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ABSTRACT

We discuss the use of proxy variables in consistent estimation of the
parameters of rational expectations models. The estimators considered
are more robust and computationally less demanding than the maximum
likelihood estimator.

To provide some guidance for choosing the proxy variables and the
estimator, we propose a consistent generalized least squares estimator
and show that it is asymptotically more efficient than alternative
estimators based on approximations for the unobserved expectations.
Numerical results for several simple rational expectations models

illustrate the relative efficiency of various proxy variables estimators.
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1. Introduction

Models with expectational variables are widely applied in empirical
econometric research. Various estimation methods have been put for-
ward for these models. Some methods are based on proxy variables
which are substituted for the unobserved expectations. The resulting
model is subsequently estimated by e.g. an instrumental variables (IV)
method. References to proxy variables estimators in the rational
expectations literature are McCallum (1376), Sargent (1976), Barro
(1977) and Pagan (1984) among others.

In this paper, we are concerned with the efficiency of proxy variables
estimators for rational expectations models. Although proxy variables
estimators are usually not fully efficient, they have several advanta-
ges compared with efficient estimation methods such as e.g. Maximum
Likelihood (ML) estimators. For instance, they often do not require a
fully specified model. Therefore, they are expected to be more robust
with respect to specification uncertainty than full information methods.
Moreover, they are often computationally more attractive than ML estima-

tors.

The paper is organized as follows. In section 2, we state the main
result and show that it can be used as a guidance to increase the
efficiency of a proxy variables estimator (PVE). In section 3, numerical
results on the relative efficiency of PVE's illustrate the result of
section 2 for a model with rational expectations. Finally, section 4

contains some concluding remarks.

2. Efficiency of proxy variables estimators

Consider the following linear model

y = XB + €, {2.1)

Tx1 Txk kx1 Tx1

where y and X are the endogenous and the explanatory variables respecti-

vely, B is the vector of coefficients, € is assumed to be normally dis-
2

tributed with mean zero and covariance matrix 0 I, and T is the sample

size.



e e .
Suppose that X = [x1 x2] where x, is a column vector of unobserved
expectations. Moreover assume that the typical element x?t of x?

linearly depends on a finite number of observed variables

Tx1 Txi Bxl

Frequently, in particular when (2.1) is part of a larger model,
restrictions on (a,B) will be available. However, for the reasons

outlined in the introduction, we shall disregard these restrictions
here. Finally, we assume that plim T—lxz-e = 0 and plim T-IZ'C = 0.
If we substitute the vector of realized values Xy as a proxy variable

for x? in (2.1), as suggested by McCallum (1976), we obtain

n N
XB +w, XxX=[x

~
L[}

1 %)

£

e
=€+ (x; - x1)61,

with 81 being the first element of . Of course, the use of x, as a

roxy for x" in (2.1) requires that y # x, and that x, is not a column
P 1 1 1

of Xz. The vector B in (2.1) can be consistently estimated from (2.3)

by instrumental variables

ooz X7 ey
v :

1

= WY = "
with 2* = Z2(2'2) Z2'X, provided plim T 1Z*'x is a finite nonsingular

matrix.

e
1
can be obtained by estimating Qa in

A second proxy for x, in (2.1) that has been proposed in the literature

= Zo + 1
3

by OLS yielding & and using x? = Za as an approximation for x?

"
If we define X = [Za X2], we get

in (2:1) s

y=X8+w

with w = € + BIZ(a - a). The vector B in (2.6) can be consistently

estimated by OLS

(2.2)

(2.3)

(2.4)

(2..6)
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B = 0~ B'%. (2.7)

This estimator coincides with aIV i€ x2 is included in Z. From (2.6),

it is apparent that there is no need to instrument X_ in (2.3). There-

2

fore, an efficiency gain might be expected from the use of BOLS 1 £

x2 is not in Z as might for instance be the case in modeling futures

markets or long term contracts. Howev?r BOLS is not necessarily more
efficient than EIV as the elements of w are autocorrelated. This leaves
us with the choice among proxy variables and instruments. The next
theorem provides some guidance on how to select the proxies and the in-

struments to increase the efficiency of the estimator of the parameters B.
Theorem

-1 i v ;
Assume that (2.1) holds with plim T Z2'e = 0 and X and X are two proxies

for X. Consider the estimators

= o | n =1
BGL= = dx'z X) X'L 'y and %IV = (2'X) Z'y. (2.8)

Assume that

- =1

plim T(i'i X)

. = -1 -1
(1) VT (BGLS - B) : N(O,V "), where V

is finite and positive definite;

- n
(ii) plim T 1Z'x = Q is finite and positive definite;

(i1i) VT |2° N(0,D), where D = plim Tl z'zz 0
z" (w - w) 0 Z'%s 2

for some S, and w and w are the disturbances associated with X and

n
X respectively.
Then BGLS is asymptotically at least as efficient as glv

Proof : see appendix A.

n
The third requirement is most crucial. If two proxies X and X are available,

n
an IV estimator based on X cannot be more efficient than a GLS estimator



based on X if Z'w and Z'(t - w) are asymptotically orthogonal, provided
the regularity conditions of the theorem are met. The theorem can be
used to demonstrate the relative efficiency of GLS estimators for various
types of models. For models with imputed data sets in the case of

missing observations, we refer to Nijman and Palm (1984) and Nijman (1985).

Now we discuss the relative asymptotic efficiency of some consistent
estimators of B in (2.1). Equation (2.6) can be consistently estimated
by the feasible GLS estimator éGLS in (2.8), where i_l is chosen such that
assumption (i) of the theorem is satisfied. For instance, if € and u are
independent, a matrix i_l which satisfies this assumption is

=i

- @ Y i - -
gl {o0° R + Blz(Z'Z)} zZe, (2.9)

i = é -8

with R, &2 and él being consistent estimates of the asymptotic covariance
matrix of &, and of the parameters 02 and B respectively.

The well known result that the feasible GLS estlmator is asymptotlcally

at least as efficient as OLS, which we denote as B (Z) > BOLS(Z), also
follows from the theorem. The argument between parentheses indicates the
variables on which the proxy for xf is based.

The theorem implies that GLS is at least as efficient as the IV estimator.
Moreover it can be used to show that GLS is at least as efficient as the
estimator put forward by Cumby, Huizinga and Obstfeld (1983), hereafter

denoted as CHO, which reads as follows

¥ -1 "\4 -1 -1 .
%CHO - [X'z az 2% Xz 52 z'y, (2.10)

! -1 a : ; : ; =1 N
with T L being a consistent estimate of plim T "2'QZ and = Ew w 'in

(2.3). The proof is based on the fact that
i ay =1
Z2'(w - w) = 2'(e - Blu) - 2'(e - BIZ(Z'Z) Z'u) = 0.

The theorem can also be used to assess the effect of the inclusion of
additional regressors in (2.5) on the asymptotic variance of the GLS
estimator. If (2.9) applies, the GLS estimator uses a linear combination

of X2 and Z as instruments. Hence the theorem implies that

2 (1) R (2)

zMy >8 (z (2) (1)' z(12) . (1) (2)

) where Z = (2 yif H' (w -w )



= | By

(1) (1)

is asymptotically orthogonal to H'w with w =€ - Blz(i)[z(i)'z(i)]-lz(i).u
(2)

and H = [2 x2]. The inclusion of regressors in (2.5) which have zero

coefficients cannot improve the efficiency of the GLS estimator as

(H_ (2 (1)

H'(w ) is asymptotically orthogonal to H'w as a direct consequence

of the assumptions about € and u and the properties of iterated expectations.

The i-th elements of ".[‘-i H'(w(l)— w(z)) and T—i H'w(l) converge to

-4 (2) (x) -3 (1) . 3
T Bli(hit - hit )ut and T E hit (81ut + et) respectively with
(k) (k)

¢ ) being the projection of hit on zt . For the asymptotic

covariances we have E{T.lﬁ2 z (th)— hFl))u u hsl)} =
1t & it it ts T3S
’

(1) (A0 1)
hit ) hjS |zt ] E(utusl Z

(k)

hit

= E(hitl z

(2)

it (1))}, where the first factor

=419
E{T 81 L E[(n »

t,s
of the r.h.s. terms equals zero. An analogous result applies to cross
moments between u, and Es' Similar results can be obtained for more general
models 1).

Notice that on the contrary, the efficiency of EIV and %EHO usually increases
when Z in (2.5) is expanded. This also holds true for the estimator proposed

by Hayashi and Sims (1983), hereafter denoted as HS, which reads as

1 1

2 - - -1V, - N - - -
B = [X'pr Y2zz) "tz 17! X 12(22) 12w 1y, (2:43)

HS
where P is a consistent estimate of an upper-triangular matrix M satisfying
Q= nn'. Notice also that CHO (1983) and HS (1983) show respectively that
¥ o@ > ¥ (@ ana B2 > 8 (2.

2
If H'(w(")— w(l)) is not only asymptotically orthogonal to H'w(l) but to
v (2} o (1) = (2) 5 v
H'w as well, BGLS(Z ) and BGLS(Z ) are equally efficient. If
G (2) 4 CL) . (2) =3 0. (2) (1)
E(htl zt ) = E(htl zt ) or in short ht = ht s T OHYw w ) con

verges to zero in probability so that it is asymptotically orthogonal to
every other variable.

To illustrate this result, define E as the matrix of variables with nonzero
coefficients in (2.5). This matrix is the minimal regressor matrix which
assures consistency of éOLS and éGLS' If i_l has the structure as outlined
in footnote (1), the inclusion of all variables in 2 lagged one period will
in general lead to an efficiency loss as hél) # héz)

in ht' E(zt_1 lzt) # E(zt_1 lzt, zt-l)' If on the other

, because of the

resence of z
p t-1

hand (2.9) applies, the condition E(x, | Et) = Elx,, |z, ., i=0,1,...)

t-i
implies that subsequent addition of L i=1,2,... to the regressors in



(2.5) does not affect the asymptotic efficiency of BGLS'

To summarize, we conclude that the efficiency of BGLS can sometimes

decrease if the dimension of Z in (2.5) is increased. This does not
occur for %IV' ECHO and aHS'
HS (1983) have shown that the difference between the asymptotic variances

of §CHO and EHS converges to zero if the z i i=1,2,..., are subsequently

t-
added to the regressors in (2.5). This result can be combined with those
given above to yield BGLS(Z) > @HS(Z).

Finally, we consider the use of alternative estimates of a in (2.2).

Until now, we restricted ourselves to the use of the OLS estimator of a in
(2.7). An example where two consistent estimators of o, & and &, are
available is given in the next section. If & is efficient within the class

of estimators containing all linear combinations of o and &, and € is inde-
pendent of & and &, the theorem implies that the GLS estimator based on &
will be more efficient than the one based on 3.

The orthogonality condition is then satisfied as H'Z(& = &) is orthogonal

te HYE + H'Z{o = &) as a result of the orthogonality in large samples
between VFT(& - &) and V T(a - &) (for this orthogonality condition see e.g.
Hausman (1978)). However if € is not independent of & and &, more efficient
estimation of o does not necessarily lead to more efficient GLS estimation

of B.

3. Numerical results on the relative efficiency

In this section, numerical results on the relative asymptotic efficiency of
the estimators presented in the previous section will be given. We consider
the following models

3 2
Blnt + B R, FE G E IN(O,OE), (3.1)

<
n

2
= + + V. ; V IN(O 02) (32)
e & Yi%eai ¥ Yo%ea £ e = =gt )

where Et and v, are independent for all t and s and where for the expectation

nf: is defined as



e
ﬂt = l’:‘.(yt+1 IIt) for model I,
ne = E{( II ) for model II
t Yes1 t-1 !
€
ﬂt = E(xt llt) for model II1I, and
n® = Ex_ ., ]I ) for model IV
€ t+1 ' Te-1 - € d

with 1 = {yt, x ...}. Although these models are simple,

t? Ye-1' gy’
they illustrate important features of more realistic models quite well.
Model I has been analyzed by Gouriéroux et al. (1982), to whom we refer for
a justification of its use. Model II arises in the analysis of futures

markets and long term contracts.

e

d = Q, #
For the models I and III, nt 11xt uizxt_1
+ aiZXt—Z' where the index i refers to model i.

and for the models II and
-
Ve Wy = By g

If we define X1 T Vi1 in models I and II and xlt = xt+1 in models III

and 1V, ut in (2.5) is given by

u, = €t+1 + (82 + Blall)vt+l in model I,

B, =By * 82vt+1 + (BZYl + Bla21)vt in model II, (3.3)
e = Ve in model III,

ut = vt+1 + Ylvt in model 1IV.

Note that in order to compute the proxy variables estimators, there is no
need to derive the a's explicitly as functions of the parameters in (3.1)
and (3.2). For model IV, we could estimate Yl and Y2 from (3.2) by OLS,
then construct an estimate of the two-step ahead predictor of Xe 41 given
It—l' substitute it for ni in (3.1) and estimate (3.1) by GLS. This esti-
mator is fully efficient in the present case. This example illustrates the

gain of efficiency due to the use of a more efficient estimate of a in (2.2).

The expressions for u in (3.3) imply that in models III and IV the feasible

GLS estimator can be obtained using (2.9) while for models I and 1I, the

g == - - :
expression for L given in footnote (1) applies. For the models I and III,



BOLS coincides with glv. For models II and IV however, x, is projected on
xt-l and xt_2 in the computation of %IV, gCHO and gﬁs but not in that of

da . On i €
BOLS an BGLS e might expect that for these models, BOLS is more

efficient than the estimators based on (2.3) and that the efficiency gain
of éGLS over these estimators is more important for the models II and IV
than for the models I and III.

The efficiency of the various estimators of B relative to that of the
maximum likelihood estimator is measured by the ratio of the asymptotic
variances. The results for 81 are presented in table 1 for the models I,
II and 1IV. Results for 82 are given in table 2 in appendix B. The values
of the parameters are also given in the tables.

The derivation of the results is given in appendix C. For model III, all
estimators are fully efficient, a property which is also proved in appendix
Cs

Six proxy variables estimators have been considered. The estimators BOLS'
BGLS and gIV are based on the minimal set of instruments, that is the

ical row of Z is (x_,x
typica w of ( e %o
IV. For the estimators

) for model I and (x

GLs2' gcu
) for model I and

t-l'xt-2) for models II and

o and gﬂs, Z contains the observations on

(xt, b4 ) for models II and 1IV.

t-1" *¢-2 L e
It can be easily verified that the relative efficiency of the estimators

depends on Bl' Yl' Y2 and R2 in the models I and II, with

2 2 _-12
R = E(yt - Et) E yt. In model IV, the relative efficiency depends on

51851, Rz, Yy and Yoo

From table 1 it is apparent that for model I all estimators are almost as
efficient as ML if IBll is small. For larger values of Bl' the differences
between the various estimators compared to ML are more pronounced, except

for éGLS which is fully efficient here. For models II and IV, the efficiency
loss of the estimators based on the substitution of the realization for

the unobserved expectations (as suggested e.g. by McCallum (1976)) can be
very large when |Y2| is small. This is not surprising as in models II and
IV only these estimators lose their consistency i{ Y2 is zero as then a

multicollinearity problem arises. The estimator BOL is sometimes less

S

efficient than EEHO or %;S' The relative efficiency of BGLS2 is smaller

than that of §GLS for model I and II. This illustrates the loss of efficiency

due to the use of extra instruments, in addition to those in the information

sets of the rational expectations. The results for 82 reported in table 2



are similar and lead to the same conclusions as for B;. Notice finally

that if the lag structure of the auxiliary equation (3.2) is misspecified,

BML will no longer be consistent. The PVEs however are robust to such

misspecifications. Nevertheless, for BOL and BGLS' a misspecified equation (3.2)

<
can easily lead to inconsistent estimates of asymptotic standard errors.

4. Conclusions

In this paper we derived a theorem which can be used to compare the

efficiency of consistent PVEs. We discussed the implications of the

theorem for the estimation of models with unobserved expectations. Numerical
results illustrated these implications for several simple models with rational
expectations. It appeared that some PVEs are not only more robust and compu-
tationally more attractive than the ML estimator but almost asymptotically
efficient as well in the models considered. Some instrumental variables
estimators using the realizations as proxies for the unobserved expectations
appeared to be very inefficient in several of the cases that we have analyzed.

Therefore, their use in applied work cannot be recommended.
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Table 1 : Relative efficiency of the maximum likelihood estimator compared with
alternative estimators for Bl' measured by the ratio of large sample

variances.

Model I
8 &’ Y Y 8 8 8 [ g ¥
1 1 2 OLS GLS GLS2 v CHO HS
. 0. 50 ~0. 15 1.04 1. 00 1. 00 1.04 1. 00 i uo_
0. S0 -0, 27 1.04 1. 00 1. 00 1.04 1. 00 1. 00
0.50 -0.2%S 1.04 1. 00 1. 00 1.04 1. 00 1.00
Q. S0 -0.63 1. 03 1.00 1.00 1,03 1. 00 1. 00
0. 90 =0. 15 1.03 1. 00 1.01 103 1. 01 1.01
Q. 90U =0. 27 1.04 1. 00 1. 00 1.04 1. 00 1.00
0.90 =0.35 1.04 1. 00 1.00 1.04 1. 00 1.00
0. 90 -0.63 1. 03 1. 00 1. 00 1.03 1. 00 1.00
0. S0 =0, 1S5 1.5 1. 00 1. 14 181 1. 26 1..20
0. 50 0. 27 1.80 1. 00 1.07 1.80 1. 34 1.14
Q.50 -0 IS 1. 72 1. 00 1. 42 1. 72 1.38 1. 260
0, SO =065 2: 21 1.00 1. 06 2. 21 1. 50 ; g
0. 90 -0.1%5 1.15 1.00 1.1 1 1.15 > [ 5 1. 22
0. 90 =0. 27 1. 39 1.00 118 1:; 39 1= 23 1..21
0. 90 =0, 35 s 23 1.00 1 4S5 123 ¥z 17 1. 16
0. 30 =0. €3 1. 52 1. 00 s A7 1. 52 1. 27 l.2%
Gis'S0 -0 15 14701 1. 00 1,00 157.23 150,58 150,27
0. S0 =0. 27 1.00 1.00 1. 00 102, 04 98. 07 97. 88
0. 50 ~0e 3 1.00 1.00 1.00 21 27 Z20.45 20,42
0. 50 =05 63 1.0 1. 00 1. 00 3. 07 Z2.'99 2.3968
0. 30 =0 15 1.01 1. 00 1. 00 156. 32 145. 07 144.19
0. I ~0s &7 1400 1. 00 1.00 106&.34 Q1. 37 101. 14
0. 30 =0 S5 1.01 1.00 1. 00 2. 33 21e 20
0. 30 -0.63 1,02 1.00 1. 00 3.08 Z.38
.50 =0. 15 1. 06 1. Q0 1.00 14€. 89 106€. 01
0. 80 0,50 = 14022 1. 00 1. 00 96. 35 €3.879
0. 80 0. 50 =0 IS 1.08 1.00 1,01 15, 47 1125 9.47
0. 80 Q. SO =0.E3 1.80 1. 00 1.08 2:.61 175 Py
0. 80 0. 30 =0 15 1.06 1.04 1.04 123.53 95. 56 78.38
0. 80 0. 30 —@, 27 p B & P4 1. 00 1.00 139,57 116.39 111,57
0. 80 0. 90 —0.'3 Ye 10 1.00 1.02 23. 0= 19.61 19.02
0. 80 0. 30 -0L. 63 1.22 1.00 ;11 Ze 12 176 1.€8
Model 1V
880 R Y Y 8 6 8 ¥ ¥ &
172 1 2 OLS GLS GLS2 v CHO HS
0. S0 0. S0 0. 80 =0, ¥E 1.01  1.00 1. 00 167. 46 16€. 75 166.74
0. 50 Q.50 1:20 =027 1.00 1.00 1.00 121.84 121. 86 121.85
D. 50 0. 50 1.20 -0, 35 1.00  1.00 1. 00 27.61 2753 27.59
0. 50 0.50 1.60 =0.63 1. 00 1.00 1. 00 4.43 4.43% 4.43
0.50 0. 90 0. 80 -0. 1S 1.07 1.03 1.05 182. 66 165. 15 165.11
0.50 0.90 1.20 =027 1.00 1.00 1. 00 136. 59 135. 10 13S. 08
0.50 0. 30 1.20 -0. 35 1.0t .01 1.01 31.19 30. 20 30,20
0.50 0. 90 1.60 -0.63 1.01 1. 00 1. 00 4. 47 4.47 4.47
Z. 00 0.50 0. 80 -0, 15 1.06 1.05 1.05 180.10 165. 80 1€5.83
2.00 Q.50 1.20 Qs Z7 1.00 1.00 1. 00 128. 26 127.85 127.83
2.00 0.50 1.20 -0. 35 104 =01 1.01 - 29.493 29.12 29.1%Z
Z.00 0. 50 1.60 -0.63 1.00 1.00 1.00 4.45 4.45 4.45
2. 00 0. 30 0. 80 -0.15 1.24 1.19 1.19 215,47 148. 86 14€.58
Z.00 0. 30 1..20 -0. 27 1.01  1.00 1. 00 183.13 167.74 167.78
2.00 0. 90 1. 20 -0.3% 1.04 1.03 1. GZ 39. 90 327l I2.70

Z. 00 0. 90 1. 60 -0. 63 1.04 1.01 1.01 4. 66 4.62 4.62
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1
} FOOTNOTE

For instance, in the case of future expectations in (2.1), it often holds
2 . z ;

true that Eeu' = 810 L, where L is a matrix with zero elements, but for

the (i+1,i)-th positions (i=1,...T-1), which are egual to one. Then a

P | 5 G o . : ; ;
matrix L which satisfies assumption (i) of the theorem is given by

a=1 _ e _ 2 72 =1,
L~ =58 -85,5,'s; with§, =0 "1+ B2 W'z ),

..Q a =1 -‘_21 '-1 — o ﬁn
52—0 1 Blz_lw R,SB—O Z'Z + R'W R, R=12'2 Blzz_

. : 2 . =1 .
where W is a consistent estimate of M - 0 plim T "2'Z, where M is the

$

asymptotic covariance matrix of T *Z'u and Z_1 is a matrix which contains

ll

one period lagged values of Z. 1In this case, BGLS uses a linear combination

of X, 2 and Z_1 as instruments and H above has to be redefined as

1
zero coefficients does not increase the efficiency of the GLS estimator.

H = [xz, Z, Z_ ]. Again, the inclusion of regressors in (2.5) which have



= I8y =

APPENDIX A : Proof of the theorem

Using assumptions (ii) and (iii) one verifies that
v T(g - B v N(O Q-1(D + D )Q'-l) where D,, and D
Iv a ! 11 22 ! 14 22

are the upper-left and the lower-right blocks of D respectively. Furthermore,

the asymptotic orthogonality of 2 and € and assumption (iii) imply that
=1 v ® = | = N
plim T "Z (w - w) = plim T Z'(X - X)B =0,

= v ; =) | : 2
for all B, so that plim T 1Z'x = plim T "2'X = Q. Using this result, one

obtains that

Q'I(D11 + D22)Q"1 = plim o7z - vixer ™ z'l(zg"1 - lxwh
+ plim 'r'lQ'IZ'xv'1 + plim 'r'lv'lx'ZQ'"1
-1 -1 -1 -1
-V +0D,0 >V

which proves the result.



APPENDIX B

: Table 2 :

14 -

Relative efficiency of the maximum likelihood estimator

compared with alternative estimators for 82, measured by

the ratio of large sample variances.

Model I
- - = =
_81 R Y4 Y2 Bors GLS Bers2 v %o s
0.50 0. 80 -0.15 1. 04 1.00 1. 00 1.04 160 1.00
0. 50 1. 20 -0.27 1. 04 1. 00 1. 00 1.04 1. 00 1. 00
0.50 1.20 -0. 35 1. 04 1.00 1.00 1. 04 1. 00 1.00
. 56 1. 60 -0.62 1,03 1. 00 1. 00 1,03 1. 00 1.00
0. 90 0. 80 =0.15 1.02 1.00 1.01 1.03 1.01 1.01
0. 390 1.20 Qs 27 1. 04 1. 00 1.00 1.04 1. 00 1.00
0. 90 14,20 -0.35 1. 04 1. 00 1. 00 1.04 1. 00 1.00
0. 90 1. €60 -0.€63 1.103 1.00 1.00 1.03 1. 00 1. 00
0. 50 0. 80 -0.15 1.58 1.00 1.16€ 1.58 1.29 2
Q. S0 1. 20 =0.27 1.85 1. 00 1.08 1.85 1. 36 I 1
0. 50 1..20 -0.35 1.82 1. 00 1. 36 1182 1. 37 1.2%
0. 50 1. 60 -0.63 2: 30 1. 00 107 2,30 1.53 1.14
G. 90 0. 80 -0, 1S 1a15 1. 00 1 11 1.45 1. 12 1.12
Q.30 1.20 -0.27 i.39 1. 00 1.19 i.39 1. 24 1.22
0. 90 1. 20 -0.35 1.23 1. 00 1. 55 1.23 1. 16 1. 16
0. 30 1. €0 -0.€62 1. Si 1. 00 117 1% 52 1. 27 123
Model 17
0: 20 0. S0 0. 80 -0.15 1.00 1.00 1.00 290.00 277.73 Zz77.1&
0. 20 0. S0 W o) -0. 27 1. 00 1. 00 1.00 109.71 105.45 10%. 24
Q. Z0 0. 506 1. 20 ~=0.3%9 1. 00 1.00 1.00 24. 72 zT.78 25. 74
B 20 0. 50 1. €0 -0.€3 1.02 1: 00 1. 00 3.1z 3. 03 303
0. 20 0. 90 0. 80 -0.15 1. 00 1. 00 1.00 347.9€6 3Izz.78 3II0.80
0. 20 0. 90 1.20 -0.27 1. 00 1. 00 1.00 115.68 110.28 110.02
Q. 20 05 90 .« 20 -0.35 1. 00 1. 00 1. 00 26. 86 25. 45 25.37
0. 20 0. 90 1. 60 -0. 63 1.02 1. 00 1. 00 e 12 3. 03 3.02
0. 80 0. 50 0. 80 -0.15 1. 00 1. 00 1.00 336.36 238.78 18x.08
0. 80 0. 50 120 -0. 27 1.01 1. 00 1. OC 99. 70 72.04 58. 56
0. 80 0. 50 1. 20 -0.35 1. 04 1. 00 1.02 17.35 12.:45 10.38
0. 80 0. 50 1. 60 —0s 63 185 1.00 1.08 Z.64 1.7¢& 1. 31
0. 80 0. 90 0. 80 -0.15 1.02 1. 00 1.00 9S4.04 €93.79 SE€€.78
0. 80 0. 30 1.20 -0. 27 1610 1. 00 1.00 163.40 136.11 130.43
0. 80 0. 90 1. 20 -0.35 1. 164 1.00 4+ 00 39.2 33. 43 3. 41
0. 80 0. 90 1. €0 -0.€3 1.20 1. 00 1. 10 2.10 1. 75 1. 68,
Model IV 2 2 = 2
Bgnt ® Yy Y2 Bors  Bais Bers2 v acno aﬁs
0. 50 0. 50 0. 80 =0. 15 1.00 1.00 1.00 373. 3z 371.7€ 371.74
0.50 0.50 1.20 -0.2 1.00  1.00 1. 00 135. 96 135. 98 135. 9€
0. 50 0. 50 1. 20 -0.35 1,00 1.00 1. 00 34. 34 34.31 34.31
0.50 0: 50 1. 60 -0.€63 1.00  1.00 1.00 4.5% 4.53 6./53
0.50 0. 90 0. 80 -0.15% 1.00 1.00 1. 00 €84. 28 618.18 €18.04
0.50 0. 90 1. 20 -0. 27 1,00 1.00 1. 00 158. 52 15€. 81 15€.78
0.50 0. 90 1: 20 -0. 35 1.01 1.00 1. 00 43.53 4z.18 42.17
0. 50 0. 90 1.60 -0.63 1.00  1.00 1.00 4.58 G 57 0.5T
2. 00 0. 50 0. 80 -0.15 1.00 1.00 1. 00 €24.90 575. 01 ST9:11
2. 00 0. 50 1.2 -0.27 1.00 1.00 1.00 145. 54 145. 08 145.12
2. 00 0.50 1.20 -0. 35 1.01 1.00 1. 00 38. 82 38. 35 38.35
2. 00 0. 50 1.60 -0. 63 1.00 1.00 1.00 4.55 4.55 4.55
Z. 00 0. 90 0. 80 -0.15 1.04 1.00 1. 00 2948.24 2010.89 1978.76
<. 00 0. 90 1. 20 -0.27 1.01 1.00 1.00 244,81 2z4.22 Z2Z4.28
2. 00 0. 90 . 20 -0.35 1.09 1.00 1. 00 84.50 €9. 22 63.1€
Z. 00 0. 90 1. 60 -0.63 1.04. .01 1.01 4.79 ] 4.7%




= 8 =

APPENDIX C : Derivation of the asymptotic variances.

We will outline the derivation of the asymptotic variances of the estimators
considered for model II. The results for models I and IV have been obtained
along the same lines. Moreover we show that for model III all estimators

considered are asymptotically efficient.

= QO
2,50 21%e-1 * Fp¥p_o-

From (3.1) and (3.2) one has

First we evaluate E[yt+1

Elye, 11,41 = 8, Elye,, | 1oy + 8, Blx, 111y

= Bjoyy Elx |1, 1+ 80, Blx _ 1,0+ By Elx |1, ,]

= {Bjay, + Biayyy, + B, (Y fp b x +{Bjay Y, B VL) x

= %1%y T % i81)
which yields
a,. = B.(y> + Y, + B.Y,Y,) (1 -8B vy, - 82Y =
g1 T Hpllily * Vs 1172 1M1 12!
0y, = ByY, ¥, * By (1 - By, - B2y (B2)
25 = B3 171 1Y) -

" == : o’ e
Using this result it is straightforward to evaluate plim T "X'X,plim T X'Z

and plim T'lx'z . The asymptotic variance of VTR

=1 GLS'

B e s X E g
var (VE;BGLS)—pllm T xr iy (B3)

can now readily be evaluated using the expression in footnote 1). The

asymptotic variance of BOLS is
v e . Sl -1 -1 =
var (VTR =plim T (x x) [0 X% 481 X Tzlzvz) G(2'2) Z0%
2 = -1 = 3 = ol e
- B0 x'z(z'z) © z2!,x - B,0° X'2_,(2'2) "2'x](X'X) (B4)

-3

w1th G being the asymptotic variance of T “Z'u which can be evaluated using (3.3) .For
and % we find

s 2 -1
var (\Fr'%’whplim T 1(z""% 202 X 2" (B5)

and



il
L
N
o
‘—‘l
l

¥ " o (-
var (VE-pCHO)=pllm B lXvg R

respectively, where the notation is defined in section 2.

In order to derive the asymptotic variance of aHS we first determine

"\
the MA(1) representation of w by equating the variance and first order

L
serial correlation coefficient of w = € - Blu and Vt + th 1 (with

2 ,
vt = NID(O,OV)) and solving for O and 03. The asymptotic variance of

@HS is then given by

e B o
var (VT & ) =plim T oy[X " Lzz'zy 'z X7

=4 N
X! Zs
+i

(-0)
0

Z = plim 7!
i

; " -1
with plim T "X'P'

N~ 8

Finally var(vﬁTBML) has to be determined. Consider

with Al = f,u,, and AZ = B.a_.. Denote the asymptotic variance of the

524 1 22
unrestricted efficient estimator of (Bl' All A2' Yy Y2) by M-I. and

denote the matrix of first order derivatives of this vector with respect

to the parameter vector of interest (81, 62, Yy Y2) by S.
var(Vﬁ‘BMl?is then the upper-left block of {sms'}1.

Next we show that for model III all estimators are asymptotically

efficient. First, consider

with Al = BIYI + 62 and Az = SIYZ' The maximum likelihood estimator

(Xl. A2' Yyt Y2) of (Al, AZ' Yy Y2) is the equation by equation OLS

estimator of (B9) and (3.2) respectively. As the transformation of this

parameter vector to the parameter vector of interest (81,82,Y1,Y2) is

bijective, BML can be obtained from the inverse transformation as

~ | - = ey |
By wp = Moo and By oy = Ap TN,

i h o
The estimator BOLS

and X, which is a linear transformation of the regressors in (B9) .

Therefore BOLS coincides with the corresponding inverse transformation of

is obtained from a regression of yt on let + Y2xt—1

(B6)

(B7)

(B8)

(B9)

(B10)
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(A,, A,) which yields BOLS = BML'

Along the lines of Kruskal (1968) it can simply be shown that BOLS

BGLS as IX = XF for a non-singular matrix F. Moreover it can
be d}rectly verified that for‘thls model BOLS = EIV' Finally gcﬁo
and %H do not coincide with BOLS but are asymptotically equally

efficient as they are at least as efficient as aIV'
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