted congestion model, which has been associated

to a weighted Bayesian potential game. It is well known (see van Heumen, Peleg, Tijs

and Borm, (1994)) that every Bayesian potential game with common prior has a pure

strategy equilibrium. In the same paper the problem whether each Bayesian potential

game has a pure equilibrium is posed as an open question. It turns out that this need

not be the case as can be seen in the next example. To show our result we �rst state the

following

Lemma 4.1 Let G = hfAigi2N ; fTigi2N ; fpigi2N ; fuigi2Ni be a general Bayesian game

where pi is the probability measure of player I over T :=
Q
i2N Ti.

Let Ĝ be the game associated to G where, for every i 2 N;Xi is the set of pure strategies

of player i and for every x 2 X; i 2 N ,

ûi(x) :=
X
t2T

pi(t)ui(fxj(tj)gj2N ; t)

then if fxigi2N is a Bayesian equilibrium of G, fxigi2N is a Nash equilibrium of the

ex-ante game bG associated to G.

Proof. By de�nition of a Bayesian equilibrium, we have that for all ti 2 Ti, ai 2 Ai,

X
t�i

pi(t�ijti)ui(fxj(tj)gj2N ; t) �
X
t�i

pi(t�ijti)ui((fxj(tj)gj2Nnfig; ai); t)

Then

X
t�i

(
X
s�i

pi(s�i; ti))pi(t�ijti)ui(fxj(tj)gj2N ; t) �

X
t�i

(
X
s�i

pi(s�i; ti))pi(t�ijti)ui((fxj(tj)gj2Nnfig; ai); t)

so for each ti 2 Ti, ai 2 Ai

X
t�i

pi(t)ui(fxjgj2N ; t) �
X
t�i

pi(t)ui((fxjgj2Nnfig; ai); t)
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It means that

X
t

pi(t)ui(fxj(tj)gj2N ; t)) �
X
t

pi(t)ui((fxj(tj)gj2Nnfig; ai); t)

and thus for all yi 2 Xi

bui(x) � bui(yi; x�i)
2

Now we look at a speci�c Bayesian potential game with inconsistent priors. There are 2

players, 1 and 2. Each player has 2 di�erent types T1 = f�; �g; T2 = f; �g. The priors

p1; p2 are given by

 �  �

p1 =
�

�

2
4 0

1
4

3
4

0

3
5 p2 =

�

�

2
4 1

3

0

0
2
3

3
5

and the payo� matrices are given typewise:

 �

L R L R

�
T

B

2
4 1; 1

0; 0

0; 0

1; 1

3
5

2
4 0; 0

1; 1

1; 1

0; 0

3
5

�
T

B

2
4 0; 0

1; 1

1; 1

0; 0

3
5

2
4 0; 0

1; 1

1; 1

0; 0

3
5

The corresponding Ĝ game is given by

LL LR RL RR

TT

TB

BT

BB

2
6666664

0; 1
3

1
4
; 1

3
4
; 0

1; 2
3

3
4
; 1

1; 1
3

0; 2
3

1
4
; 0

1
4
; 0

0; 2
3

1; 1
3

3
4
; 1

1; 2
3

3
4
; 0

1
4
; 1

0; 1
3

3
7777775

It is easy to show that there are no pure Nash equilibria in this game. Then using Lemma

4.1 the Bayesian game does not have a pure Bayesian equilibrium.
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