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Sequential Bifurcation is a method for factor screening, which is
proven to be very efficient in case of observations without random
errors. In this paper the method is extended to observations with ran-
dom errors. The signal-to-noise ratio is taken as a measure of
"importance". By means of Monte Carlo experiments the power, sig-

nificance and number of observations are investigated.
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1. INTRODUCTION

We focus on problems with a great many (100,1000,10000?) input variables,
out of which only a few are really important. A straightforward screening
method would use at least as many observations as there are variables to be
inspected. But an observation can be so time-consuming, that collecting so
many data is prohibitive. Also see Kleijnen (1987).

We represent the model as a linear regression (meta) model. By imposing
one special restriction we can reduce the number of runs. We consider the

first-order (main effects) model
y(xl.xz,....xN.e) = BO+le1+BZx2+...+BNxN+e, (1:1)

in which we assume non-negative effects only: Blzo (4=1,...,N), and in which
we assume for convenience that N is a power of two (N=2m for some m€N). To
estimate a first-order model, a two-level experiment suffices; so we may
take xLE{O.l} for A=1,...,N. 1In previous papers (Bettonvil 1988a,b,c) we
developed a method, called Sequential Bifurcation or "SB", to handle the
case of no errors: e=0. At present we shall treat the case e~NID(0,62),
where NID(A.GZ) stands for normally independently distributed with mean u
and variance 62. We assume 62 to be known (in a future paper we shall drop
this assumption). We want to find all "important" factors, calling a factor
important, iff its regression parameter is large. In the error-free case, we
called a regression parameter "large", iff it is greater than some given
number §>0; in case of errors (62>0) a regression parameter is called large,

iff it is greater than &0, with & some given positive number.



SB  for observations without random error is described in a condensed
way 1in section 2. Section 3 is the main part of this paper; here we intro-
duce random error, propose an adaption of SB, and present results from Monte

Carlo experiments. Our findings are summarized in section 4.

2. SEQUENTIAL BIFURCATION FOR OBSERVATIONS WITHOUT ERRORS

In this section, we give a brief description of Sequential Bifurcation in
case the observations have no errors: e=0 in (1.1). For an extensive
description, we refer to Bettonvil(1988c).

Sequential Bifurcation is a group screening method. The groups it con-
siders are: first (in "stage 0") one group of size N=2m, next (in stage 1)
two groups of size N/2=2m_1 each, then (in stage 2) four groups of size
N/Ll=2m-2 each, and so on. In general, in stage j (j=0,1,...,m) SB considers
2j groups of size N/2j=2m-j each. In stage m, we have 2"=N groups of size

2111

_m=1: we have reached the individual factors. The sum of the parameters in
the kth group at stage (k=1,2.....2j; j=0,1,...,m) is called the ag-
gregated effect of this group, or "the kth parameter at stage j". It is

denoted by ﬁk|j and defined as

w23 ]
Bklj S z m-j BL (j=001"“'m; k=1‘2""2 )' (2'1)
A=(k-1)*2""J41
where ":=" means "is defined as". A direct consequence of (2.1) is

= g A A J
Bli = BZk-llj*‘l + BZklj*l (50404« oo oi=1% Te=152, 0500525 Ny (2.2)



which can be proven by substitution.

Apart from BO' all regression parameters are assumed to be non-
negative. This means that all aggregated parameters are also non-negative,
and that for each j (j=0,1,...,m) the sequen . -

[ ) quence B, Bo+31|3 BO+31|J’+B2|3"

e @ BO+Bllj*B2|j+...+B is non-decreasing. So, if we define

. B i . 3, .o
Bilj = Bo * Eeaq By|j (=01 iswne” 5 350050 00 ,00) (2.3)

(where 22:1 is always 0), then the sequence B;lj is non-decreasing in i for

each j. We need one more definition for the parameters, namely
+ + 4 "
Bi 1= Bi|m = Zk=0 Bk (1=0,c..22 ). (2.4)

The SB design is such that all observations have the first i input variables
at their high levels, and the remaining N-i input variables at their low

levels; they are denoted as y. (i€{0,1,...,N}). Because of (2.4), (1.1) and
i

e=0 we have
Vi = B; for all observations y, . (2.5)

We distinguish between vy and B; for two reasons. First, B; is defined for
all i=0,1,...,N: there are N+1 ﬁ;'s, whereas we will not need N+1 observa-
tions yi. Second, when random errors are introduced, ﬁ; will be the
expectation of vy

Alternatively, we write the observations as yilj’ in which the input
variables in groups 1|j, cos 8 i|j are at their high levels; the remaining

input variables are at their low levels (iE{O.l.....ZJ}. 1€{0,1;, s+ «sm});: But



the input variables in groups 1|J, For i|j are exactly the input variables
s T TR | /- i =Y
Sl = . for all observations. "
Vil T Y e 2.6}

&

+
Note that A j-Bi j—B . m-j_y_* w3
%2 i%*2

Why do we need so many notations for
the same quantity? First of all, the equality between observations and sums
of parameters will end as soon as we switch to observations with random
errors. The other differences will be clarified presently.
Now suppose we know ﬁ+ and B+ Then B -B+ -B+ If B <5
1113 a4 P et e TR R 5=
then none of the parameters in group i at level j can exceed 6&:

B < <6, . P .<6. We do not investigate

- <&, B N ¢ B3 S
(i-1)*2"d4q (1-1)*2" 342 i*20d
this group any further. On the other hand, if Bi|j>8. we distinguish between
j=m and j#m. If j=m, we have found that Bi>8; so factor number i is

important. If j<m and Bi|j>6' then we proceed to the next stage, using

(2.2): we investigate whether BZi—1|j+1 and/or 52i|j+1 exceed §. For

+ +  d
521—1|j+1 we need 321-1|j+1 and B21—2|j+1’ for B21|j+l we need ﬁ21|j+1 and

+
Bag-1]5+1°
w 1 d h + d + + _ + = + -
e already have BZi-2|j+1 an BZi|j+1' as Bilj = B.* wg = B e T
i*2 21%2
o+ + + ;
B21|j+1' and, in the same way, Bi-1|j = BZi-le' So all we need is

+ +
ﬁZi-1|j+1' we observe y21-1|j+1_52i-1|j+1’ and now we can compute ﬁ2i-1|j+l
Bng ﬁ2i|j+1'
5 g . =u*
SB always starts with the observation of yOIO-BO|O and y1|0 BlIO' and
continues as described above, starting with j=0, i=1. For the number of ob-

servations SB uses, we refer to Bettonvil(1988a,b,c).



Ezample 2.1. Suppose we have 8 factors (m=3), with only B2>O. This im-
plies that B;=B;<BZ=B§=...=B;. Take §=0. SB starts by observing yo|0=35|0=35
and y1|0=B;'0=Bg, and computing B1|0=B;|O_BS|O'

As B1|0>0, and BllO'B1|1+ﬁ2|1’ we observe y1|1=B;|1=ﬁ; and note that
BZ)|0=’35|1=’35’ B;|0‘52|1=’32- He Tina that ’31|1='3;|1‘55|1>0» and  that
32|1=B;|1-B;|1=0. We need not bother about BZII: all its components are

zero.
+ +
As ﬁ111>0, and Bl|1=ﬁl|2+B2|2’ we observe y1|2=B1|2=32 and note that
2 5 + s + + > it
BO|1=50|2:B0’ BI|1=B2|2=B4. We find that 5112—Bll2 B0|2>0’ and that

+ +
B2|2=BZ|2_31|2'0' We need not bother about B212. both its components are

zero.

+ +
As B1|2>0, and BI|2=BI|3+ﬁ2|3’ we observe y1|3=51|3=53 and note that
* * * - + + < B s
B0|2=50|3=BO’ B1|2-52|3=B2. We find that 51-5113 Bl|3 BOIS 0, and that
BZ=B2|3=B£|3—31'3>0, which completes the screening.

3. OBSERVATIONS WITH RANDOM ERRORS

From now on, we assume that

Yils T Pilg * ey v

with ei|j~NID(O,62), 62 known; where NID(A.GZ) means Normally Independently

Distributed with mean u and variance 62. An alternative formulation of {3.1)

is

yk = Bk + ek (3.2)



where k=i’2m_j We want to find the important factors by means of SB.

How do we define "important" in case of random noise? We might con-
centrate on the probability that a small parameter is found to be
significant. Instead we focus on the probability that a large parameter is
indeed declared large: power (the complement of the p-error). E.g., consider
two confidence intervals, the first running from 1.0 to 2.0, the second from
-1.0 to 11.0, and (say) a parameter with magnitude 10.0 is considered to be
large; a parameter with confidence interval [1.0,2.0] is then significant
but unimportant, while a parameter with confidence interval [=1.0,11:0] ds
not significant, but may be important. We want our procedure to work such
that, if a parameter is at least equal to &c (with given §>0), then the
probability of this parameter being declared unimportant, is at most equal
to some given constant €>0: B error. Furthermore, we want to minimize the
number of observations, as well as the number of parameters that is incor-
rectly declared important.

In the non-error case we needed m+2 observations to find out that a
single factor is important (see appendix 1). However, to find out that a
particular input variable is unimportant, we needed at most m+2 (and at

least 2) observations. As soon as we obtained a small B , we concluded

k|3
that all original parameters composing Bklj are small, and we stopped inves-
tigating these parameters. If we are dealing with observations with random
errors, we proceed analogously. Our decision to declare a factor important,
must be based on m+2 observations (and for each single factor we know
beforehand which observations we need). The decision to declare a factor

unimportant, however, should be based on as few observations as possible.

Consider the m+2 random variables Vi ¥ seeenyy with
0 | m+1

0=io<i1<...<im+1=2m, on which our decision whether or not to declare BL to



be 1large (that is, larger than é0) should be based. When do we accept Hé:
5L>85? (Note that this null-hypothesis concerns factor A only.) Of course

the observations ¥y .yi veeea Yy include \g) and Y1 (see 3.1 and 3.3 with
0 1 m+1

j=m). So we might consider BL= Yy ¥y q = Bl*el_el—l' Unfortunately, either
yy or Ypo1 is the last of the m+2 observations that becomes available, that
is, yp or yp 4 is an observation at stage m (for otherwise, we would not
need m+2 observations for Bl)’ This means that, to investigate all factors,
we must have N+1 observations (2 at level O, 2‘]-1 at level j, j=1,...,m;
m 31 m m
together 2+Zj=12 = 2+2 -1 = 2°+1 = N+1). The number of observations would
be of the same order as the number of factors, which we wanted to avoid. So,

we cannot use Bl'

0 *i m+1

factor number £ is "off" (xL=O), in observations Ypooeo¥N factor number £

We take another view of Vi oYy vee ¥y . In observations yo....,y,{_1

is Yon" (x&=1)' Let L be such that iL=l-l. We may consider Vi veeeay; as
0 L

(under)estimators of ﬁO+B1+"'+Bl-1; yiL+1....,yim+1 as (over)estimators of

* = 1 -
BO+B1+...+Bi_1+BL. Hence, the (L+1)*(m-L+1) differences ¥; ¥y with

+ -

i+€{iL+l""'im+1} and i_E{iO.....iL} are all (over)estimators of Bl‘

Example 3.1. Suppose we are dealing with 2$=8 factors. To arrive at BZ

we observe y0|0=y0, y1|0=y8, y1|1=y4, y1|2=y2 and y1|3=y1 and consider

successively

Bilo = Y1]l0™¥0|o = P1*R2*R3*Ry*Rs*Rg*Ry*Bg*e1 0700}
P11 = ¥1|17%|0 = P1*P2*P3*Py *e1117%|0*
P1l2 = Y1|27¥|0 = P1*R2 *e1127%)| 0’

Balz = ¥1|27%113 = B *ey 12 %13



Now we consider the minimum of these four (over)estimators of BZ:
”i"{yzlo'yOIO’yz|1'yo|o’y1|2'yo|o’y1|2'y1|3}=
min{Byte; | gm0 0*P1*R5*Py*Bs*P* By Ry

Bate1117%0|0*P1*P3*Pys

Ba*e1127%0]0*P1

Pateyz7ey |52
"32“""'{91|o'eo|o"*1|1'80|0"21|2‘eo|0"21|2"?1|3]2
Bz*“‘”{ezIo'eo|0’ello'el|3’91|1'eo|o’ez|1’ez|3’91|2‘eo|0’21|2’21|3}=
B2+min{elIo,el|1,e1|2}—maz{e0|0,e1|3}.

If we know the distribution of mtn{ello,elll,el|2}—max{e0|0,91|3}, then we
have a rule to decide whether or not B2 is large. Note that

el|0’elll’el|2’e0l0’el|3 are independent. We shall return to this

distribution.

In general we have m+2 observations available for each Bl' Of these observa-
tions, L+1 do not contain Bl‘ and m-L+1 do contain BL' We consider the m+1

differences Bl|0:=yim+1-yi PR e . Bilm:=yl—yl-l' corresponding with the
m+1l aggregated parameters, that ﬁl belongs to: Bl|0=BI|O_B6|O' ..... "

+ + . .
Bi|m=ﬁl|m_ﬁi—1|m' The minimum of these differences is greater than

Biﬂnin{ei P ERERRLN }-max{ei PO (3-3)

m+1 1m L+1 L 0

and, as is shown in appendix 2, this is greater than

By=0h, with probability p (3.4)
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where the relation between po and AO is given by table I in Bechhofer

(1954). We reproduce a small part of Bechhofer's table I in our table 3.1.

The table entries record the values A. for which

0
P(A.+min{e, N A" N }-max{e. ,...e. }<0)=p.,
0 - i1 i i 0
for m=3, L=0,1,2,3; and for m=8, L=0,...,9, and p0=.9995, .995, and .95.

B3I T I W IR NN

*

table 3.1 about here -

*

LA R S SR R R e e T T S T T T2 ]

As soon as a ﬁilj is smaller than 6(6—AO). all parameters composing Bilj are

smaller than $c with probability 1-p0.

Example 3.3. In example 3.2 we had 8 factors, and we were interested in

BZ' We saw that

Bytminfe;|gse;|1e5|5}-mazley g eq o) <

< minlyy 0o 02 Y1|17% | 0* Y1 |17Y1 | 22 ¥3| 571 | 2} -
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Suppose we want to find all factors that are greater than 100 with probabil-
ity of at least .95 (that is, §=10, €=0.05). We have a set of 5 random

variables, subdivided into sets of 2 and 3 variables. From Bechhofer's

(1954) table I it follows that

P(3'2805+Mi"{21|0/G’elI1/6’es|3/6}_max{20|0/c’el|2/°} > 0) = .95.

So we stop as soon as any of y1|0-y0|0’ y1|1_y0|0’ y1|1"31|2’ y3|3-y1|2 is

smaller than (10-3.2805)c=6.7195c.

We used a number of Monte-Carlo experiments to investigate the be-
haviour of the above procedure. We took N=256 variables (m=8), 62=l, and
investigated the following cases:

(a) Bl=8. all other parameters zero;

(b) B86=6, all other parameters zero;

(c) BZQ1=6' all other parameters zero;

(d) all parameters zero.

(Note: for Bl we always take the "left branch in the bifurcation tree"; for
B86 we go left, right, left, right, etc.; for ﬁ241 we go four times right,
then four times left. By considering these parameters, we may get an impres-
sion of the influence of the "path" we follow).

We took €=.05, .005, .0005; $=10, 8, 6, 4, and repeated all L*3*h-48
experiments 1,000 times. We recorded the number of times the large
parameter was (correctly) found, the number of times any other parameter was

(incorrectly) found, and the total number of observations. To facilitate the
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comparability of the experiments, we made them all use the same random num-
ber stream (i.e. each experiment used the same seed for the random number

generator). The results are shown in tables 3.2.1 through 3.2.4.

Q*l‘l.*.‘ﬁl‘Q’QIQii*'ﬁﬂﬁ’&l&.ﬂ*'i‘.ﬂﬂl'l{‘Q{Q}“ﬂ!ﬂﬂ“l*

*

tables 3.2.1 through 3.2.4 about here *

* *

{ll****i*****Q*i‘Q****l}“*%‘li*l*&l*&**i*l*l*&****{&**

From tables 3.2.1 through 3.2.4 we learn the following.

(1) The prescribed power is reached is all cases: where we expect .95 we
find .954, .962, and .951; where we expect .995 we find .993, .997, and
.994; and where we expect .9995 we find 1.000.

(2) The experimental o-error (the number of incorrectly found small
parameters, divided by the number of small parameters) ranges from 0.0 to
.41; this maximum is reached in the experiment with 386=u, €=.0005. The lat-
ter result may be regarded as inadmissible. Let us see what happened.
According to our procedure, we stop investigating a branch in the bifurca-
tion tree, when the difference between the minimum upper estimate and the
maximum lower estimate is smaller than G(8-x), where x 1is given by
Bechhofer's (1954) table I. For €=.0005 this table has entries ranging from
5.4432 to 5.7924; see our table 3.1. Now we have the situation that x>§ for

§=lk, so we 80 on investigating, even when the minimum upper estimate is
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smaller than the maximum lower estimate, e.g. when yN<y0. If we want to
avoid this peculiar situation, we have to demand that x<§, and by doing so,
we introduce a relation between § and e, via Bechhofer's table I. If for &=U4
we demand that x>4, we drop the experiments &=, €=.0005 and §=4, €=.005,
and then the maximum experimental o-error is 4.418/255=.017 for 586=s=u.
€=.05.

(3) The number of runs is extremely small. Notice that if there were no
noise, then we would need two observations to find out that no factor is
important; we would need m+2=10 observations to find out that one factor is
important. If we drop the experiments 6=4, €=.0005 and &=4, €=.005, then the
number of experiments in case all effect parameters are zero, ranges from
2.0 to 9.6; 1in case of one important parameter the number of experiments
ranges from 9.9 to 26.4. One might wonder how it is possible that with one
important variable the number of observations is less than 10. Note that
this only occurs for el=.05. where in 95% of the cases we must find the im-
portant factor (and use 10 observations), in 5% of the cases we may find no
important factors (and might use only two observations). The mean minimum
number of observations is then 0.95%10 + 0.05*2 = 9.6.

(4) The case Bl=8 is treated slightly more efficient than B86=8 and ﬁ241=6,

from the viewpoint of experimental a-error and number of observations.

5. CONCLUSION

Sequential Bifurcation is not only a very efficient tool for factor screen-

ing in the absence of random error; it is also capable of coping with



14

observations with random errors in a very efficient way. This efficiency

depends on the signal-to-noise ratio.

No attention is yet payed to questions such as: how does SB handle
numbers of input variables not equal to some power of two;
- small negative factor effects;
- normally distributed error with unknown variance;
- non-normally distributed error.

Research on these topics is to going on.
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APPENDIX 1: THE OBSERVATIONS GOING WITH A PARTICULAR FACTOR

Suppose that, in the deterministic case, factor number A, say, is important.

At each stage of the procedure exactly one aggregated parameter contains BL:
%" m-j m-j
B.l.(=Z m-i PB) contains By iff (i-1)*2 <A<i*27 Y, As there are
I ke (1-1)%2"

N=2" factors, we have 1<£<2", and the binary form of 4-1 uses m digits:
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m n~t "
y 2t=1 Atz with LtE{o,l}. =15 05 005 (A1.1)

For any j€{0,1,...,m} we can write

o O | j-t m m-j
A=2 zt=1tt2 + zt=j’1itz + 1, (A1.2)
Group 1 at stage j contains the input variables with numbers (i-l)“2m-j+1
through i'Zm_J. so it contains factor number A iff i-1 = Zg_lltZJ-t: ﬁi|j
contains BL ) o i=1+Zé=1ltZJ_t (j=0,1,...,m). Examples: take j=0, then i=1;

take j=m, then i=A.

To arrive at Bl|0 we use observations y0|0 and y1|0. Be 0<{j<m, and sup-
pose Bilj contains Bl‘ Then either B21—1|j+1 or 52i|j+1 contains 5&' To
split Bilj into BZi-1|j+1 and BZin*l we use observation y2i-1|j+1' Now

i=1+2g=llt23_t. so 2i-1=1+253 2 237t According to (2.6), y.

N =y _ sy | 8O
t=1"t 1577 wome
Vo =y 1=y : - _:_q1+- To arrive at B, we use the
2134177 o ywm=3-17 G opd g i Bywgrd=1 4
t=1"t
observations
yov va and Y j=0'1, ..... ,m—l, (A1.3)

(1+zzg=1tt23't)*2m‘3'1

where the numbers lt (t=1,...,m) are defined by (Al.1).

Ezample Al. Take m=3; N=8. To arrive at B2 we need the following
observations:
+ +
at level 0 we use BI|0=y1|0=y8 and BO|0=y0|0:y0 to compute BIIO’
+ + -
at level 1 we use BI|1=y1|1=y4 and Bollsﬁoloryolo-yo for ﬁlll’

+ * +
at level 2 we use B1|2=y1I2=y2 and BO|2=BOIO=yOIO=yO for lez;
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at level 3 we use B;|3=B;|2=y1|2=y2 and B;|3=y1|3=y1 for 32|3=ﬁ3.

At each of the four levels we use two observations. In total, however, we do
not use 4*2=8 observations, but only (m+2=)5, namely Yo» Yy» Yos Yy and Yg-
We see that, no matter how many observations the whole screening uses, m+2
observations, specified by (A1.3), are wused for a particular important
factor. For a particular unimportant factor at most m+2 observations are
used: the observations of (A1.3) are used until we reach a stage, where the
aggregated parameter, the particular parameter is part of, is small. This
may be level O (and then we use only two observations for all factors), but

if we are unlucky, this can be level m.

APPENDIX 2: THE DISTRIBUTION OF UPPER LIMITS

Bechhofer (1954) considers k normal populations with common variance 62, and
computes the probability that, after taking a sample of size N from each
population and ordering the sample means, the t populations with the

largest sample means correspond with the t populations with the largest

population means. This probability depends on k, t and /ﬁx. where

A:(ut-ut+1)/d (ui is the ith largest population mean). In the sequel we
shall use the symbol A instead of /N\. For k=2,...,10, t=1,...;[k/2] (the
problem is symmetric in t and k-t) as well as k=11,...,15 and some selected

values of t, Bechhofer tabulates A against the probability of correct

ranking:

P(min{xl,....xt}>max{xt+1....,xk}
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g 2 ;
| mln{ul....,ut}—max{ut+1.....uk}2XG & Vx =6"/N (i=1,...,k)). (A2.1)
By multiplying all variables by v/N/o, we see that (A2.1) is equal to

P(min{xl.....xt}—max{x ,xk}>0

e
[ min{ul,...,ut}—max{ut+1....,uk}gA & Vx,=1 (i=1,...,K}). (A2.2)

The least favorable configuration is the one with u1=...=ut and Kiq=ee =My

and we may take X =Ave, (50 y e B)E X =e, (i=t+1,...,k), and replace (A2.2)

by

P(A+min{el....,et}-max{et+1....,ek}>0 | Ve,=1 (i=1,...,k)). (A2.3)

As said, this probabitity is tabulated against A. Now we consider (3.3):

Bp+min{e, o b 98 }-max{e., ,...,e. }, (A2.4)
4 Tn+l et 11, 1o
where e, ,...,e. are NID(O,GZ). (A2.4) equals
i g i
0 m+1
ﬁl-cA+6(A+min{e. /C,...,e, /c}-max{e. /o,...,e. /o}). (A2.5)
i i i 5
m+1 L+1 L 0
The value A for which A+min{e, - gupa /o}-max{e. /o,...,e /a}>0
0 i 5t i 4.
m+1 L+1 L (0}

with probability Py can be found in Bechhofer's table I, where for k we take

m+2, and for t we take min{L+1,m-L+1}. So now we have

bl

By+min{e. 58058 }-max{e., ,...,e. } > B,-cA WP Pn- (A2.6)
L - - L4 i i 20 0
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Table 3.1. Limit values for various group sizes 2m and probabilities po

Py m=3 m=3 m=8 m=8 m=8 m=8 m=8

L=0,L=3 L=1,L=2 L=0,L=9 L=1,L=8 L=2,L=7 L=3,L=6 L=4,L=5

-9995 5.1661 543127 5.4432 5.6425 5.7343 5.7788 5.7924
-995 4.2394 4.4138 4.5524 4.7878 4.8950 4.9468 4.9625
.95 3.0552 3.2805 3.4182 3.7198 3.8541 3.9184 3.9378

(Source: Bechhofer 1954, p. 30-34)
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2.1. Performance of SB with ﬁl=6.

Power a-error times 255 (2) Observations (3)

€=.05 €=.005 €=.0005 €=.05 €=.005 €=.0005 €=.05 €=.005 €=.0005
§=10 .954 .993 .000 .000 .000 .000 9.9 10.0 10.0
§=8 .954 .993 .000 .000 .000 .005 9:9 10.0 1D.2
§=6 .954 .993 .000 .007 « 150 2.038 10.2 12.1 19.9
§=4 .954 .993 .000 [2.831 30.673 97.243 22.4  68.9 138.5
(1) Average number of times Bl is found; experimental power.
(2) Average number of incorrectly found parameters; the experimental o-error

is this number divided by 255 (the number of unimportant factors).

(3) Average number of observations.
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Table 3.2.2. Performance of SB with 386=8.

Power (1)

a-error times 255 (2)

Observations (3)

€=.05 €=.005 €=.0005 €=.05 €=.005 e€=.0005 €=.05 €=.005 €=.0005
§=10 .962 .997 1.000 .000 .000 .000 9.9 10.0 10.0
§=8 .962 .997 1.000 .000 .002 .016 9.9 10.0 10.3
§=6 .962 .997 1.000 .019 37T 3.2197 10.3 13:1 23.3
§=4 .962 .997 1.000 4.418 36.523 105.366 26.4 77.1 146.9

(1) Average
(2) Average
is this

(3) Average

number of times 386 is found; experimental power.

number of incorrectly found parameters; the experimental «-error

number divided by 255 (the number of unimportant factors).

number of observations.
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Table 3.2.3. Performance of SB with 5241=8.

Power (1) a-error times 255 (2) Observations (3)

€=.05 €=.005 €=.0005 €=.05 €=.005 €=.0005 €=.05 €=.005 €=.0005

§=10 <951 .994 1.000 .000 .000 .000 9.9 10.0 10.0
6=8 .951 .994 1.000 .000 .002 .018 9.9 10.0 10.3
§=6 .951 .994 1.000 .028 -397 2.921 10.3 12.9 21.1
§=4 4951 .994 1.000 |3.810 31.941 97.725 237 68.8 138.0

(1) Average number of times B241 is found; experimental power.
(2) Average number of incorrectly found parameters; the experimental o-error

is this number divided by 255 (the number of unimportant factors).

(3) Average number of observations.
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Table 3.2.4. Performance of SB with ﬁl=...=5256=0.

a-error times 256 (2) Observations (3)

€e=.05 €=.005 €=.0005 €=.05 €=.005 €=.0005

§=10 .000 .000 .000 2.0 2.0 2.0
§=8 .000 .000 .001 250 20 25
§=6 .001 .032 .759 22 3:1 77
§=4 1.135 20.168 80.849 9.6 46.0 116.6

(2) Average number of incorrectly found parameters; the experimental «-error
is this number divided by 256 (the number of unimportant factors).

(3) Average number of observations.
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