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Abstract

We consider a general equilibrium model of an exchange economy with a finite

number of commodities, and a finite number of price-taking utility maximizing

consumers and price-taking profit maximizing producers. Furthermore, the econ-

omy satisfies the conditions given by Debreu (1959) to guarantee the existence of

an equilibrium, i.e., a price vector at which demand equals supply. Crucial is the

convexity of the total production set. In this paper we present a tátonnement pro-

cess that describes price adaptations towards an equilibrium. The essential idea is

the compactification of the total production set as done by Debreu. This enables

us to derive a well-defined profit function and supply correspondence. The process

adapts prices according to the starting price vector and the state of the market,

i.e., excess demand versus excess supply. The first feature distinguishes this type of

processes from iterative processes like Walras' process and Smale's process. Along

the path of prices generated, producers and consumers are assumed to behave

competitively.

In the paper it is shown that this process generically exists and converges to an

equilibrium from any starting vector and for any economy out of some well-known

classes of convex economies with producers and consumers characterized by sup-

ply correspondences and demand functions, respectively. Furthermore, each convex

economy of the Arrow~Debreu type with production and consumers demand rep-

resented by a demand function can be approximated arbitrary close by an economy

with a convex production structure for which our process is well-defined. In that

way we generalize all existing results on converging processes. Also the inclusion

of a demand correspondence derived from a specific class of utility functions can

be handled.

Finally, it will be shown that for any economy out of a broad class of so-called

semi-algebraic convex economies and for any starting vector, there exists at least

one path connecting the starting price vector and an equilibrium and satisfying all

properties sketched.

Keywords: General equilibrium model, convex production, tátonnement adjustment

process, generic convergence, semi-algebraic economy.
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1 Introduction

In this paper we consider a general equilibrium model with production of the Ar-

row~Debreu type. The most important feature of the model is the presence of a finite

number of consumers and producers, all being price takers. The consumers maximize

utility under a budget constraint whereas producers maximize profits over their convex

production set. The possible profits accrue to the owners-consumers according to fixed

shares. An equilibrium in such an economy is then a state in which, given certain prices

and given these behavioral assumptions, all markets clear. In this convex environment

each equilibrium is Pareto optimal. We are interested in the way how such an equilib-

rium is reached. More specifically, think of a situation in which an ongoing equilibrium

is disturbed by the occurrence of an exogenous shock, leading to for example a change

in the production structure. How does the economy adapt to the new situation and

finds a new equilibrium? In another context we may want to evaluate the effect of a

certain economic polic}~ in the presence of multiple equilibria. The question concerning

which equilibrium will be reached becomes then relevant. In this paper we present an

adjustment process that, from almost every starting price vector, to be interpreted for

example as the old equilibrium prices, reaches a new equilibrium by adaptations of prices

and so inducing changes in demand and supply.

The process is of the tátonnement type, i.e., no trade takes place before the equi-

librium is reached. In other words, along the path followed by the process we have

disequilibrium prices with no trade. Furthermore, the process resembles the Walrasian

price adjustment processes (see Samuelson (1947)) in the sense that prices are adapted

according to the sign of the related excess demand. However, contrary to the process of

Samuelson, prices of goods in equilibrium are adjusted in order to keep them in equilib-

rium.

The main and distinguishing property of our process is that the price changes are taken

relative to the starting prices. Thus, relative prices are considered. It is because of this

that the process is generically converging, i.e., our process converges generically from any

starting vector and for any economy out of some broad classes of convex economies. This

in contrast to the procedures of Samuelson (1947) and Smale (1976) for pure exchange

economies. See also Kehoe (1991), Section 4.3, for a Walrasian type of process for

an economy with production and Mas-Colell (1986) who presented a mixed price and

quantity adjustment process based on Walras. In other words, the process presented here

is not purely iterative but also considers some global information, i.e., the location of the

starting price vector. Saari and Simon (1978) gave necessary informational requirements
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for always converging processes. Here we obtain the positive result of an almost always

converging process requiring the same amount of information plus the location of the

starting vector.

This type of processes were originally developed by van der Laan and Talman (1987)

who considered a model of a pure exchange economy. A rigorous analysis was performed

by Herings (1994) who established the existence and convergence for generic starting

vectors in generic pure exchange economies. Here we extend this analysis to convex

production economies with the consumers characterized by a demand function. ~Ve ob-

tain two main results. Firstly, we prove the generic existence and convergence of the

adjustment process for the most important classes of models as for example the constant

returns to scale case. 5econdly, we prove that for a broad class of so-called semi-algebraic

economies and for any starting vector there exists at least one adjustment path satis-

fying appealing properties and connecting the starting vector and an equilibrium. This

property is not merely generic but holds for any economy in that class and for any start-

ing vector. The semi-algebraicness roughly means that the graph of the excess demand

correspondence can be described by polynomial (in)equalities. The consumption sector

is described by a demand correspondence.

Up till now only generic converging processes for some specific production models

exist. In addition, they suffer from the drawback that the set of allowed starting vectors

is restricted. Van den Elzen, van der Laan and Talman (1994) considered a model with a

finite number of producers, each characterized by a linear production technique. Van der

Laan and Kremers (1993) described a process for a model with general, i.e., (non)-linear,

constant returns to scale technologies excluding joint production. The main drawback of

these processes is that they have to start from a price vector at which all firms make zero

or negative profit. This because at other price vectors the supply would be undefined.

However, when we consider the starting vector as the previous equilibrium after a shock,

it may well be the case that some activities make profit at that price vector. This will

for example happen in case of a technical innovation.

In this paper we describe an adjustment process for a model that encompasses the

models described above. In addition, we allow for an arbitrary starting price vector.

The basic idea is to compactify the total production set by taking into consideration the

available endowments. This compactified production set then contains all productions

attainable in equilibrium (see Debreu (1959)). Related to this compact set, supply and

profit are well-defined for all price vectors which allows us to define a price adjustment

process starting from any starting price vector.
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For expository reasons we first present the process for a model with (piecewise)-linear

production structure. This gives a direct generalization of the process of van den Elzen,

van der Laan and Talman (1994) by allowing for an arbitrary starting point. In the case

that at the starting price vector all activities make nonpositive profit, both processes

coincide. Next, we consider models with other production structures, and show that the

process is also then well-defined and converges generically for broad classes of convex

economies, such as economies in which the total production set is a polyhedral set.

From this we derive that any convex economy can be approximated arbitrary close by

an economy for which the process is well-defined.

The paper consists of five sections. In Section 2 we introduce some notation, describe

the general convex model, and define the process. Next, we prove in Section 3 the

generic existence of the price adjustment process for the model with linear production

technologies. Section 4 considers the existence of the process for models with other

standard convex production structures. In an example we also consider a model with

a consumers demand correspondence. Finally, in Section 5 we deal with the class of

semi-algebraic models and show that in that case the path of the process may be not

unique.

2 The basic model

All models treated in this paper fit in the framework of the standard Arrow~Debreu-

model of an exchange economy with production. Therefore we start by shortly reviewing

that model. In the next sections we consider several specifications for the production

structure. The Arrow~Debreu model represents a competitive exchange economy with a

finite number of consumers and producers trading and producing a finite number of com-

modities, while striving for utility-maximization and profit-maximization, respectively.

VVe first introduce some notation. For any positive integer k we denote the set

{ l, ..., k} by Ik . By R~ we denote the nonnegative orthant of the k-dimensional

Euclidean space, i.e., Rt -{x E Rk~x 1 0}. Here, 0 denotes the vector of zeros of

appropriate length, whereas x ) 0 indicates that all elements of the vector x are greater

than or equal to zero. Furthermore, for x, y E Rk, x) y equals x 1 y and x~ y, while

x 1~ y indicates xh 1 yh, dh E Ik. Accordingly, R}~ -{x E Rk~x ~~ 0}. For x,y E Rk

we denote the set {z E Rk~z - ~x f (1 -~)y, 0 C~ C 1} by [x,y], which is called the

line segment between x and y. With [x, y) we indicate [x, y]`{y}. Similarly, we denote

(x, y] and (x, y) with obvious meaning.

A sign vector s E Rk denotes a vector with components sh E{-1,O,f1}, dh E Ik.
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Related to .r E Rk we define sgn(~), the sign vector of ~, as the sign vector s E Rk such

that sh --1 (~1) if and only if xh C 0(~ 0), dh E Ik. Given a sign vector s E Rk

we denote by I-(s) the set {h E I~~sh -- 1}. Similarly, I}(s) -{h E Ik~sh - fl}

and Io(s) -{h E Ik~sh - 0}. Furthermore, the cardinality of I-(s), I}(s) and Io(s) is

denoted by k-(s), kf(s) and ko(s), respectively.

Furthermore, given a set A C Rk we denote by int(A) and bd(A) the interior and the

boundary of A relative to its af)ïne hull. Similarly, cl(A) and co(A) denote the closure

and the convex hull of the set A, respectively. By dim(A) we denote the dimension of

A. The cardinality of a finite set A is denoted by ~A~. By e(k) and e we denote the k-th

standard unit vector and the vector of ones of appropriate length, respectively. Given a

(row)vector x, the transpose of x is denoted by xT. Finally, we say that a function f is

of class Cr whenever f is r times continuously differentiable.

Let us now start with the description of the model. In the model there are n~- 1

commodities indexed by P E Intl. Furthermore, we have c consumers indexed by i E 1~

and m firms indexed by j E Im. The economy is then denoted by E and specified as
c m

E-{(X`,u',w`, (B~~)m 1)~-1 , (Y~)~-1}. For each producer j E I,,, we have a production

set Y' . Each consumer i E 1~ is specified by a consumption set X', a utility function u`,

initial endowments w', and profit shares (9;~)~1, where B;~ denotes the share of consumer

i in the profit of firm j. Of course ~,`-1 B;~ - 1, `dj E Im.

First we consider the firms in more detail. For j E I„1, the set YJ is a subset of Rn}'

with characteristic element y~ representing a production plan. Positive components of

y~ denote outputs, whereas y't G 0 indicates that commodity P serves as input. By Y

we denote the total production set ~~` 1 Y' with corresponding generic element y. We

assume the following technological assumptions on the production sets

a) 0 E Y', tlj E 1~, (possibility of inaction)

b) Y fl (-Y) C{0} ( irreversibility of production)

c) -Rt}' C Y ( free disposal)

d) Y is closed ( continuity)

e) Y is convex (non-increasing returns to scale).

?~ote that most assumptions are related to the total production set.

(2.1)

The crucial assumption concerns the convexity of Y. Technologically, this corresponds

to non-increasing returns to scale meaning that increasing the amounts of inputs with a

certain factor leads to relatively less increase in the outputs. Economically, it is important
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because it fits well in the context of price-taking profit maximizing behaviour. This does

not hold in case of increasing returns to scale, for which profit maximizing production

is in general not defined. The closedness of Y is a technical assumption needed for

the derivation of the supply correspondence. Furthermore, note that (2.1.a) and (2.1.b)

imply Y fl (-Y) - {Q}.

Concerning the consumer side of the model we will be very brief because our main

interest lies in the production side. Also here we take the standard assumptions made by

Debreu (1959). Thus, the consumption sets are closed, convex and bounded from below,

whereas the preference relations are complete, transitive, continuous, strictly monotonic

and convex. Equivalently, the preferences can be represented by a continuous, strictly

increasing and quasi-concave utility function. In the sequel we assume that X` - R~}',

di E I~. Furthermore, w' E int(X`), `di E I~. The total endowments ~i-1 w' are denoted

by W.

Following Debreu (1959) we observe that we may compactify the total production

set. This because the production vectors and the consumptions that can be reached in

equilibrium form a compact set (see Debreu (1959), Theorem 1, page 77). Thus, by

restricting ourselves to those compactified sets, the set of equilibria remains unchanged.

Concerning the economic behaviour of the firms we assume that they are profit-

maximizing price takers. Thus, given a price vector p-(pl,...,p„~1)T E R}tl`{0},

producer j E 1„i utilizes a production vector y' E Y~ such that the related profit pT y'

is maximal. To model this behaviour the total production set Y entails suffiicient infor-

mation. This because y E Y is maximizing total profit given a certain price vector p if

and only if for all j E 1,,,, y' is profit-maximizing over Y', where y-~~ t y'. Note that

because of the free disposal assumption we may restrict ourselves to nonnegative prices.

Related to the compactified total production set, notation Y, the supply correspon-

dence is well-defined for all prices. Here, we implicitly assume that the producers ob-

serve the restrictive amount of endowments available, and consider as their production

possibilities Y instead of Y. Furthermore, we assume that Y is convex, compact and

Y fl (-Y) - {0}. A suitable compactification which will be used later on in some

examples, is given by

Y-`.' fl {y E Rntl~y 7-é} with é~~ W~~ Q. (2.2)

Profit-maximizing over Y gives rise to the following definition.
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Definition 2.1. The correspondence S: R~t' H Y denotes the total supply corre-

spondence, with S(p) -{y E Y~pT y? pT y, ~dy E Y} the total supply at prices p. The

function ~r : Rtt' H R} is the total profit function with ~r(p) the profit at prices p.

Observe that the supply and profit are also defined for prices with zero components.

However, later on we show that zero prices are not encountered by our process whenever

started from a strictly positive price vector.

We can be somewhat more specific about the set of possible supply vectors. This is

the set of weakly efficient production vectors, Eff(Y), being the set {y E Y~(y f R}}') fl

int (Y) - 0}. From this we see that Eff(Y) C bd(Y) and 0 E Eff(Y). This follows from

2.1.a) - c).

Both S and ~r are well-defined because we are maximizing a continuous function

over a compact set. From the maximum-theorem it follows that S is upper hemi-

continuous (u.h.c.), whereas rr is continuous. It is easy to verify that S is homoge-

neous of degree 0, i.e., S(~p) - S(p), d~ 1 0, whereas n is homogeneous of degree 1

(~r(,~p) -~~r(p), `da 1 0). Furthermore, it is straightforward that S has nonempty,

convex and compact values, whereas n(p) ? 0, tJp.

Given the assumptions concerning the consumers stated earlier and adopting the

hypothesis of utility maximization, we can summarize their behaviour by the total de-

mand correspondence D: R~~' ~--~ Rn}' with D(p) the set of demand vectors at prices

p. Furthermore, the correspondence D is homogeneous of degree 0 and u.h.c. with

nonempty, convex and compact values. Finally, the consumers spend their total income,

i.e., pT x- pT W~- ~r(p), t1~ E D(p). The correspondence Z: R~~' ~--~ Rnt' defined

by Z(p) - D(p) -{W} is called the consumers excess demand. Note that Z is well-

defined because n is. Together with p E R~t' and w' E int(X'), `di E I~, this makes

that consumers maximize utility over a compact set. We remark that our restriction to a

finite number of consumers is not essential. A standard model with a continuum would

give us a demand correspondence satisfying the same properties (see ~-1as-Colell (1985),

Proposition 5.25).

Crucial behind this derivation is the assumption that the consumers are the owners

of the firms and receive the profits. Usually we assume fixed shares but slightly more

general profit distribution schemes are also allowed (see Bonnisseau and Cornet (1988)).

In case the demand is given by a function it is denoted by d whereas the consumers

excess demand is then indicated as z.
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~t this point we summarize the main elements of the model by defining the total

excess demand correspondence Z: R~}~ ~ R"tl, with Z(p) - D(p) - S(p) -{W} and

satisfying

a) upper hemi-continuity

b) nonempty, convex and compact valued

c) homogeneity of degree 0

d) pTZ - 0, `dz E Z(p).

Properties a), b), and c) follow directly from corresponding properties of S and D. Pro-

perty d) results from pT (x - W) - ~r(p), dx E D(p), and pT y- ~r(p), b'y E S(p).

In the sequel we occasionally identify the economy E with Z or z. With all this we are

ready to define an equilibrium.

Definition 2.2. The tuple (p', x', y') is a Walrasian equilibrium of the economy E if

a) x' E D(p')

b) y' E S(p`)

c) x' - y' - W.

From Debreu (1959) we know that such an equilibrium exists under the assumptions

given. Because of the strict monotonicity of the preferences all equilibrium prices are

strictly positive. Note that each equilibrium corresponds to a zero point of Z. Because

Z is homogeneous of degree 0, to each equilibrium allocation corresponds a ray of equi-

librium price vectors. To get rid of this indeterminacy we normalize price vectors by

dividing each price through the sum of the prices. This makes the prices to lie in the

n-dimensional unit simplex Sn being the set {p E R}tt~ ~pti pe - 1}. In the sequel we

define a tátonnement price adjustment process for a broad class of models falling in the

framework sketched, that reaches an equilibrium price vector p' E Sn from almost any

price vector po E int(Sn). Besides, the process has an appealing economic interpretation.

For simplicity we assume throughout the paper the consumer demand to be a function

instead of a correspondence. However, in Sections 4 we briefly consider some cases in

which our process also works for a demand correspondence. Finally, in Section 5 the

consumers are characterized by a semi-algebraic demand correspondence.

Let us now define the adjustment process for an economy as described before. First,

choose a price vector po E int(S") for which S(po) consists of a unique element yo. Then



9

from ( po, yo) a path of price vectors p E Sn and production vectors y E S(p) is generated

for which fJE E Intl

Pe IPi - maxr Pr Ipo

ntinT PrlPo C PeIPé C maxr p,Ipo

min,PrlPo - PtIPé

where z(PIy) - d(P) - y- W.

if z~(PIy) 7 0

if ze(PI y) - 0

if ze(pIy) G 0,

We prove in this paper that the set of vectors (p, y) satisfying (2.3) generically con-

tains a path connecting (po, yo) and an equilibrium (p', y`), for any (po, yo) and for any

economy z, within certain important classes of convex economies. For this we need to

impose some differentiability requirements on the economy. Therefore we cannot con-

sider all convex economies. However, we prove a weaker property of the set (2.3) holding

for all semi-algebraic economies.

The adjustment process that generates vectors (p. y) satisfying (2.3) has an appealing

economic interpretation. Recall that we assume that the consumers express a unique

demand at any price vector. Along the path, price adaptations occur according to the

relation of the ongoing price and the starting price on the one hand and market situ-

ations on the other. From the start, prices related to commodities in excess demand

(supply) are increased (decreased). Generally, if a market is in excess demand (supply)

the related price is relatively to the starting price maximal (minimal). .qs soon as the

market for commodity e becomes in equilibrium (zl(pIy) - 0) it is in principle kept in

equilibrium. However, when the price at a market being kept in equilibrium becomes

relatively maximal (minimal), then the equilibrium on this market is distorted and the

market becomes in excess demand (supply), while keeping the prices relatively maximal

(minimal). All along the path consumers and producers behave optimally. However, the

behaviour of the producer is somewhat arbitrarily at prices p at which he is indifferent

among a subset of production plans, i.e., when S(p) is a set. Then a specific vector out

of that set is prescribed for him.

We note that there is a strong relationship between the process defined here and the

simplicial algorithm as defined in Doup, van der Laan and Talman (1987) and applied

by Talman (1990) to an economy with production. In fact our process can be followed

arbitrary close by this simplicial algorithm. The simplicial algorithm subdivides the price
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space into simplices. Corresponding to each price vector p it chooses an element out of

the set of possible total excess demand vectors Z(p). Then the algorithm generates a

piecewise linear path in a sequence of simplices. Our process can be seen as the limit

path corresponding to the algorithm, i.e., the path that is generated when the diameter

of the simplices approaches zero. We make use of this in the proof of Theorem 5.1.

3 Exchange economies with linear production tech-

nologies

In this section we deal with the case in which Y is a cone, i.e., if y E Y then also

ay E Y for all a 1 0. Thus, the technological possibilities reveal constant returns

to scale. Note that the total supply vector is not defined for prices at which profit is

positive. With Q E Y we derive that equilibrium profit has to be zero. In this model

the total production set can be thought of as being generated by a finite number of

elementary activities {al, ..., am } C R"}' . 1~1ore precisely, the individual production

set Y~, j E Im, can be seen as the set Y' - {y~ E Rn}'~y' C a~aJ, a~ ~ 0}. This leads

to the total production set Y- {y E R"}'~y G~~ 1 a~a' a~ 1 0}.

We circumvent the problems related to non-defined supply by using a compact set Y,

obtained by intersecting Y and a polyhedral set containing the set {x E Rn}'~a 1-W}.

An example is given in (2.2). The compactified production set Y is then a polytope,

being the convex hull of a finite number of extreme points. The precise shape of Y

is determined by the method of compactification and the assumptions concerning the

production structure. In the standard activity analysis model without intermediate

production and mergers we have that related to each activity a~ there is an extreme

point on the intersection of bd(Ï') and the ray containing the origin and a~. Also the

origin is an extreme point and there are extreme points strictly related to the lower bound

used for the compactification. However, in a more general model there are additional

extreme points. They occur when one technique produces an output that serves as an

input for another technique (intermediate production is allowed for).

For example, consider an economy with 3 commodities, 2 activities, namely a' -

(0, -1, 1)T and a~ -(-1, 1, 0)T, whereas the endowments W equal (1, 1, 1)T. Fur-

thermore, we compactify Y b}' only considering productions needing endowments equal

to or less than é- 2YG'. Then in the standard model the set Y equals the convex

hull of the vectors (0, -2, 2)T, (-2, 2, 0)T, (0, 0, 0)T, (0, 0, -2)T, (0, -2, 0)T, (-2, 0, 0)T,

and (-2, -2, -2)~, whereas Eff(Y) is equal to co{(0, -2, 2)T, (-2, 2, 0)T, (0, 0, 0)T}. In

case íntermediate production is allowed we obtain one additional extreme point, i.e.,
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(-2, -2, 4)T, and Eff(Y) becomes co{(0, -2, 2)T, (-2, 2, 0)T, (0, 0, 0)T, (-2, -2, 4)T}. It

is important to note that Eff(Y) is homeomorphic to a unit simplex whose dimension

equals the minimum of n and m, under the assumption that the activity vectors are

linearly independent, see Bonnisseau and Cornet (1988). In the example dim(Eff(Y))

equals 2.

Here we generalize the process of van den Elzen, van der Laan and Talman (1994)

in two respects. First of all, the linear model considered here is more general in that it

allows for intermediate production. Furthermore, the starting price vector of the process

is not restricted to be a vector at which each activity makes nonpositive profits.

In van den Elzen, van der Laan and Talman (1994) it is assumed that there can be

no production without input. Theorem 3.1 states that this is equivalent with the irre-

versibility condition.

Theorem 3.1. Under free disposal ( 2.1.c), the no production without input condition,

i.e., Ax 1 0 and ~) 0 implies x - 0, where A- [a', ..., am], with a' ~ 0, tlj E I,n, is

equivalent to the strong irreversibility condition Y n(-Y) - {0}, with Y as above.

Proof. Assume that Y n(-Y) -{0}. From Ax ~ 0, x ) 0 we want to conclude x- 0.

First, we consider the case in which A~ ~ 0 and x 1 0. This is in contradiction with

strong irreversibility which gives Y n R~}1`{Q} - 0. Next, we consider the case Ax - Q

and x~ 0. Assuming xl ~ 0 we get that alxl --~~~I a'x~ ~ 0. Besides, y - alxl E Y

because y- Ai with i - e(1)xl. Similar we obtain - ~~~1 a'~~ E -Y. Contradiction

with Y n (-Y) - {Q}.

To prove the only if part we assume that Y n(-Y) ~{Q}. Thus, there is a nonzero

production vector y E Y n(-Y), i.e., y- Ax, x 1 0 and y--Ai, i 1 0. We get

that A(x f~) - 0 with x f ï) 0. From the no production without input condition we

obtain .r -~ i- Q and so x- i- Q. Contradiction with y being nonzero. ~

We now want to prove the generic existence and convergence of the adjustment pro-

cess defined in Section 2, for the class of economies E- {~,~C`, u', w', ( B;~ )m 1) ~- , Y}~-i
considered above. Furthermore, we assume that there are no redundant activity vec-

tors, i.e., they are independent. To make the analysis more tractable we rewrite (2.3)

by making use of the conical production structure. We denote the set of vectors (p, y)

satisfying ( 2.3) by Ci(po; Z, Y) . Furthermore, the extreme vectors of Eff(Y) are denoted

by {y', ... , y9}, with q ? min{(n -~ 1), (m f 1)}. Related to a nonempty set U C Iq, we
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denote by Eff(Y'(C')) the set co{yk, k E U}. Now we can regard C3(po; Z,Y) as the union

of sets B(s, U) over pairs (s, L'), with s a sign vector in Rn}' and 0~ L' C Iq, given by

B(s, U) -{(p, y) E A(s, U)~sgn(d(p) - y- W) - s}, where

A(s,U) -{(p,y) E S" x Eff(Y)~ pT yk - max pT y, k E U (3.1)yEY

y-~akyk Wlth ak ? O and ~ak - 1
kEU kEU

Pt IPo - maxr Pr IPo if se - f 1

PtIPo - ~nrPrlPo if st - -1}.

However, not all possible sign vectors s and subsets U are relevant. Due to the comple-

mentarity condition holding for Z, a relevant sign vector needs to contain at least one

pair of components ( fl,-1). We denote the set of allowed sign vectors by S. Further-

more, we only consider those subsets U for which dim(Eff(Y(U))) - ~L'~ - 1. Because

Eff(Y) is homeomorphic to a simplex we can subdivide Eff(Y) into simplices. In the

sequel we fix one subdivision and denote the set of subsets U involved by U. Concerning

the pair ( s, U) we have to assume that ~U~ - 1 C ko(s) f 1. In case ~U~ 1 ko(s) ~ 2

there would be more than n~ 1 independent restrictions on the price vector p in the

definition of A(s, U), making B(s, U) equal to the empty set. Vl'e denote the set of pairs

(s, U) E S x U with ~U~ c ko(s) f 2 by S x U. The subsets A(s, U), (s, U) E S x U,

form a subdivision of S" x Eff(Y). That indeed also Sn is subdivided is illustrated for

example in van der Laan and Talman ( 1987). We provide some intuition in Example

3.1
Note that the right-hand side of (2.3) is captured by the sign vector in (3.1), whereas

the left-hand side is included in the description of A(s, U). Expression (3.1) is more

explicit concerning the location of a supply vector at price vector p. Given p the profit

maximizing supplies lie on a face of Eff(Y) having the vectors indexed by k E U as

extreme points. Furthermore, the set U is nonempty because the continuous profit

function always attains a maximum on the compact set Eff(Y). '

We argue that C3(po; Z, Y) - U,,UB(s, U), (s, U) E S x U, generically contains a

path connecting (po,yo) and an equilibrium (p',y'). To make this genericity more

precise, we define 12 being the set of all possible distributions of endowments, i.e.,

S2 -{w -(w~, ..., w`)~w' ~1 0, `di E I~}. Now we can state the following theorem.

Theorem 3.2. For all i E I~, let X` be equal to Rtt' and let u` be C3, strictly in-
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creasing, strictly quasi-concave, let the indifference surfaces of u' have nonzero Gaussian

curvature at every .x E X' whereas the closure of the indifference surfaces in Rnt' is

a subset of R}~'. Furthermore, let the set Y be a cone satisfying (2.1), and let the

compactified production set Y satisfy (2.1) except free disposal. Let po E int(Sn) be

the starting price system. If S(po) -{yo} and zi(po, yo) ~ 0, t1P E I„~l, then the price

adjustment process defined by (2.3) for the economy E- {(X', u`, w', (6;;)m l~i-1 , Y}

generates a path of vectors (p, y) converging to an equilibrium (p', y'), except for a set

of initial endowments in f2 having a closure in f2 with Lebesque measure zero.

Remark 3.1. The set of economies is parametrized by their initial endowments. A mo-

tivation for this specific parametrization is for example given in Balasko (1988), Chapter

1. It is also very convenient because it delivers a natural topology.

Remark 3.2. Note that the conditions on (X', u')i-1 are more strict than in Sec-

tion 2 where only sufl'icient conditions for the existence of an equilibrium were given.

Concerning u`, some differentiability requirements are made, whereas the indifference

curves should have some curvature (see Mas-Colell (1985), Proposition 2.5.1). Finally,

some boundary condition is stated. Because of this, no consumer will ever demand zero

amounts of some commodities. Thus, in fact X` can be taken equal to R}t' which sat-

isfies all conditions of Section 2.

Remark 3.3. The proof follows the idea of Herings (1994). He proved the theorem for

the special case of a pure exchange economy. For applying his argument we need the to-

tal excess demand to be of class C2. This does not hold here because the profit function

is not differentiable everywhere. However, we will be able to subdivide the problem into

pieces for which the differentiability holds.

Proof theorem. To indicate the dependence of E on w E~ we denote B(s, U) by

Bw(s, U) and Z by Z~ etc. ~Ve have to prove that the set U,,~Bw(s, L'), with (s, U) E

S x U, contains for generic w E S2 a unique path connecting (po, yo) and an equilibrium

(p',y'). Observe from (3.1) that on A(s,U) we have S(p) - Eff(Y(U)), i.e., S is a

continuous correspondence on A(s, U). Furthermore, n is smooth on A(s, U) because

~r(p) equals pT yk for some k E U. Therefore, we may define the C2-function zw :

A(s,G') ~ R"t' with zw(p,y) - Zw(p) - y, where zw(p) denotes the consumers excess

demand at p for given w. In this manner we transform the correspondence Zw into

C2-functíons zw on sets A(s, U). That indeed zw is of class C2 on A(s, U) follows from
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the conditions on (X`, u`);-1. In the sequel we consider z to be also a function of w, i.e.,

z: A(s, L') x i2 ~--~ Rnfl, with z(P, y. ~) - z~(P) - y.
Now, consider a pair (s, U) E S x 1~l. Without loss of generality we assume that

lo(s) - Iko~,), 1-(s) - Iko~~)fk-~s)`Iko~~), I}(s) - Intl`Ikol~)fk-~J), and ~U~ - I~i,~. Let

some k- E I-(s) and ~t E 1}(s) be given. Finally, observe that an element y-

~kEUakyk is characterized by the vector a E Rt~. Related to each U with ~U~ ~ 1

we extend the set of possible vectors a and consider vectors a E R~~~, where R~v~ -

{~ E R~v~~~k 1-E, dk E I~u~}, and e 1 0 arbitrary small. Thus, we extend R~ ~ to

a smooth manifold without boundary. We obtain that (p, y) E Bw(s, U) if and only if

(p, a, w) E R~tl x R~U~ x S2 satisfies

pTyk - pTyl - 0

~ak-1-0
kEU

ze(P, a, w) - 0

pePofl - PeflPo - 0

PePafl - Pet1Pé - 0
ntl
~pe-1 -0
e-1

-zl(p, a, w) ? 0

ze(P~ a, w) ? 0

PIPi- - PL-PL ? 0

Pef Pi - PePét ~

Pet Pi- - Pe- pot ?
-pTyk ~ pTyl )

t1k E U`{1},

dF E Ia(s)

dQ E Iko~,)fk-~~)-1`Iko~9)

~i~ E In`Iko(e)tk-(s)

, H2 E I-(s)

d~ E 1}(s) if ko(s) G n- 2

b'B E lo(s)

b~~ E Ia(s)

,

e

0 ,
0
0 ,

(3.2)
(3.3)

(3.4)
(3.5)
(3.6)

(3.7)

(3.8)
(3.9)

(3.10)
(3.11)
(3.12)
(3.13)
(3.14)

dk~U

dkEU.,ak~0

Apart from the inclusion of production via a in z, the subsystem (3.4)-(3.12) is identical

to the system given by Herings (1994). The extra conditions state that the profits at each

extreme vector of Eff(Y(U)) are equal (equation (3.2)) and not less than at other vectors

of Y (inequality (3.13)). Furthermore, the production vector ought to lie in Eff(Y(C'))

(equations (3.3) and (3.14)). Observe that in case ~U~ - 1, the variable a is fixed to

1. What is left concerns a set of tuples (p, y) satisfying (3.4) -(3.13). That system is

already discussed by Herings (1994).
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Following Herings ( 1994), we first consider the set of points (p, ct, u,~) satisfying

the equations ( 3.2)-(3.7). For that we define for (s, U) E S x U the functíon ~'~~' :

Rtti x R~~F~ x S2 ~--~ Rn}~~~ such that ~'~~(p, a, w) is the left hand side of (3.2)-(3.7).

Similarly, we define d(s, U, w) E S x U x fl the function ~'~U,w : R}}1 x RI~~I ~--~ Rntl~l by

~',u.w(p ~) -~',~'(p a,w). We argue that ( ~Y'~U~w({0}))-1 is a CZ 1-dimensional mani-

fold, except for a set of initial endowments w E S2 with Lebesque measure zero. To show

this we first prove that the Jacobian matrix at a point (p, á, w) satisfying ~'~~(p, á, w) -

0 has full rank. The Jacobian, denoted by M, is the (n f ~U~) x (n f ~U~ -~ 1~- c(n -}- 1))-

matrix

~U~ - 1

1

(y2 - yl)T

2T

apzl(n, ~, w) aoz~ (P~ ~, w)

(y~~~ - yl)T

OT

aP`ko(s)(P, ~, w) aoZko(s)(P, ~, w)

M1

Mz

eT

OT

a~~i(p,~,w)

awzko(~)(P. ~, w)

Empty places in the matrix above denote zeros. The first n~ 1 columns of M concern

the derivatives to pei Q E Ii}1. The next ~U~ columns list the derivatives to ak, k E I~U~,

whereas the last c(n f 1) columns are the derivatives to w~, i E I~, and ~ E I„tl. The

submatrices .~1' and a12 are explicitly given in Herings (1994). However, they are easily

to derive by differentiating (3.5) and (3.6) towards p. We want to show that rank(A~1)

equals n f ~U~. In other words, from b E R"}~~~ such that bTM - OT it has to follow

that b- 0. First, following Herings (1994), we derive that b~~.~tl -... - b~U~~ko~,~ - 0.

Then it trivially follows from considering the columns related to a, that also b~~.~ - 0.

Next, we can concentrate on the n} 1 columns related to the derivatives to p. We have

to show that the first ~G'~ - 1 components of b are zero. Then it follows from Herings

(1994) that b- 0 and we are done. We consider three cases:

1. ~U~ - 1. This case is already dealt with by Herings (1994).
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2. k-(s) - k}(s) - 1. Then bk - 0, k E I~~~-1i because the vectors (yk}' - y'), k E

I~~-~-I, and e are independent. Assume on the contrary that ~Ikli i bk(yk}i -yi)T ~

b„}~~,.~eT - OT whereas (bl, ..., b~~~-I, b„}~~~)T ~ OT. However, post-multiplying

the equation with p leads to ~~k~1'(bk x 0) f b„}~U~ x 1- 0. Thus, b„}IUI - 6~
whereas the other coeffiicients are zero from the independentness of the vectors

(yk}' - y'), k E I~U~-,.

3. Other cases. Let us denote by M the submatrix of M related to the derivatives to

p of the equations (3.2), (3.5), (3.6) and (3.7). Thus, M is of dimension (n -~ ~U~ -

(ko(s) -i- 1)) x(n ~- 1). Consider b to be the corresponding (n f ~U~ -(ko(s) -} 1))

- subvector of b. Furthermore, assume that 6T M - OT siich that b~ 0. Again, we

want to obtain a contradiction and establish that b- 4. For convenience we denote

the components of b related to the k-(s)-1 rows of M' by 7k, k E Ik-(,)-1i and the

components of b related to the k}(s) - 1 rows of M2 by bk, k E Ikf(,)-1. The last

component of b, i.e., the component related to eT, is denoted by b. Furthermore,

row k of M is indicated by Mk, k E In}~U~-(ko(,)}1)-

First we post-multiply both sides of the system bT .Ll - OT with p. This leads to

~U~-1 k k
~ bk(yk}1

- yl)Tp ~
~-YkMkP ~ ~ ókMkp f beTp- O,

k-1 k-~U~ k-k}1

(3.15)

where k- ~L'~ -~ k'(s) - 1 and k - ~li ~ f k-(s) f k}(s) - 1. From this system

we easily derive that ó- 0. This because the other three terms are all zero.

The first term equals zero because of the profit condition ( 3.2). Furthermore, we

have that for a price vector p generated by the process, pi - apo, Q E I-(s), and

pP - ápo, E E I}(s). Now consider the second term of the equation above. For each

row Afk, k E I~~-~}k-(,)-i ` IIUI-1 it holds that Mkpo - 0. Besides, the only nonzero

components of -11k, k E hU~}k-(,)-i`I~u~-t are related to components of I-(s), and

these components of p are equal to some common scalar times the corresponding

components of po. This makes that the second term in ( 3.15) is equal to zero. A

similar reasoning holds for the third term. To derive that all other components of b

are also zero we proceed as follows. First, we denote the term ~Ikli 1 bk(yk}i -yi)T

by yT . If y - Q then bk - 0, k E I~u~-1i because the vectors ( yk}' -y')T k E I~u~-i,

are independent. In that case all other components of b are zero because the rows

of M related to (3.5) and ( 3.6) are easily seen to be independent. Thus, let us
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assume that yk~ ~ 0 for some kl E 1„}1. We are done if we can find an i E Rntl

such that yT i ~ 0 whereas Mki - 0, t1k E I~u~tk-(s)fkt(s)-i`II~I-i- This because

by post-multiplying the system bT Nl - 0 with i we then obtain that yT i- 0.

Thus, y- 0 and 6- 0.

In the sequel we have to consider several cases. If kl E Io(s) we take i equal

to e(kl). This vector clearly satisfies the demands. Thus, let us assume that

yk - 0, dk E lo(s). Next, consider the case in which kl E I-(s). We denote

~~kI U~-(')-1 ikMk by mT and ~~~~~~tk'~~,)}(')-' bkMk by mT. We nOW want to

construct an i~ 0 such that yT i- 0, mT i ~ 0, and mT i~ 0. From this we

derive by post-multiplying 6T N1 - 0 with i, and with the independentness of the

rows of M related to (3.5) and (3.6), that all 7k and bk are zero. On its turn this

leads to bk - 0, dk E I~~~-,, as before and we are done.

Concerning the construction of i, we observe that this is easy if also ykz ~ 0

for some k2 E I}(s). It is easily verified that in this case we can take ~ such that

~k~ --yk2, ~k~ - yk~ , and ~k - 0 otherwise. Next, consider the case in which yk -

0, dk E I}(s). Here we distinguish two cases. In case yk - 0, dk E 1-(s)`{kl},

we have to consider two subcases, i.e., k-(s) - 1 and k-(s) ) 1. If k-(s) - 1

then the second term in the equation given before disappears. We can take i equal

to e(kl) such that yTi ~ 0, whereas inTi - 0. In case k-(s) 1 1 we may take

~- e(k), with k E 1-(s)~{ki}.

Next, we consider the case in which there is a pair {kl, k2} C I-(s) such that

yk~ ~ 0 and yk~ ~ 0. As above, we can take ~ such that ik~ --yk~ and ák~ - yk~ ,

whereas ik - 0 otherwise. However, we may have a problem if k-(s) - 2 while

-ykz - apk, and yk~ - apk, for some a E R. This because then not only yTi - 0

but also mT.i - 0. But then we obtain the desired result by considering the system

6TM - OT. :~TOw, from this system we derive yk~ --ry~~~po~ and yk~ - ry~U~pk~,

where without loss of generality kl - kZ - 1. Substituting ykl - apk2 and yks -

-apk, , gives 7~~-~ - a- 0, i.e., y- 0 and we are done.

Finally. the case in which yk ~ 0, for some k E I}(s), whereas yk - 0, tlk E

Io(s) U I-(s), can be treated similarly as the case above in which yk - 0, t1k E

Io(s) U 1}(s)-

Thus, in all cases we derive that b- 0 and M has full rank. From this we conclude

that iY'~~ intersects 0 transversally. Because ~Y'~~ : R~~l x R~U~ x S2 ~ R"f~U~ maps from

a smooth manifold into a smooth manifold, we may conclude using standard arguments

that the vectors (p, ~) satisfying (3.2) -(3.7) constitute a C2 1-dimensional manifold for
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all w E f2", with S2`S2' having Lebesque measure zero.

Till thusfar we considered the Jacobian related to the system (3.2) -(3.7). Next,

we need successively to consider the Jacobian related to the previous system extended

with one of the inequalities in (3.8) -(3.14) satisfied with equality. It is easily verified

that the Jacobian related to these extended systems is also of full rank. In fact, binding

restrictions in (3.8) -(3.12) are already considered by Herings (1994). The case in which

one inequality in (3.13) becomes binding can be treated as before. Finally, in case (3.14)

becomes binding for some k, a unit vector is added to the Jacobian. This vector is

clearly independent from the vector related to (3.3). From all this it follows that the set

of vectors (p, o!) satisfying (3.2) -(3.7) and for which also one other constraint is binding

forms a 0-dimensional set. In case more restrictions are binding the set is empty.

Finally, we need to check that the conditions on the starting vector are generically

satisfied. The generic uniqueness of S(po) follows from Lemma 3.3 below. The lemma

states that the price space is subdivided into polytopes of which the full-dimensional

ones correspond to price vectors with unique supply. The genericity of the condition

stating that zP(po) ~ 0, i.e., ze(po) ~ yo `de E lntl, has already been proved by Herings

(1994). With all this we can follow the reasoning given by Herings (1994) for showing

that for generic w E S2, the set of tuples (p, y) satisfying (2.3) is a C2 1-dimensional

manifold, consisting of disjoint paths connecting two equilibria, loops, and with one

path connecting (po, yo) and an equilibrium (p`, y'). As a corollary it follows that the

number of equilibria is generically odd. Finally, it is argued that the set of w E S2 not

having this property is closed and of ineasure zero. Also this can be shown as in Herings

(1994). Roughly speaking, this follows from the fact that finitely many cases have to be

considered which all hold generically, and because the union of the sets Bw(s, U) over

all (s, U) E S x U is compact. First it is shown that each set Bw(s, U) is a compact

C2 1-dimensional manifold with boundary, i.e., if not empty it contains a subset diffeo-

morphic to the unit interval. That the sets Bw(s, U) for different (s, U) E S x U can be

linked, is shown by using the results obtained from adding equalities in (3.8) -(3.14).

An equality in (3.8) -(3.12) corresponds to a change in s, whereas an equality in (3.13)

-(3.14) corresponds to a change in U. ~

The next lemma deals with the supply correspondence. Later on it will appear to be

useful for the representation of the supply in the price space.

Lemma 3.3. Let be given a standard Arrow~Debreu economy with n f 1 commodities
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and a conical production structure. Furthermore, let the compactified production set Y

be convex, compact and satisfy Yf1(-Y) - {0}, as for example the set Y given by (2.2).

Then the following statements hold:

a) `dp E Sn, S(p) is a polytope.

b) S- : Eff(Y) --~ Sn, with S-(y) -{p E S"~y E S(p)}, is u.h.c. with nonempty, convex,

compact values being polytopes.

c) If y E S(p) then dim(S(p)) f dim(S-(y)) - n.

Proof. a) By definition S(p) - Eff(Y) f1 {y E Rnt'~pTy -~r(p)}, being the nonempty

intersection of a polytope and a plane. This gives a polytope.

b) S- (y) is the intersection of Sn and the cone of normals to Y at y. The other properties

of S- can be derived in a similar way as done for S(see Bonnisseau and Cornet (1988)).

c) Let y E S(p) with S(p) a face of Eff(Y) of say dimension k. The related cone of

normals has dimension n~- 1 - k. Intersection with Sn gives dim(S-(y)) - n- k. ~

In order to illustrate the foregoing we consider the working of the adjustment process

with an example. When going through this example the economics behind the process

will become clear.

Example 3.1. In our example there are three commodities. Concerning the pro-

duction side there are five activities, namely al -(-6, -6,1)T, a2 -(-2, -5, 2)T,

a3 -(1, -2, -5)T, a4 -(2, 2, -5)T, and as -(-6, l, 0)T. So, for example activity al

uses commodities 1 and 2 as inputs, whereas commodity 3 is the output. The vector of

initial endowments in the economy equals W-(3, 3, 3)T. Furthermore, the behaviour

of the consumers is represented by the aggregate consumers excess demand function
T

z: S2 -~ R3 given by i(p) - ~34plp - 3, 32PZp - 3, 3qP3 - 3) , where ~r(p) denotes

the profits at p. The function z can be thought of as being derived for an aggregate

consumption sector having a Cobb-Douglas utility function with utility weights equal to

4, 2, and á. It is easily checked that indeed pT z(p) -~r(p), tlp E S2.

It is somewhat more difficult to verífy if the aggregate production set generated by

the activities, satisfies (2.1). All the other conditions being trivially fulfilled we only have

to investigate the irreversibility property (2.1.b). In Theorem 3.1 this is shown to be

equivalent with the no production without input condition, i.e., from Ax 7 0 and x 1 0

it follows that x- 0, where A-[al, ..., as]. Via an almost straightforward application

of Farkas' lemma it can be shown that this on its turn is equivalent to the existence of
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a strictly positive price vector at which all activities make losses, i.e., ~p E int(S") such
T

that AT p CG Q. It is easily seen that p-~3, 3, 3~ satisfies the latter.

Next, we compactify Y according to (2.2) by restricting ourselves to amounts of

inputs equal to maximal twice their endowment. Thus, we assume é- 2W. However, to

keep the analysis more tractable we consider as economically relevant extreme vectors

of Y the vectors in the set {Q, yl, . .. , ys}, where y~ is the intersection point of the

ray through a~ and the restrictions formed by twice the endowments. More concretely,

y' - (-6, -6, 1)T, y2 - (-2.4, -6, 2.4)T, y3 - ( 2.4, -6, -0.96)T, y4 - (2.4, 2.4, -6)T

and ys - (-6, 1,0)T. By making this restriction we in fact consider the standard model

with linear activities and exclude intermediate production and mergers.

In Figure 3.1 we depict the supply correspondence of the production sector and the

aggregate excess demand of the consumers. Let us first consider the supply. The line

segment [a, b] corresponds to activity 1 and consists of price vectors at which that activity

makes zero profit. The supply equals [Q, yl]. Similarly, [b, c] denotes zero profit price

vectors for activity 2 etc., till [e, a] for activity 5. At price vectors in the polytope with

extreme point set {a, b, c, d, e} the profit is less than or equal to zero and not producing

is profit maximizing. At the segment [a, f] the profits of activities 1 and 5 are equal,

positive and maximal. The corresponding supply set equals [yl, ys]. Similarly. on [b, g]

the supply is given by [yl, y2]. Thus, for price vectors in the polytope formed by the

extreme point set {a, f,g,6} the profit for activity 1 is optimal and positive. Therefore,

this activity is applied at maximal scale, i.e., the production sector operates at yl.

Similarly, we have the supply vector y4 at prices in co{d, e, q, e(2), e(1), k}.

We already noted that the set Eff(Y) is homeomorphic to a simplex. That represen-

tation is given in Figure 3.2. The subdivision of Eff(Y) given in this figure, satisfies the

conditions as discussed before Theorem 3.2. From both figures together we can easily

deduce the properties of S and S- as stated in Lemma 3.3. For example, if p E [a. f]

and y E S(p), then S(p) - [y',ys] and S-(y) -[a, f]. Both are polytopes and the sum

of their dimensions eyuals 2.

Finally, the dashed piecewise linear curves in Figure 3.1 indicate the price vectors at

which for some commodity e E 13, the consumers excess demand ze(p) - de(p) - We

is equal to zero. The curves related to Q- 1, 2, 3 are denoted by I, II, and III respec-

tively. These curves are piecewise linear because of the piecewise linearity of the profit

function. Observe that these curves do not intersect inside the polytope related to zero

production. This means that the model has no equilibrium without production. Outside

co{a, 6, c, d, e} the curves do not intersect because of the relation pT z(p) -~r(p).
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Figure 3.1. All economically relevant information of the model is represented in the

price space S2.

Let us now consider how the process operates when starting from po (see P'igure

3.I). By fixing po we det,ermine a subdivision oC the price space Sn. To verify this

consider the sets A(s, {0}) for difterent s E I~.3, i.e., we take the production equal to

zero at all prices. If s-(~1,-1,-1)T then ~1(s,{0}) equals [po,e(1)] x 0, and for

s-(0,-l,fl)~ wc obtain that n(s,{0}) equals co{po,c(3),è}, witlr ê on the line

through e(2) and po. Sirnilarly, wc obtain thc complcte subdivision. At po we have

sgn(z(p~)) - (-F1,-~1,-I)T. T'urthermore, S(po) - {y2} - {(-2.~I,-G,2.4)T}. This

gives sgn(z(po)) -(-~1, ~1, -1)T. Thus, from po the prices of the first two commodities

are relatively equally increased tivhereas the price oC commodity 3 is necessarily decreased.

Graphically, the process leaves po in the direction opposite to e(3). It continues in this

manner till it reaches pt where still sgn(z(p~)) - (fl,-}-1,-1)T. Ilowcvcr, at pr, S(pr)

cquals thc segment [0,~2]. "I'hc supply is now dccrcascd [rorn i~z along tl~is ray till for



22

.. 4
Y

-5
Y

Figure 3.2. Thc producer behaviour along the path represented in the set GEE(Y) being

horneomorphic to a simplex.

a certain yz, zr(p~ ~y2) - 0. Thus, at (p~, y2) the rnarket of commodity 1 becomes in

equilibrium. Now, it is kept in equilibrium by decreasing the relative price of commodity

1 below that of commodity 2, i.e., we move into the direction of the boundary with zero

prices for commodity 1. This movement occurs along the segmenL of prices at which the

supply equals [p, y2], in order to satisfy optimal belraviour on the producer side. The

equilibrium at the market oE commodity 1 is preserved by supply adaptations of the pro-

ducer. But at pZ t.he production vector necessary to maintain that equilibrium becomes

p, i.e., zr(Pz) - 0. rrom pz onwards the process generates price vectors p at which the

consumers excess demand for commodity I equals zero whereas the optimal production

vector is Q, i.e., the process moves towards p3. At p~ Lhe supply set equals [p, y~], where

y~ is (2.4, 2.4, -G)T. ~1s soon as the production is increased from 0 along that segment,

Lhe market for commodity 1 reveals a surplus. In order to cope with Lhat, the process

moves into the area at which z~ is positive, while staying at the segment of price vectors

for which the supply equals [p,y~]. Thus, prices p and quantities y are adjusted such

Lhat sgn(z(p~y)) -(p,f1,-1)T while the price vectors move into Lhe direction ot e.
T

At p' - ~2r, 20, ~~ also the other markets become in equilibrium with corresponding
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y' - ~ó .(2, `l, -5)T. Tlie movements on the production side are represented in Figure 3.2.

Remark 3.4. Finally, we makc a clarifying remark concerning the choice of p~. In

Tlieorem 3.2 we gave two restrictions on po, i.e., S(po) lias to consist of a unique element

and z~(po) ~ 0, b'Q. To illustrate tlie first restriction consider any starting vector on [b, cJ

in Figure 3.1 with yo - y2. But then sgn(z(po~yo)) -(fl,fl,-1)T and we have to

decrease y from j2 along the ray to 0. In case po lies on the segment (pz, b] this goes fine;

y is decreased to 0, sgn(z(po~0)) -(f1,-F1,-1)T and p is adapted iuto the direction

opposite to e(3). Thus, sometimes it is no problem if S(po) is multi-valued. However, if

po E[c,p2) then sgn(z(po,0)) -(-l,fl,-1)T and by decreasing y from y~ we reach a

production y at which sgn(z(po,~)) -(0,-}-1,-1)T and get stuck.

Concerning the second condition on po, i.e., z~(po) ~ 0, b'e, we indicate that also

this condition is merely suf6cient. What we need is that there is a unique pair (so, Uo)

such that (po, yo) E bd(13(so, Uo)). If this would not be the case then cycling could

occur. In case z~(po) ~ 0, b'Q, and z(po) is unique, then so is rmiquely determined

by z whereas U is determined by {?~o}. Of course, (po, yo) E bd(B(so, Uo)) due to

the po-component. 1Iowever, it may happen that (po, yo) E bd(B(so, Uo)), whereas

sgn(z~(po)) - 0[or some (' E 1„}1. Considcr for cxarnplc p in Figurc 3.1. 1Vot,c that

p líes in the interior of co{a, b, c, d, e}, i.e., the corresponding production equals Q and

z(ji) is equal to z(p). We easily derive Lhat sgn(z(j~)) -(0, -~1, -1)T. Furthermore,

A((0, fl, -1)T, {0}) equals co{p, c(2), t} x Q, where t lies at the line through p and e(3).

Again, we denote by U-{0} that there is no production. Furthcrmore, [p,p3] x{Q} C

B((0, -titl, -1)T, {0}), i.e., (p,0) E bd(B((0, ~i-1, -1)T, {0})). In addition thcrc is no othcr

s~(0,-~1,-1)T such that (p,0) E bd(B(s, {0})). The two sign patterns that have to

be considered are s-(fl,~-1,-1)T and s-(-1,-}-1,-1)T. Let us examine the first

case. Then A(s, {0}) -[p, t] x 0. Ilowever, at price vectors p near p at [j~, t], we have

tl~at sgn(z(p)) -(-1,~1,-1)T. "I'hus, thc part of Ui,l] ncar p is no subset of 13(s, {0})

and (p,0) ~ bd(B(s, {0})). The case with s-(-I,-}-1,-1)T can be treated similarly.

In conclusion, this remark shows that alLhough in 'I'heorem 3.2 the generic existence

and convergence has been proved, in practice even more cases can be handled.

1~'e mentioned already in Section 2 Urat our process can be generated arbitrarily ac-

curate by the simplicial algoritlim of Doup, van der Laan and Talman ( I987). An earlier

algor~itlrm that is suited for an economy with linear production activities is the algorithm

of 5carf (1973). Witliin the region of interest, i.e., for prices at which no activity makes

profit, the lirniting bchaviour of tliat algorithm equals our procedure. IIowever, outside
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that region Scarf's algorithm is somewhat artificial. Besides, the algorithm has very

restrictive starting possibilities.

Another simplicial algorithm is given by Talman, Yamamoto, and Yang (1993). This

algorithm can also be applied to more general problems. However, its application to

this specific model has drawbacks related to its economic interpretation. More precisely,

along the path traced by their procedure the producers do not behave optimally.

4 Economies with other convex production struc-

tures

In this section, we apply the process defined by (2.3) on models with a production struc-

ture out of the following four classes; the polyhedral production structure, the generalized

linear activity model, the production structure defined by convex C' functions, and the

strictly convex production structure. We argue that the process converges generically in

the sense of Theorem 3.2 within these classes of economies. Concerning the proofs we

confine ourselves here to stipulating the differences in relation to the proof of Theorem

3.2. Furthermore, we argue that the process can also be applied to models with a de-

mand correspondence obeying certain regularities.

In 5ection 3 is dealt with the case in which the total production set Y is a cone. But

the process also works in case Y is a polyhedral set, of which a cone is a special case. The

main economic difference is that in this more general model the equilibrium profit may

be positive. The analysis of the process is similar to the one given in the previous section

because in both cases the compactified total production set is a polytope. Because any

convex set can be approximated arbitrarily close by a polyhedral set, our process can

serve as an "approximating" adjustment process for any convex economy. At the end of

this section we provide an illustration of the process for an economy with a polyhedral

production set.

Next, we consider the generalized linear activity model as discussed for example in

Mas-Colell (1985), Chapter 3. Here we also have constant returns to scale, but now

the technologies are not fixed and allowance for input substitution with respect to price

changes is made. Van der Laan and Kremers (1993) speak about nonlinear constant

returns to scale. In this setting each generalized linear activity j is thought of as to

be described by a C', homogeneous and convex profit function ~r~ (see for example

Varian (1992) for the convexity argument). Now, Y is written as cl{y E R"t'~y C
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~~ 1 c~~ó~r~(p) : a~ ~ 0, p~1 0}, where óa'(p) equals y~(p), i.e., the technique used

by activity j at prices p. The latter follows from Hotelling's lemma. In this model the

production set is dependent on p. More precisely, for each price vector p the set Y(p)

is a cone spanned by the y~(p)'s. Thus, compactifying the supply set at prices p as in

Section 3 leads to a polyhedral set.

To apply our process to this model we have to assume that t1p ~~ Q, the production

cone Y(p) satisfies (2.1). Furthermore, like in Section 3, we can subdivide dp ~~ 0 the set

Eff(Y(p)) into subsets Eff(Y(U)), with U related to a subset of the extreme vectors of

Eff(Y(p)) and dim(Eff(Y(U))) equal to ~U~ - 1. We assume that some fixed subdivision

can be used for all p~~ 0. This is a regularity condition stating that the structure of

production does not change due to changes in p. For example, no techniques coincide at

some p. From all this we obtain a slighty adjusted definition of the sets A(s, U), i.e.,

A(s,~) -{(P,y) E sn X Eff(Y(P))I PTyk - max pTy, ~ E U
LEY(P)

y-~c~kyk(p) with ak ? 0 and ~ak - 1
kEU kEU

P~IPi - maxrP,.~Po if se - fl

pe~po - minr pr~po if se --1 }.

In principal we can apply the techniques used in 5ection 3 to prove the generic existence

and convergence of the path for this model.

Theorem 4.1. Let the production sector represent a generalized linear activity model

described by C3, homogeneous and convex profit functions ~r~, j E Im, and satisfying

(2.1). Under the conditions stated in Theorem 3.2 the process defined by (2.3) converges

generically in the sense of Theorem 3.2.

Sketch of proof. .qs in the proof of Theorem 3.2 we define the excess demand function

zw~ : A(s, U) ~--~ Rn}' by zw(p, y) - iw(p) - y. For zw to be C~ we impose yk(p), k E U,

to be C2. This is clearly the case if the profit functions ~r~, j E I,,,, are C3. The rest of

the proof goes along the same lines followed for proving Theorem 3.2. First, we obtain

a system similar to (3.2)-(3.14). Only now, in equations (3.2) and (3.13), we get yk(p)

instead of yk, t1k E I~u~. This leads to some changes in that part of the Jacobian matrix

related to the derivatives to p. However, also now the rank of M is full. The changes

concerning the differentiation of (3.4) are not relevant because these rows of M are shown

to be independent via the derivatives to w that do not change. Concerning the derivative
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of (3.2) to p we obtain `dk E I~u~-1, (yk(p) - y'(P))T ~ j~T(a(yk(p) - y'(p))) instead of
yk - yl. By the imposed regularity condition these vectors are independent. That the

rank of M is full can be shown in almost the same way as in the proof of Theorem 3.2.

The difference concerns the first part of the proof. First, we obtain a system similar to

(3.15). However, now we are left with ~~kIl' bkpT 8(yk(p) - y'(p))p f b- 0. Due to the

convexity of ~rk, k E I~u~-,, we obtain ~U~ nonnegative terms, and thus b- 0. The rest

of the proof mimics that of Theorem 3.2. ~

Graphically, the difference with Section 3 can be indicated with Figure 3.1. For the

model sketched here all line segments related to supply and consumers excess demand

would become curves. We remark that our process generalizes the process of van der

Laan and Kremers (1993) in two respects. Firstly, we allow for joint production, i.e., a

firm may produce more outputs. Secondly, again we do not restrict ourselves to starting

vectors leading to nonpositive profits. In case we start from a price vector with nonpos-

itive profits, whereas there is no joint production, then our process coincides with the

process of van der Laan and Kremers (1993).

Another standard production set is formed by means of a finite number of C1 convex

functions r~~ : Rn}' H R, k E Ii. More precisely, Y-{y E Rnfll,~k(y) ~ 0, dk E K}.

Furthermore, we assume that `dy E Rn}1 the collection {8yk(y)~k E K(y)} is linearly

independent, where K(y) -{k E K~yk(y) - 0}. This implies that for any K' C K the

set y(K') -{y E Rn}l~y~(y) - 0, k E K'} is a Cl manifold of dimension n.i- 1- ~K'~.

In Mas-Colell ( 1985), Section 3.7, the relation between this production structure and the

polyhedral structure is discussed. To compactify Y as in Section 2 we have to add some

linear constraints on the productions, which can be viewed as additional y's.

Again we have to adapt the definition of A(s, U). We now define sets A(s, U), U C K,

by

A(s, U) -{(P~ ~J) E Sn X Eff (Y)I PTy - max pT y
yEY

r~k(y) - 0, `dk E U

Pc~Pé - maxT PTIPo if sr -~1

Pt~Po - ~nrPr~Po if st - -1}.

Now, we can rewrite the profit maximizing relation between p and y P -as

~kEU ~kór~~(y), with ,1k 1 0. The ~k's are nonnegative because the vectors p and
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ór~k(y), k E I~c.~, point into the same halfspace away from Y. The relation between

p and ór~k(y), k E hL~~, follows by differentiating the Langrangian. This condition is nec-

essary and sufficient because the vectors r~k(y), k E h~,.~, are differentiable and convex.

Theorem 4.2. Let the total production set be defined by a finite set of convex C2

functions as above, and let it satisfy (2.1). Then the conclusions of Theorem 3.2 hold if

all other conditions stated in that theorem are satisfied.

Sketch of proof. Again, we consider the function zw : A(s, U) H R"}1, with

zw(p,y) - zw(p) - y, which is C2 because the functions r~k, k E U, are C2. We now

represent the pair (p, y) E Bw(s, U) by the tuple (p, ~, y, w) E Rttl x R~U~ x y(U) x S2.

From this we obtain a system of equations describing a (p, y) E Bw(s, U), similar as

(3.2) -(3.14) for the cone production structure. However, some changes occur in the

(in)equalities corresponding to production. More precisely, instead of (3.2), (3.3), (3.13),

and (3.14) we obtain

P- ~ ~k~~k(y) -
kE~

0, `dk E U

0, b'k E U

0, dk ~ U.

(4.2)
(4.3)
(4.4)

Furthermore, we now view z as a function of (p, y, w). Let us consider the Jacobian ma-

trix M related to the system (4.1), (4.2), and (3.4)-(3.7). In this case M is of dimension

(2n -~ ~U~ f 1) x((2 f c)(n ~- 1) ~- ~U~). Consider now a vector b E R2nt~U~t1 such that

bT M - QT. The components of b related to (3.4) are zero by reasoning as in Section 3.

Next, we consider the submatrix of M related to the differentiation of (4.1) and (4.2)

to ~ and y. By the independentness of {8~k(y)~k E U} the components of b related to

(4.1) are zero. This can be derived from the columns of ~1~1 related to ~. Next, it follows

from the columns of M related to the differentiation to y, that the components of b

related to ( 4.2) are zero. Finally, as in Section 3 we derive that all other components of

b are zero. The rest of the analysis is again similar to that in the proof of Theorem 3.2. O
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Finally, we consider a model with a strictly convex aggregated production set. This

means that if yl, y2 E Y then [y1, y2] C int(Y). In that case the supply at each price

vector is unique and we obtain a supply function, also because of our compactness con-

struction. In fact this model can be treated similarly as a pure exchange model with

the total excess demand instead of the consumers excess demand. The expression (2.3)

remains valid, whereas the generic existence and convergence has already been proved

by Herings (1994).

Concerning the consumer side we note that our process in some cases also works if

the consumer demand is represented by a correspondence. However, the problems en-

countered here are more complicated than for the production side. First of all we restrict

our scope to models of consumer behaviour that can be considered as the behaviour of

one representative consumer. We assume the total consumption set X to be Rt}l. For

each price vector p E R}}I we then obtain a set of economic possibilities, i.e., the budget

set B(p) - {~ E Rt~'~pT~ C pTW}. In fact we may compactify B(p), because zero

amounts are never demanded. This compactified budget set will be denoted by B(p).

The relevant part of B(p), i.e., {x E R~}1~pT.x - pTW}, can be thought of as corre-

sponding to the set Eff(Y(p)) in the generalized linear activity model. i~lore precisely,

because W E R~t' and p E Rttl, B(p) is an n-dimensional simplex in R~}1

For the producers we have a linear profit function to maximize. The representative

consumer has to maximize a utility function that might be rather complex. For the

process to work the resulting representation of the demand should be like that for the

supply in Figure 3.1. More precise statements are made in Lemma 3.3. One class of

utility functions that satisfy these requirements are those that induce the consumption

of commodities in fixed proportions. In the example below we consider a demand cor-

respondence resulting from such a utility function. Furthermore, the production set is

given by a polyhedral set.

Example 4.L Again we consider an exchange economy with three commodities. The
T

total endowments W equal ~4, is~ s~ whereas the consumers excess demand at prices

p, i.e., z(p) equals
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- W' if Pl G p3 and 4p1 G 1-~ Pz
TC PTwt,. Twtx Tw}r 1 - Y[~' if Ps ? Pz and 4p1 ~ 1 f Pz

4(4P1tPZ}zP3)' ( ~PitP2tzP3)' 2 (7PitPStZPa) j
T

- W if ? and 1
(4(~P,tZP2tPa)~ 2( ~P tjPZ}Pa)~ ( ;Pi}ZPz}Pa) pl P3 p2 P3i

C PTti't- P PTti't~ P pT w}r, p

P1t2P2t~P7 ' z(P7tzP~t~Pa)' 4(PitqPat7P3)

where pTw and a(p) denote the total initial wealth and profit at prices p respectively.

The demand correspondence is generated by the utility function u: Rtt ~--~ R of the

representative consumer given by u(xl, xzi x3) -

max {min{xl, 2xzi 4x3}, min{4x1i xz, 2x3}, min{4x1i 2xz, x3} }.

This function gives piecewise linear indifference curves. The price regions at which the
different expressions for the demand correspondence are relevant, are represented in

T
Figure 4.1 by the dashed lines originating from p' -~3, 3 , 3~ . Thus, at price vectors

in co{p', e(2), e(3), e} the first expression of z(p) is valid. Here, e denotes the vector
T

~4,0, á~ . This region is indicated by I. Similarly, regions II and III are indicated and

refer to the corresponding expressions of z. Of course, at price vectors on for example

the segment [e(1),p'), the demand vectors form also a line segment, i.e., the convex hull

of demands relating to regions II and III. Thus, the demand side of this economy satisfies

properties as stated in Lemma 3.3.

The efficiency frontier of the polytope Y, Eff(Y), is characterized by the set of econom-

ically relevant extreme vectors {0, yl,... , yq}, where y' -(-2, 1, 1)T, yz - (- 1, -1, z)T,

y3 -(-4, 2, 2)T, and y4 -(-4, -4, 4)T. This production set can be seen as derived from

two firms having constant returns to scale production on [0, y'] and [0, yz] respectively.

Beyond yl ( yz) the firms observe less efFicient techniques along [yr, y3] and [yz, y4] re-

spectively. tiote that the compactified production set Y somewhat differs from the set

given in (2.2). However, no equilibrium production can occur outside Eff(Y) because

there is insufficient supply of commodity 1. In Figure 4.1 all relevant information about

the supply correspondence is gathered. Let us consider Figure 4.1 more carefully. Here,
2 1 2 T 2 t 18 T 3 2 6 T 1 3 Ta,b,c,d, denote the price vectors ~s~ s~ s~ ~~9~ s~ ss~ ~~li~ 11~ li) , and ~0, 4 , 4~ , re-

spectively. The numbers 0,1,...,4 refer to the corresponding extreme points of Eff(Y).
r T

Thus, at the interior of co{ e(2), (7 , ~, 0~ , b, c, d the supply equals y3, whereas [y2, y3]

is the supply set at prices lon [b, c]. The rest of Figure 4.1 can be understood similarly.
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e(1) e(2)
p1-5 p1-7

Figure 4.1. Ii,epresentation of the demand and supply correspondences.

In the figure we present an example of the adjustment process bringing about an
T

equilibrium. We consider the path starting from po -~7, é~ ss~ . At that price vector

the production technique used equals (-4, -4,4)T. This gives n(po) - ~, whereas

(po)Tw - 420. I'rom this we derive that D(po) ~ {(8.23,4.12,2.OG)T}. This evidently

leads to an excess demand for commodities 1 and 2, while commodity 3 is in excess

supply. The process leaves po by decreasing the price of commodity 3, whereas the

prices of commoditics 1 and 2 are increased relatively equal, i.e., it moves into the
T

direction opposite to e(3). The process continues in this manner till p' -~~, 3s~ ss~ ~s

reached at which S(p~) -[y3,y'~ and D(p~) - {(4.96,2.48,1.24)T}. Now, the producers

gradually change from y4 to y3. But sgn(z) remains (fl,~-1,-1)T till y becomes equal

to O.1Gy1 -~ 0.84y~, with z2(p' ~y) - 0.

'I'hus, from p' the process contim~es by relatively decreasing the price of commodity
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2 below that of commodity 1, while keeping the market of commodity 2 in equilibrium.

Besides, the producers behave optimally, i.e., the process moves towards c. At that price

vector we have D(c) .~ { 11-1(48, 24, 12)T }. Thus, the production y equals 0.786y3 f0.214ya

in order to keep the market of commodity 2 in equilibrium. Observe that at c also y2

becomes optimal. If the related technique is taken into production this would ceterus

paribus yield an excess demand for commodity 2. In order to prevent this to happen, ya

is deleted and y changes to 0.572y3 -}- 0.428y2, still at price vector c. Next, the process

moves towards b. At b we have that 6Tw - 7, a(b) - ~, and D(b) -{ 29 (100, 50, 25)T }.

Because the market of commodity 2 is still in equilibrium we derive that y equals jeÓy3 -{-

~~y2. The sign pattern of the excess demand vector still equals (-~1, 0, -1)T.

At price vector 6 also production vector yl becomes optimal. When this technique is

used, then y3 has to be deleted in order to keep z2(b~y) equal to zero. More precisely,

the roduction chan es towards 9-' -1 ~ 23 y2 with z2(b~y) ti (3-",0, -zos1T, Now,P g y- 12o y 120 2ao 2ao 1

the process moves into the direction of a, whereas the producers utilize a combination
T

of yl and y2. This is continued till p2 -(ló, 5, 2~ is reached. At that price vector the

demand becomes set-valued, i.e., D(p2) - [~ 3is' s3ó' izso~T' ~izso' sis ~ s-3~o ~T, ~ To

continue the process into the direction of a, we first have to change the demand from
j2as 12as 12as T towards the other end point of D(p2). If we move the demand that

~ 315 ' 630 ' 1260 ~

way, the demand for commodity 2 increases, and to keep the market of that commodity

in equilibrium we have to decrease the weight on y2 that uses commodity 2 as an input.

Finally, we end up with only using yl, i.e., the weight on yz becomes zero, whereas the

consumers demand a mixture of (12as jzas 1?as1T and (jzas 12as 1zas1T w;th weights315 630 12601 1260 315 630 1

respectively 643 and 643. Thus, the process moves from p2 into the direction of p', i.e.,

the process jnoves on the line segment of price vectors at which the consumers demand

a mixture of the bundles stated above while it enters the region at which the producers
T

utilize yl exclusively. For the total excess demand we obtain z(p2~x, yl) ~ ~izs' 0~ 2ió~'
with x as above.

T
However, at p3 -~2s' 2s' ss~ , the relative price of commodity 2 being in equilibrium.

becomes equal to the relative price of commodity 1 being in excess demand, i.e., ~-

~- 25. According to (2.3) and the description thereafter, the process removes the

equilibrium on the market for commodity 2 and brings it into a situation of excess

demand. Furthermore, the relative prices of the commodities 1 and 2 are kept equal

to each other. More precisely, when the process reaches p3, the consumers demand the

(~io azo sáo~T and (ááo, 2ió' 4io)T with weights 829 and 82'y respectively, in orderbundles , -,

to keep the market of commodity 2 in equilibrium at production y- yl. Furthermore,

sgn(z(p3,y1)) -(f1,0,-1)T. From p3 onwards the consumers are forced to demand
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more of the second bundle given above in order to induce the sign pattern of the excess

demand to change into (fl,fl,-1)T. This because in the second bundle relatively

more of commodity 2 is demanded. However, when the weights become 24-'g,'r and 2986

respectively, the market of commodity 1 becomes in equilibrium. Then that market is

kept in equilibrium according to (2.3) and the relative price of commodity 1 is decreased

below that of commodity 2, i.e., the process moves towards p` via price vectors at which

the demand is set-valued.
T

At p` -(3 , 3, 3~ , the extreme bundles related to the first two parts of the demand

corres ondence e ual (aos zo3 zo3)T and (zo3 aos zo3)T res ectivel . The wei hts to
P q los ~ los ~ no zlo ~ los ~ los p y g

keep the market of commodity 1 in equilibrium are ~9 and ~9 respectively. Thus,

sgn(z(p', yl)) still equals (0, -~1, -1)T. But at p' also the third part of the demand cor-

respondence becomes valid with bundle (2oió~ ios~ ióa)T. Now its weight is increased from

zero while keeping the market of commodity 1 in equilibrium. The latter means that the

weight on the second bundle decreases accordingly. When the weights equal 6~, ~y and

11-9 an equilibrium ( p` x' y')T is reached where 1 1? T ( 31s 77 7 ss~ T
6~, v e ~, - ( 3~ 3' 3) '~} - `206' 315~ 315) ~

T
and y' -~23 , 1, 1) .

5 The class of semi-algebraic convex production

economies

As we have seen in Section 2, the basic Arrow~Debreu model can be summarized by the

total excess demand correspondence Z: R~~l H R"tl, being u.h.c., homogeneous of de-

gree zero and satisfying Walras' law. Furthermore, its values are nonempty, convex and

compact. In this section we consider the class of Arrow~Debreu economies characterized

by a semi-algebraic excess demand correspondence. The latter means that its graph can

be expressed as a finite union of polynomial equalities and inequalities. Below, we will

become more precise. We prove that there exists for each economy out of this class and

each starting vector (po ~o, yo) a path-connected set of vectors (p, x, y) satisfyíng (2.3),

with excess demand z(p~r, y) -~- y- w, where ~ E D(p) and y E S(p), whereas

this set contains the starting vector (po, ~o, yo) and an equilibrium (p`, ~`, y` ). Thus, for

any "semi-algebraic economy" and any starting vector (po ~o yo) there exists a path of

vectors (p, x, y) satisfying (2.3) and connecting the starting vector and an equilibrium.

However, contrary to Sections 3 and 4, that path may be not unique. The idea of the

proof is greatly inspired by Schanuel, Simon, and Zame (1991) who apply the notion of
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a semi-algebraic set in a game-theoretic context.

Definition 5.1. A semi-algebraic set in Rn is a finite union of sets of the form

{x E R"~Pi(~) - 0,...,P.(~) - ~, 9i(~) G 0,...,9~(x) G 0},

where p9, q E IT, and q,,,, m E I„ are polynomials with real coefficients.

Definition 5.2. If A, B are semi-algebraic sets then a correspondence F: A H B is

semi-algebraic if its graph is a semi-algebraic set.

Blume and Zame (1992) relate in the context of a pure exchange economy the property

of the demand correspondence being semi-algebraic to properties of the consumption set

and the preference relation. They prove that in case the consumption sets and the

graphs of the preference relations are semi-algebraic, the total demand correspondence

is also semi-algebraic. This holds if the consumption sets are closed and convex, whereas

the preference relations have to be complete, transitive and continuous. Similarly, it

can be proved that if the total production set satisfies (2.1) and is semi-algebraic then

also the total supply correspondence is semi-algebraic. Thus, here we provide sufficient

conditions on the primitive notions of the model to guarantee semi-algebraicness of the

total excess demand correspondence.

In their paper Blume and Zame also consider the class of finitely sub-analytic cor-

respondences, which encompasses the semi-algebraic ones. For more details we refer to

Blume and Zame (1992). We will not consider sub-analytic correspondences any further

in this section but note that the whole analysis goes through for this class.

The class of semi-algebraic economies encompasses parts of the economies treated in

Sections 3 and 4. For example, the polyhedral production economy in principle fits in

the framework because one can describe such a production set in a semi-algebraic way by

using linear functions. However, it is not allowed that some coefficients in the functional

relations describing the production set are not rational. The same holds for the other

production sets discussed in Section 4. For the latter also some sets cannot be described

by polynomials. On the other hand, all semi-algebraic models fit in some category of

Section 4 concerning the production structure. However, the demand structure is allowed

to be rather general and includes demand correspondences as considered in Section 4,

with rational coefficients.



To prove the statement made in the beginning of this section we first rewrite (2.3) for

the case in which also the demand is allowed to be a correspondence. Thus, we choose

a starting vector ( po,xo yo) such that po E int(Sn), xo E D(po) and yo E S(po). Now

we are interested in vectors (p, x, y) with p E int(Sn), x E D(p) and y E S(p) such that

`dP E 1„f,

P~~Pé - maxr PT~Po

minrP.~Po C Pe~Pé C maxrPr~Po

minT Pr~Po - PeIPi

if zt(p~x, y) 1 0

if zr(P~x, y) - 0

if z~(p~x, y) c 0.

We denote the set of tuples (p, x, y} satisfying (5.1) by Ci(po; Z).

Theorem 5.1. Let be given a convex Arrow~Debreu economy with production, charac-

terized by a semi-algebraic excess demand correspondence Z. Then `dpo E int(S"), the

set l3(po;Z) has a path-connected subset containing (po xo,yo) ~vith xo E D(po) and

yo E S(po), and an equilibrium (p',x',y').

Proof. From Definitions 5.1 and 5.2 it is obvious that (5.1) defines a semi-algebraic set

if Z is a semi-algebraic correspondence. The left-hand side of (5.1) defines a subdivision

of S". Each subset is defined by linear inequalities. The right-hand side of (5.1) is

formed by (in)-equalities related to a semi-algebraic correspondence and is therefore also

semi-algebraic. The intersection of the two is then semi-algebraic.

Next, we observe that 13(po; Z) can be seen as the limiting set of a sequence of piecewise

linear paths related to the simplicial algorithm as given by Doup, van der Laan and

Talman (1987). To apply the simplicial algorithm the price space Sn is subdivided into

simplices. Related to this triangulation we take a piecewise linear approximation zo of

the correspondence Z as follows. First, observe t.hat any p E Sn can be written uniquely

as p-~k}i ~kpk, with .~k ) 0 and ~k}1 ,~k - 1. Here pl,. .. ,p"}' are the vertices of an

n-dimensional simplex containing p. Then z(p) -~~ti ~kz(pk), for some z(p~) E Z(pk).

It is obvious that io is well-defined and piecewise linear.

Now consider a given subdivision of Sn and a related function io. When we apply

the simplicial algorithm of Doup, van der Laan and Talman (1987) to zo we obtain that

the set (5.1) with Z replaced by zo contains for all starting vectors a piecewise linear

path connecting (po, xo, yo) and an approximate equilibrium. See for example Herings,

Talman and Yang (1994), where this is illustrated by applying lexicographic pivoting.
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Next, we make the simplices smaller and smaller, thus obtaining a sequence of func-

tions i`, t E I` U{0}. 5imilarly, we get a sequence of piecewise linear paths P` obeying

(5.1) with i`, t - 0, 1, 2, .... Because for t ~--~ oc the function z` becomes an approxi-

mate selection of Z, any point defined by (5.1) can be approximated arbitrary close by

a sequence of vectors generated by consecutively applying the simplicial algorithm (see

Herings (1993), Theorem 4.4). From this we can prove that the set of vectors given by

(5.1) contains a connected set including (po ~o yo) and (p', x', y'). The formal proof

follows Herings (1993), Theorem 4.10. From the proof it can be deduced that this subset

is also semi-algebraic.

Thus, now we have derived that there exists a subset of 13(po; Z) that contains
(po xo yo) and (p', x', y") while being a connected semi-algebraic set. But then that

subset is also path-connected. The latter follows from the triangulability property of

semi-algebraic sets (see Schanuel e.a. (1990) and basic references given there). ~

We stress the fact that this result holds for any economy in the given class and for all

starting vectors. It is not merely a generic property as are the results given in Sections

3 and 4. We illustrate this with an example.

Example 5.1. We consider a pure exchange economy with three commodities char-

acterized by a semi-algebraic consumers excess demand function i: SZ ~--~ R3, and a

starting price vector po for which (5.1) contains more than one path connecting the

starting vector and an equilibrium. Note that a pure exchange economy is a special case

of a production economy, i.e., with the total production set equal to the nonpositive

orthant. In Figure 5.1 we sketch the excess demand pattern of this economy. At the

starting price vector po we have sgn(z(po)) -(f1,0, - 1)T. The price vectors obeying the

conditions ( 5.1) for the sign vector (fl,~l,-1)T lie on the segment [po,a]. Similarly,

the price vectors related to (~-1,0,-1)T are on the curve connecting po and b, the curve

connecting a and c, and on the curve connecting d and p'. Finally, the price vectors

related to the sign vector (~1, -1, - 1)T are on the segments [po, b] and [c, d]. All the

pieces together form the set ( 5.1) and contain several paths from po to p'. Observe that

po E bd(B(fl,~-1,-1)T) and po E bd(B(f1,0,-1)T) and is therefore nongeneric, i.e.,
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it does not fit in the framework of 5ection 3.

e(2)

Figure 5.1. An exchange economy with nongeneric starting vector.
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