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proven to be very efficient in case of observations without random

errors. In this paper the method is extended to observations with ran-

dom errors. The signal-to-noise ratio is taken as a measure of

"importance". By means of Monte Carlo experiments the power, sig-

nificance and number of observations are investigated.

Keywords: Experimental Design, Screening, Aggregated Variables, Binary

Search, Simulation.



2

1. INTRODUCTION

We focus on problems with a great many (100,1000,10000?) input variables,

out of which only a few are really important. A straightforward screening

method would use at least as many observations as there are variables to be

inspected. But an observation can be so time-consuming, that collecting so

many data is prohibitive. Also see Kleijnen (1987).

We represent the model as a linear regression (meta) model. By imposing

one special restriction we can reduce the number of runs. We consider the

first-order (main effects) model

Y(x1,x2,...,xN,e) - ~OtP1x1tP2x2....tSNxNte. (1.1)

in which we assume non-negative effects only: p~)0 (R-1,...,N), and in which
we assume for convenience that N is a power of two (N-2m for some mEti). To
estimate a first-order model, a two-level experiment suffices; so we may
take x~E{0,1} for .Z-1,...,N. In previous papers (Bettonvil 1988a,b,c) we
developed a method, called Sequential Bifurcation or "SB", to handle the
case of no errors: e-0. At present we shall treat the case e~NID(O,o2),
where NID z(u.6 ) stands for normally independently distributed with mean u
and variance 62. We assume o2 to be known (in a future paper we shall drop
this assumption). We want to find all "important" fact,ors, calling a facY.or

important, iff its regression parameter is large. In the error-free case, we

called a regression parameter "large", iff it is greater than some given

number ó)0; in case of errors (62)0) a regression parameter is called large,

iff it is greater than bo, with b some given positive number.
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SR for observations without random error i.s descrihed In a condensed

way in section 2. Section 3 is the main part of this paper; here we intro-

duce random error, propose an adaption of SB, and present results from Monte

Carlo experiments. Our findings are summarized in sect.ion ~1.

2. SEQUENTIAL BIFURCATION FOR OBSERVATIONS WITHOUT ERRORS

In this section, we give a brief description of Sequential Bifurcation in

case the observations have no errors: e-0 in (1.1). For an extensive

description, we refer to Bettonvil(1988c).

Sequential Bifurcation is a group screening method. The groups it con-

siders are: first (in "stage 0") one group of size N-2m, next (in stage 1)

two groups of size N~2-2m-1 each, then (in stage 2) four groups of size

N~4-2m-2 each, and so on. In general, in stage j(j-0,1,...,m) SB considers

2~ groups of size N~2~-2m-j each. In stage m, we have 2m-N groups of size

2m-m-1: we have reached the individual factors. The sum of the parameters in

the kth group at stage j(k-1,2,...,2~; j-0,1,...,m) is called the ag-

gregated effect of this group, or "the kth parameter at stage j". It is

denoted by pklj and defined as

k'2m-~
~klj .- ~~-(k-1)~2m-j~l ~,~ (J-O.l,...,m; k-1,2....2~). (2.1)

where ":-" means "is defined as". A direct consequence of (2.1) is

~klj - ~2k-l~jtl } S2k~jt1 (j-0.1,...,m-1; k-1,2,....2~), (2.2)
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which can be proven by substitution.

Apart from p~, all regression parameters are assumed to be non-

negative. This means that all aggregated parameters are also non-negative,
and that For each j( j-0,1,...,m) the sequence g0' SO}~l~j' g0}Sl~j}S2~j'

... ,~~}~llj}~2~j}...}~ j is non-decreasing. So, if we define2 Ij

~i~j :- 18~ t Fk-1 Sk~j (i-0,1,...,2~; j-0,1,...,m) (2.3)

(where ïk-1 is always 0), then the sequence j3ilj is non-decreasing in i for

each j. We need one more definition for the parameters, namely

t t 1
Si '- Si~m - ~k-0 ~k (i-o....,2m). (2.4)

The SB design is such that all observations have the first i input variables

at their high levels, and the remaining N-i input variables at their low

levels; they are denoted as yi (iE{0,1,...,N}). Because of (2.4), (1.1) and

e-0 we have

for all observations y.. (2.5)i

We distinguish between yi and pi for two reasons. First, pi is defined for

a1.1 i-0,1,...,N: there are Ntl pi's, whereas we will not need Ntl observa-

tions yi. Second, when random errors are introduced, pi will be the

expectation of y..i

Alternatively, we write the observations as yilj, in which the input

variables in groups l~j, ... , í~j are at their high levels; the remaining

input variables are at their low levels (iE{0,1,...,2~}, jE{O,l,...,m}). But
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the input variables in groups llj, ... , iIj are exactly the input variables
1,2,...,iw2m-~, so

yilj - yia2m-j
for all observations. (2,()

Note that yilj-Silj-~},~ m-j-y ,~ m-j, Why do we need so many notations for
i 2 i 2

the same quantity? First of all, the equality between observations and sums

of parameters will end as soon as we switch to observations with random

errors. The other differences will be clarified presently.

Now suppose we know ~, andi-lIj Silj. Then
Ai~j-gilj-gi-llj.

If ~3ilj(b,

then none of the parameters in group i at level j can exceed b:

S ~S. p j(b. ... . H Cb. We do not investigar.e
(i-1)~2m-j41- ( i-1)w2m- t2- iN2m-j-

this group any further. On the other hand, if pilj~b, we distinguish between

j-m and j~m. If j-m, we have found that gi~b; so factor number i is

important. If jCm and ~ilj~S, then we proceed to the next stage, using

(2.2): we investigate whether S2i-lljtl and~or ~2iIj;1 exceed b. For

~2i-lljtl we need ~21-lljtl and S2i-2Ij.1~ for j32ilj}1 we need (32iIjt1 and
t

~2i-lljtl-

We already have A2i-2 tl and S2i tl' as gi -~} m- - g} m- 1-Ij Ij Ij i~`2 j 2iw2 j-

~2iljt1, and, in the same way, S1-lIj -~2i-2Ij. So all we need is

~2i-lljtl' we observe Y2i-lljtl-S2i-lljfl' and now we can compute (32i-lljtl
and ~2iljtl.

SB always starts with the observation of y~I~-~~I~ and yll~-p1l~, and

continues as described above, starting with j-0, i-1. For the number of ob-
servations SB uses, we refer to Bettonvil(1988a,b,c).
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Example 2.1. Suppose ~e have 8 factors (m-3), ~ith only g2~0. Thts im-
pZtes that AO-~1~~2-~3-" '-~g' Take b-0. SB starts by observing y -p} -~{

OIO 0~0 0
and y1l0-gilo-~8, and computtng S1I0-~II0-~~IO.

As p110~0, and
s1lp:g1l1}g211, ~e observe

y1~1-(3i~1-~4 and note that
f t t f f f

SOIO-S~I1-~0, SIIN-S2I1-~8. We find that HZI1-j31I1-S~I1~0, and that

S2I1-~2I1-~ZI1-0. We need not bother about gZI1: all its components are

zero.

As p1I1~0, and RZI1-S1IZ{52~2, ~e observe y1I2-~1I2-S2 and note that

g0I1-g~IZ-so, ~II1-~ZI2-~4. We find that 51~2-S1I2-~~I2'0, and that

~ZI2-~2I2 ~ZI2-0' We need not bother about J32I2: both its components are

zero.

As p1I2~0, and A1I2`~ZI3}52~3' ~e observe y1I3-g1I3-s3 and note that

~~Iz-~~I3-s~, ~ZI2-~2I3-~2. We find that R1-SZI3-S1I3-~~I3-0, and that

s2-s213-s2I3-~1I3'o, mhich completes the screening.

3. OBSERVATIONS WITH RANDOM ERRORS

From now on, we assume that

t
yilJ - SiIJ } eil~ (3.1)

with eiI~~NID(O,a2), ~2 known; where NID(~,62) means Normally Independently
Distributed with mean yt and variance 62. An alternative formulation of (3.1)
is

t
Yk - Ak ' ek (3-2)



where k-i~`2m-~. We want to find the important factors by means of SB.

How do we define "important" in case of random noise? We might con-

centrate on the probability that a small parameter is found to be

significant. Instead we focus on the probability that a large parameter is

indeed declared large: power (the complement of the p-error). E.g., consider

two confidence intervals, the first running from 1.0 to 2.0, the second from

-1.0 to 11.0, and (say) a parameter with magnitude 10.0 is considered to be

large; a parameter with confidence interval [1.0,2.0] is then significant

but unimportant, while a parameter with confidence interval [-1.0,11.0] is

not significant, but may be important. We want our procedure to work such

that, if a parameter is at least equal to b6 (with given b)0), then the

probability of this parameter being declared unimportant, is at most equal

to some given constant E)0: ~ error. Furthermore, we want to minimize the

number of observations, as well as the number of parameters that is incor-

rectly declared important.

In the non-error case we needed mt2 observations to find out that a

single factor is important (see appendix 1). However, to find out that a

particular input variable is unimportant, we needed at most mt2 (and at

least 2) observations. As soon as we obtained a small ~kl~, we concluded

that all original parameters composing ~kl~ are small, and we stopped inves-

tigating these parameters. If we are dealing with observations with random
errors, we proceed analogously. Our decision to declare a factor important,

must be based on mt2 observations (and for each single factor we know

beforehand which observations we need). The decision to declare a factor

unimportant, however, should be based on as few observations as possible.

Consider the mt2 random variables Y. ~Y. ..,y.10 11 " lm{1 with

0-i0(il~...(imt1-2m, on which our decision whether or not to declare ~~ to
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be large (that is, larger than bo) should be based. When do we accept H~:

p~~b6? (Note that this null-hypothesis concerns factor .i only.) Of course

the observations yi ,yi ,..,yi include y~ and y~-1 (see 3.1 and 3.3 with
0 1 m~l

j-m). So we might consider p~- y~-y~-1 - i3~.e~-e~-1. Unfortunately, either

y~ or y~-1 is the last of the mf2 observations that becomes available, that

is, y~ or y~-1 is an observation at stage m(for otherwise, we would not

need mt2 observations for ~~). This means that, to investigate all factors,

we must have Ntl observations (2 at level 0, 2~-1 at level j, j-1,...,m;

together 2tïj-12~-1 - 2;2m-1 - 2mt1 - Ntl). The number of observations would

be of the same order as the number of factors, which we wanted to avoid. So,

we cannot use p~.
We take another view of yi 'yi '" 'yi ' ln observations

y0 ""'y,~-10 1 mf 1
factor number ,~ is "off" (xR-O), in observations y~,...,yN factor number i

is "on" ( x~-1). Let L be such that iL-~-1. We may consider yi ,..,yi as
0 L

(under)estimators of AO}~1} " '}S,~-1' yiLtl " " 'yim;l as ( over)estimators of

~0}S1;" ';~,~-1}~,~' Hence, the (Ltl)'(m-Ltl) differences y. -y, withi it -
itE{iLtl,...,im}1} and i-E{i~,...,iL} are all (over)estimators of g~.

ExampZe 3.1. Suppose nie are dealing aiith 23-8 factors. To arríve at (32

we observe y0~0-y0' y1~0-y8' y1~Z-y4' y1~2-y2 and y1~3-y1 and consider

successively

PZI~ - y1ld-y0lp - ~1tAZfP3tA4tP5fAStH~tA8telld-e~IO,

H1I1 z y111-yUIO - PI}fj2}fs3`R4

~1~2 - y1~2-yo~o - ~1}sa

52~3 - y1~2-y1~3 - s2

te1I1-e~lp,

fe112-e~lU,

te112-e113.
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Now we consider the minimum of these four (over)esttmators of p2:

min{yll~-~J~I~,~J1I1-y~I~,y112-~J~I~,l~II2-g113}-

min{~2te1I0-edl~tpltp3t~4tpstgs.~e~.g8,

A2te111-e~Ipf~Zf~3fp4,

~Zte1l2-e~I~fR1,

f~2tell2-e113j?

p2tmin{e1ld-edl0,e111-e~l~,ell2-e~ld,e1l2-e113j,

p2tmin{e11~-e~I0,e11~-e113,e111-eOI~,e111-e1I3,e112-e~Ip,e1l2-ell3j

p2tmin(e1l~,elll,e1l2j-maz{e~I~,e1l3j.

If we know the distributton of min{e1I~,e1~1,e112}-max{epl~,ell3j, then we

have a rule to decide whether or not p2 is Zarge. Note that

e1~d,e1~1,e1I2,e~Ig,e1l3 are tndependent. We shaZl return to thts

distributíon.

In general we have mt2 observations available for each p~. Of these observa-
tions, Ltl do not contain g~, and m-L.1 do contain g~. We consider the mtl
differences ~1~0'-yi -yi ' " " ' ~,~Im'-y,~-y,~-1~ corresponding with the

mtl 0
mtl aggregated parameters, that p~ belongs to: R1~()-g1~0-~0~0' "" '

~R~m-SR~m-~,~C-l~m. The minimum of these differences is greater than

g~.min{ei ,ei , . ,ei }-max{ei ..ei },
mtl m Ltl L~ 0

and, as is shown in appendix 2, this is greater than

(3.3)

S~an~ with probability p~ (3,4)
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where the relation between p~ and n~ is given by table I in Bechhofer

(1954). We reproduce a small part of Bechhofer's table I in our table 3.1.

The table entries record the values n~ for which

P(n~tmin{ei ,ei , .. ,ei }-max{ei , ..ei }~0)-P~,
mtl m Ltl L 0

for m-3, L-0,1,2,3; and for m-8, L-O,...,9, and p~-.9995. .995. and .95.

NNNNNNNNNNNNNNNNMNNNNNNNNNNNNNMNNMNNNNNNNNMNNMNNNNMMMN

M N

N N

N table 3.1 about here N

- N

N N

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

As soon as a pil~ is smaller than a(b-n~), all parameters composing gil~ are

smaller than b6 with probability 1-p~.

Example 3.3. In example 3.2 we had 8 factors, and r~e u~ere interested in

p2. We sam that

p2fmtn{e1I~,e1~1,e3~3}-max{e0lp,e1l2} c

c min{y1ld-y~ld,y1l1-ydld,y1l1-y112,y313-y112}.
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Suppose ~e want to find all factors that are greater than ZOa ~ith probabil-

ity of at Zeast .95 (that is, b-10, E-0.05). We have a set of 5 random

variables, subdfvided tnto sets of 2 and 3 variables. From Bechhofer's

(1954) table I it follo~s that

P(3.2805fmin{e110~6,e1I1~6,e313~6}-max{e010~6,e11~6} ~ 0) - .95.

So we stop as soon as any of
y1~0-y0~0' y1~1-y0~0' y1~1-y1~2' y3~3-y1~2 is

smaller than (10-3.2805)a-6.71956.

We used a number of Monte-Carlo experiments to investigate the be-

haviour of the above procedure. We took N-256 variables (m-8), 62-1, and
investigated the following cases:

(a) ~1-b, all other parameters zero;

(b) ~86-5, all other parameters zero;

(c) ~241-b. all other parameters zero;

(d) all parameters zero.

(Note: for ~1 we always take the "left branch in the bifurcation tree"; for

~86 we go left, right, left, right, etc.; for ~241 we go four times right,

then four times left. By considering these parameters, we may get an impres-

sion of the influence of the "path" we follow).

We took E-.05, .005, .0005; á-10, 8, 6, 4, and repeated all 4"3"4-48

experiments 1,000 times. We recorded the number of times the large

parameter was (correctly) found, the number of times any other parameter was

(incorrectly) found, and the total number of observations. To facilitate the
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comparability of the experiments, we made them all use the same random num-
ber stream (i.e. each experiment used the same seed for the random number
generator). The results are shown in tables 3.2.1 through 3.2.4.

MAAAAMAMMAMMAAAAAAMAAAAAMAAAAMAAAKMAAMAAMAAAAAAAMAAMAA

A

M tables 3.2.1 through 3.2.4 about here A

rt

A
A

AAAAAAxANNAAAANAMAAANAAAAAAAAAAAAAAAAMNANAAAAKMAAMAiAA

From tables 3.2.1 through 3,2.4 we learn the following.
(1) The prescribed power is reached is all cases: where we expect .95 we
find .954, .962, and .951; where we expect .995 we find .993. .997, and
.994; and where we expect .9995 we find 1.000.
(2) The experimental a-error (the number of incorrectly found small
parameters, divided by the number of small parameters) ranges from 0.0 to
.41; this maximum is reac.hed in the experiment with g86-4, e-,0005. The lat-
ter result may be regarded as inadmissible. Let us see what happened.
According to our procedure, we stop investigating a branch in the bifurca-
tion tree, when the difference between the minimum upper estimate and the
maximum lower estimate is smaller than a(b-x), where x is given by
Bechhofer's (1954) table I. For e-.0005 this table has entries ranging from
5.4432 to 5.7924; see our table 3.1. Now we have the situation that x)b for
b-4, so we go on investigating, even when the minimum upper estimate is
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smaller than the maximum lower estimate, e.g. when yN~yO. If we want to
avoid this peculiar situation, we have to demand that xCb, and by doing so,
we introduce a relation between b and e, via Bechhofer's table I. If for b-4
we demand that x)4, we drop the experiments b-4, e-.0005 and b-4, e-.005,
and then the maximum experimental a-error is 4.418~255-.01~ for g86-b-4,
e-.o5.

(3) The number of runs is extremely small. Notice that if there were no

noise, then we would need two observations to find out that no factor is

important; we would need mt2-10 observations to find out that one factor is

important. If we drop the experiments b-4, e-.0005 and b-4, E-.005, then the

numbec ol' experiments in case all effect parumeters are zero, ranges from

2.0 to 9.6; in case of one important parameter the number of experiments

ranges from 9.9 to 26.4. One might wonder how it is possible that with one

important variable the number of observations is less than 10. Note that

this only occurs for e1-.05, where in 95x of the cases we must find the im-

portant factor (and use 10 observations), in 5y of the cases we may find no

important factors (and might use only two observations). The mean minimum

number of observations is then o.95"10 t 0.05"2 - 9.6.

(4) The case p1-b is treated slightly more efficient than g86-b and ~241-b,
from the viewpoint of experimental a-error and number of observations.

5. CONCLUSION

Sequential Bifurcation is not only a very efficient tool for factor screen-
ing in the absence of random error; it is also capable of coping with
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observations with random errors in a very efficient way. This efficiency
depends on the signal-to-noise ratio.

No attention is yet payed to questions such as: how does SB handle

- numbers of input variables not equal to some power of two;

- small negative factor effects;

- normally distributed error with unknown variance;

- non-normally distributed error.

Research on these topics is to going on.
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APPENDIX 1: THE OBSERVATIONS GOING WITH A PARTICULAR FACTOR

Suppose that, in the deterministic case, factor number ,~, say, is important.

At each stage of the procedure exactly one aggregated parameter contains p~:
,~ m- j

Rilj(-E1 2 r m-j ~k) contains p~ iff (i-1)"2m-~~~(i~2m-~. As there are
k-(i-1) 2 tl -

N-2m factors, we have 1~.~(2m, and the binary form of R-1 uses m digits:
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~ - 1 - ~t-1 ~t2m-t with .~tE{0,1}, t-1,...,m. (A1.1)

For any jE{O,l,...,m} we can write

~ - 2m-JNEt-1~t2j-t , ~t-jtl~t2m-j
t 1. (A1.2)

Group 1 at stage j contains the input variables with numbers ( i-1)N2m-~tl
through ix2m-j, so it contains factor number ,i iff i-1 - it-1~Ct2j-t: 1

contains ~ IJ~~ iff i-ltït-1~t2~-t (j-0,1,...,m). Examples: take j-0, then i-1;
take j-m, then i-.~.

To arrive at p110 we use observations y010 and y110. Be O~jCm, and sup-
pose pi contains ~. Then either p or ~ contains p. To~j ~ 2i-l~jtl 2iljtl ~
split p and p we use observation Nowpllj into 2i-l~jtl 2i~j~1 y2i-l~jtl'
i-1.Et-1,Lt2~-t, so 2i-1-1t2Et-1~t2~-t. According to (2.6), yilj-y ~ m-j, so

i 2
y2i-l~j}1-y( ) m-j-1-y(1t2Fj ,~ Zj-t)x2m-j-1' To arrive at p~ we use the2i-1 w2 t-1 t
observations

Y0. YN~ and y
(1t2E~ ,t 2j-t)w2m-j-1~t-1 t

j-o,l,.....,m-1, (A1.3)

where the numbers ~Ct ( t-1,...,m) are defined by (A1.1).

Exarrtple A1. Take m-3; N-B. To arrive at p2 me need the folloming

observattons:

at level 0 me use ~BÍIG-y1Ip-y8 and P0~0-g0~0-b0 to compute J31I~;

at Level 1 me use ;BÍ~1-y1~1'y4 and g~I1ag~lOsyOl~Qyo for P1~1,
at level 2 me use R1I2-y1~2-y2 and pÓI2-S~IG-yGI~-yO for R1~2;
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at Zevel 3 we use pt sp} -y -y and }2I3 1~2 1~2 2 ~1~3-y1~3-y1 for 52~3-f33.
At each of the four Zevels we use two observations. In total, however, we do

not use 4~2-8 observations, but only (mt2-)5, namely
y0, yl, y2, y4 and y8.

We see that, no matter how many observations the whole screening uses, m}2
observations, specified by (A1.3), are used for a particular important

factor. For a particular unimportant factor at most mt2 observations are
used: the observations of (A1.3) are used until we reach a stage, where the
aggregated parameter, the particular parameter is part of, is small. This
may be level 0(and then we use only two observations for all factors), but
if we are unlucky, this can be level m.

APPENDIX 2: THE DISTRIBUTION OF UPPER LIMITS

Bechhofer (1954) considers k normal populations with common variance o2, and
computes the probability that, after taking a sample of size N from each
population and ordering the sample means, the t populations with the
largest sample means correspond with the t populations with the largest
population means. This probability depends on k, t and fX, where

X-Íut-Nt~l)~o (ui is the ith largest population mean). In the sequel we
shall use the symbol n instead of fa. For k-2,...,10, t-1,...,[k~2] (the
problem is symmetric in t and k-t) as well as k-11,...,15 and some selected
values of t, BechhoFer tabulates n against the probability of correct
ranking:

P(min{xl,...,xt}~max{xt}1,...,xk}



~ min{ul,...,kt}-max{~t}1....,1~})a6 ~ Vxi-o2~N (i-1,....k)). (A2.1)

By multiplying all variables by f~a, we see that (A2.1) is equal to

P(min{xl,...,xt}-max{xttl,...,xk})0

~ min{ul,...,~t}-max{~t~l,,,,,y~})n ~ Vxi-1 (i-1,...,k)). (A2.2)

The least favorable configuration is the one with ul-. "-xt and uttl- "'-Nlc'
and we may take xi-ntei (i-1.,,,.t); xi-ei (i-ttl,...,k), and replace (A2.2)
by

P(nfmin{el,...,et}-max{et}1,...,ek})0 ~ Vei-1 (i-1,...,k)). (A2.3)

As said, this probabitity is tabulated against n. Now we consider (3-3):

S~tmin{ei ..,ei }-max{ei , ..,ei }, (A2.4)
m.l~ L.1 L 0

where e. ..,e. are NID(0,62). (A2.4) equals10" lm}1

~~-~nta(ntmin{ei ~d,...,ei ~a}-max{ei ~o,...,ei ~o}). (A2.5)
m{1 Ltl L 0

The value n0 for which ntmin{ei ~a,...,ei ~a}-max{ei ~a,...,ei ~0})0
mtl Ltl L 0

with probability p0 can be found in Bechhofer's table I, where for k we take

mt2, and for t we take min{Lt1,m-Ltl}. So now we have

S~tmin{ei ..,ei }-max{ei , ..,ei } ) ~~-on0 wp p0. (A2.6)
mtl~ Ltl L 0
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Table 3.1. Limít values for various group sizes 2m and probabilities p0

p0 m-3 m-3 m-8 m-8 m-8 m-8 m-8
L-0,L-3 L-1,L-2 L-0,L-9 L-1,L-8 L-2,L-7 L-3,L-6 L-4,L-5

.9995 5.1661 5.3127 5.4432 5.6425 5.7343 5.7788 5.7924

.995 4.2394 4.4138 4.5524 4.7878 4.8950 4.9468 4.9625

.95 3.0552 3.2805 3.4182 3.7~98 3.8541 3.9184 3.9378

(Source: Bechhofer 1954, p. 30-34)
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Table 3.2.1. Performance of SB with S1-b.

Power (1) a-error times 255 (2) Observations (3)
e-.05 E-.005 E-.0005

á-1o .954 .993 i.0oo

b-8 .954 .993 i.ooo
b-6 .954 .993 1.000
b-4 .954 -993 i.ooo

e-.o5 E-.005 E-.0005

.000 .ooo .ooo

.000 .000 .005

.007 .150 2.038
2.831 30.673 97.243

e-.05 E-.005 E-.0005

9.9 10.0 lo.o

9.9 10.0 10.2
io.2 12.1 19.9

22.4 68.9 138.5

(1) Average number of times S1 is found; experimental power.

(2) Average number of incorrectly found parameters; the experimental a-error

is this number divided by 255 (the number of unimportant factors).

(3) Average number of observations.
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Table 3.2.2. Performance of SB with ~86-b.

Power (1)

e-.05 E-.005 e-.0005

á-1o .962 .997 1.000
b-8 .962 .997 1.000
b-6 .962 .997 i.ooo
s-4 .962 .997 1.000

a-error times 255 (2) Observations (3)
E-.05 E-.005 e-.0005 E-.05 e-.005 e-.00o5

.ooo .ooo .oo0 9.9 10.0 10.0

.ooo .002 .016 9.9 io.o io.3

.019 .377 3.2i7 io.3 i3.i 23.3
4.4i8 36.523 105.366 26.4 77.1 146.9

(1) Average number of times ~86 is found; experimental power.

(2) Average number of incorrectly found parameters; the experimental a-error
is this number divided by 255 (the number of unimportant factors).

(3) Average number of observations.
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Table 3.2.3. Performance of SB with ~241-b.

Power (1) a-error times 255 (2) Observations (3)
e-.05 E-.005 e-.0005

b-1o .951 .994 1.000

s-8 -951 .994 l.ooo
b-6 .951 .994 1.000

s-4 .951 .994 1.000

e-.o5 E-.005 E-.0005

.000 .000 .000

.ooo .002 .oi8

.028 .397 2.92i
3.8i0 31.941 97.725

e-.05 e-.005 e-.0005

9.9 10.0 ~o.o
9.9 lo.0 10.3
io.3 i2.9 2i.i

23.7 68.8 138.0

(1) Average number of times ~241 is found; experimental power.

(2) Average number of incorrectly found parameters; the experimental ~-error
is this number divided by 255 ( the number of unimportant factors).

(3) Average number of observations.
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Table 3.2.4. Performance of SB with ~1-...-~256-0.

a-error times 256 (2)

e-.05 e-.005 e-.0005

á-10 .000 .000 .000
s-8
b-6
b-4

.ooo .ooo .ooi

.ooi .032 .759
1.135 20.168 80.849

Observations (3)

E-.05 e-.005 e-.0005

2.0 2.0 2.0

2.0 2.o z.i
2.2 3.~ 7.7
9.6 46.0 1i6.6

(2) Average number of incorrectly found parameters; the experimental a-error

is this number divided by 256 (the number of unimportant factors).

(3) Average number of observations.
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