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DIFFERENTIABILITY PROPERTIES OF THE EFFICIENT (�; �2)

SET IN THE MARKOWITZ PORTFOLIO SELECTION METHOD

1 Introduction

The standard portfolio selection problem with linear constraints may be formulated as

follows. An investor wants to invest an amount of one unit in the securities 1; . . . ; n. If

he invests an amount xj in security j(j = 1; . . . ; n) the xj should satisfy the conditions

AX = B; (1.1)

X � O (1.2)

with A an (m � n)- matrix with full rank, B an m-vector and X 0 = (x1; . . . ; xn); (1.1)

includes the condition

nX
j=1

xj = 1: (1.3)

The yearly return on one dollar invested in security j equals rj with �j = Erj; the

covariance matrix of the random variables rj is C. The yearly return r(X) on a portfolio

X equals

r(X) =
nX
j=1

xjrj; (1.4)

with M 0 = (�1; . . . ; �n), the expected yearly return Er(X) equals M 0X and will be

denoted by �(X), so

�(X) = M 0X ; (1.5)

the variance �2(r(X)) equals X 0CX and will be denoted by �2(X), so

�2(X) = X 0CX: (1.6)
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For equivalent formulations of the conditions (1.1), (1.2) cf. H.M. Markowitz (1987) p.

24-27, for nonlinear constraints J. Kriens and J.Th. van Lieshout (1988).

A feasible portfolio �X is called e�cient if it is a solution of both

min
X
f�2(X)j�(X) � �( �X) ^ A �X = B ^ �X � Og (1.7)

and

max
X
f�(X)j�2(X) � �2( �X) ^ A �X = B ^ �X � Og: (1.8)

All e�cient portfolios can be derived by computing

min
X
fX 0CX � �M 0XjA �X = B ^ �X � Og (1.9)

for all � � 0; cf. H.M. Markowitz (1959) p. 315-316, or for a precise and more general

statement of the theorem underlying the algorithm J. Kriens and J.Th. van Lieshout

(1988).

With U 0 = (u1; . . . ; um) and V 0 = (v1; . . . ; vn) as Lagrange multipliers of (1.1) and (1.2),

respectively, the Kuhn-Tucker conditions of (1.9) run

�2CX �A0U + V = ��M (1.10)

AX = B (1.11)

V 0X = 0;X � O; V � O; U free: (1.12)

Loosely speaking we can describe an algorithm to solve this system for all � � 0 as fol-

lows. Start with choosing � = 0, thus with determining the minimum possible variance,
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and next raise � to get (new) e�cient portfolios. For speci�c values of � there is a change

in the basis. Let these values be ��1; . . . ; ��k, the corresponding e�cient solutions be

�X1; . . . ; �Xk with mean-variance combinations (�( �X1); �
2( �X1)); . . . ; (�( �Xk); �

2( �Xk)). The

sequence �X1; . . . ; �Xk is called the set of corner portfolios, the set of all (�( �X); �2( �X))

points in the (�; �2)-plane corresponding to e�cient portfolios �X is the set of e�cient

(��; ��2) combinations of the problem, or the e�cient frontier.

This last set satis�es the following properties:

a. between the (��; ��2) points of two adjacent corner portfolios �Xi and �Xi+1(6= �Xi) it

is part of a strictly convex parabola;

b. on the interior of the segments mentioned in a, the relation

 
d�2

d�

!
(��;��2)

= �� (1.13)

holds; it is strictly increasing as a function of �;

c. in the (��; ��2) points corresponding to corner portfolios, the left hand derivative�
d�2

d�

�
L
and the right hand derivative

�
d�2

d�

�
R
exist and satisfy

 
d�2

d�

!
L

�

 
d�2

d�

!
R

: (1.14)

From b it follows that on those segments there is a one to one correspondence between

the values of �� and ��. In corner portfolios this is only true if
�
d�2

d�

�
L
=
�
d�2

d�

�
R
, which

implies di�erentiability of the (�; �2) curve. For proofs cf. H.M. Markowitz (1987), p.

176 and J. Kriens and J.Th. van Lieshout (1988).

Section 2 of this paper contains a more precise discussion of the algorithm to solve

(1.10),. . .,(1.12) for every � � 0, section 4 necessary and su�cient conditions for the

equality sign in (1.14). In preparation for the second topic we present a slightly adapted

form of the explicit formulae for �X;�( �X) and �2( �X) as derived by J. Kriens and J.TH.

van Lieshout (1988) in section 3.

Section 5 compares with other literature and section 6 considers the standard portfolio

case supplied with one riskless asset. Throughout the whole paper we assume C positive

de�nite.
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2 The algorithm

In order to present a more precise discussion of the algorithm we �rst prove the following

lemma.

Lemma 2.1

If in a portfolio selection problem

1) 8j�
2(rj) > 0

2) there are no linear relations between the returns rj,

portfolios �X1 and �X2(6= �X1) with �( �X1) = �( �X2) and �2( �X1) = �2( �X2) cannot be e�-

cient.

Proof

Let

�X = � �X1 + (1� �) �X2 (0 < � < 1);

then

r( �X) = �r( �X1) + (1� �)r( �X2)

�( �X) = �( �X1) = �( �X2)

�2(r( �X)) = �2�2(r( �X1)) + 2�(1� �)��(r( �X1))�(r( �X2))+

(1� �)2�2(r( �X2)) = �2( �X1)[�
2 + 2�(1� �)�+ (1� �)2] = �2( �X1)f(�):

For � 6= 1; f (�) < 1 for 0 < � < 1, so �2( �X) < �2( �X1) and �X1 and �X2 are not e�cient.

�(r( �X1); r( �X2)) = 1 i� all realizations of (r( �X1); r( �X2)) are situated on a straight line,

so all points
�Pn

j=1 xj1rj;
Pn

j=1 xj2rj
�
are on a straight line. This means

9a9d8R

0
@ nX
j=1

xj2rj

1
A = a+ d

0
@ nX
j=1

xj1rj

1
A :

Let

8jaj = dxj1 � xj2;

then
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8R a+
nX

j=1

ajrj = 0:

We discern four cases:

a) 8jaj = 0 ) 8jdxj1 = xj2, leading with (1.3) to d = 1 and �X1 = �X2, which

contradicts �X1 6= �X2;

b) ai 6= 0;8j 6=i aj = 0 ) 8R a + airi = 0 and ri is �xed, so �2(r
i
) = 0, which

contradicts condition 1);

c) ai 6= 0; ak 6= 0;8j 6=i;kaj = 0) 8R a+ airi + akrk = 0, which contradicts condition

2);

d) More than two ai 6= 0; conclusion as under c).

So �(r( �X1); r( �X2)) 6= 1 and the lemma is proved.

Remark 2.1. From the proof it follows that conditions 1) and 2) are also necessary.

Moreover the conditions 1) and 2) hold i� C is positive de�nite.

From lemma 2.1 it is clear that for C positive de�nite the corner portfolios �X1; . . . ; �Xk are

uniquely determined. However, there are not always as many di�erent corner portfolios

as there are di�erent bases during the computations; di�erent bases may yield the same

portfolio and also di�erent values ��i may yield the same portfolio. In this respect the

notation in section 1 is misleading.

Starting the algorithm with � = 0 and next raising �, the algorithm produces a series

of bases. Bases which hold for just one value of � are dropped so that only bases

corresponding to nondegenerate �-intervals are left.

Denote for a given basis of the system (1.10) ,. . ., (1.12), the set of basic x-variables by

(Xb)i. In section 3 we will show that the values ( �Xb)i of the basic x-variables satisfy

( �Xb)i = Ai +Di
�� (2.1)

for all �� in the corresponding interval; the constants Ai and Di will be computed explic-

itly. So if C is positive de�nite the whole e�cient frontier is uniquely determined.
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With corner portfolios there correspond at least two vectors Di, the vector corresponding

to the "old" basis and the vector corresponding to the "new" basis. But there may be

more associated vectors Di, either because there exists an equivalent basis for the "old"

or for the "new" basis producing the same corner portfolio ( �Xb)i, or because the series of

vectors Di contains one or more vectors D = O. In the latter case the same vector ( �Xb)i

is produced for di�erent values of �. If the "new" basis is uniquely determined, then for

e�cient portfolios which are not corner portfolios the vector Di is uniquely determined.
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3 Explicit expressions for e�cient portfolios

Starting from the Kuhn-Tucker conditions for the solution of (1.9), J. Kriens and J.TH.

van Lieshout (1988) derive an expression for the basic variables which, if C is positive

de�nite, holds for every e�cient portfolio. We present their results in a slightly adapted

form.

For a �xed value �� of � (1.10) ,. . ., (1.12) run

�2CX �A0U + V = ���M (3.1)

AX = B (3.2)

V 0X = 0;X � O; V � O; U free: (3.3)

The equations (3.1) and (3.2) can be summarized as

X 0 U 0 V 0

�2C �A0 J ���M

A O O B

(3.4)

If

Z 0
b
= (X 0

b
; U 0; V 0

b
) (3.5)

denotes a set of basic variables for a given e�cient portfolio (3.4) can be partitioned into

X 0
b

X 0
nb

U 0 V 0
b

V 0
nb

�2Cb1 �2Cnb1 �A0
b
O J ���Mb

�2Cb2 �2Cnb2 �A0
nb
J O ���Mnb

Ab Anb O O O B

(3.6)
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The matrix �2C is partitioned into the square matrices �2Cb1 and �2Cnb2 corresponding

to basic and non-basic x-variables and into �2Cb2 and �2Cnb1 with Cb2 = C0
nb1
:Ab;Mb

and Anb;Mnb also correspond to basic and non-basic variables respectively. The matrix

of coe�cients of basic variables is

B =

0
BBB@

�2Cb1 �A0
b
O

�2Cb2 �A
0
nb
J

Ab O O

1
CCCA : (3.7)

To facilitate computations Kriens and van Lieshout reshu�e (3.7) into

Bv =

0
BBB@

�2Cb1 �A0
b
O

Ab O O

�2Cb2 �A
0
nb
J

1
CCCA : (3.8)

The values of the basic variables are

�Zb =

0
BBB@

�Xb

�U

�Vb

1
CCCA = B�1

v

0
BBB@

O

B

O

1
CCCA�

��B�1
v

0
BBB@

Mb

O

Mnb

1
CCCA : (3.9)

We �nd explicit expressions for these values by computing B�1
v
:

B�1
v

=

0
BBBBBBBBBBBBB@

0
@ �2Cb1 �A

0
b

Ab O

1
A
�1

j O

j
� ������������������������

j

(2Cb2 A
0
nb
)

0
@ �2Cb1 �A

0
b

Ab O

1
A
�1

j J

1
CCCCCCCCCCCCCA

(3.10)

with

0
@ �2Cb1 �A

0
b

Ab O

1
A
�1

= (3.11)

0
@ �

1

2
C�1
b1

+ 1

2
C�1
b1
A0

b
(AbC

�1
b1
A0

b
)�1AbC

�1
b1
C�1
b1
A0

b
(AbC

�1
b1
A0

b
)�1

�(AbC
�1
b1
A0

b
)�1AbC

�1
b1

�2(AbC
�1
b1
A0

b
)�1

1
A :
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Substituting (3.11) into (3.10) and the result into (3.9), we �nd

�Xb = A+D�� (3.12)

with

A = C�1
b1
A0

b
(AbC

�1
b1
A0

b
)�1B (3.13)

and

D =
1

2
[C�1

b1
� C�1

b1
A0

b
(AbC

�1
b1
A0

b
)�1AbC

�1
b1
]Mb: (3.14)

The corresponding values �( �Xb) and �
2( �Xb) are

�( �Xb) =M 0
b
A+M 0

b
D�� (3.15)

�2( �Xb) = A0Cb1A+D0Cb1D
��2 (3.16)

(note that the coe�cient of �� equals 0).

If the vector

0
@ M

O

1
A is linear independent of the basis (3.7), it can be shown that

M 0
b
:D 6= 0: (3.17)

To prove this Kriens and van Lieshout study problem (1.7) with AX � B. With obvious

adaptations in the notation, the Kuhn-Tucker conditions of this problem are in our case

�2CX �A0U +M� + V = O (3.18)

AX = B (3.19)
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M 0X � ym+1 = �� (3.20)

X 0V = ym+1:� = 0;X � O; V � O; ym+1 � 0; � � 0; U free: (3.21)

Because

0
@ M

O

1
A is assumed to be linear independent of Bv, the vector Zb (3.5) completed

with �, forms a basic solution of (3.18),. . .,(3.21). Reordering in the same way as in (3.8)

the matrix of basic vectors changes into

B�
v
=

0
@ Bv K

L0 O

1
A (3.22)

with

L0 = (M 0
b
O0 O0) (3.23)

and

K 0 = (M 0
b
O0 M 0

nb
): (3.24)

Using the existence of (B�
v
)�1, (3.17) can be proved.

Remark 3.1. The condition

0
@ M

O

1
A linear independent of the basis (3.7) is incor-

rectly suppressed by J. Kriens and J.TH. van Lieshout (1988). J. Kriens (1989) provides

a counter example.
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4 Necessary and su�cient conditions for di�eren-

tiability of the e�cient frontier

Because of property b in section 1 we can restrict the discussion to the points

(�( �Xi); �
2( �Xi)), in the sequel to be denoted by (��i; ��

2

i
). Furthermore we only discuss

nondegenerate models.

Condition 1.

The e�cient frontier (e.f., for short) is di�erentiable in the point (��i; ��
2

i
) i� one value ��

corresponds to it.

Proof.

Follows directly from (1.13) and (1.14).

Condition 2.

The e.f. is di�erentiable in the point (��i; ��
2

i
) i� no corresponding �Xb-vector can be re-

presented by (2.1) with D = O.

Proof.

Necessary: D = O implies the same vector �Xb and thus the same point ��i; ��
2

i
) for more

than one value of ��.

Su�cient: D 6= O; ��1 6= ��2 ) �X(��1) 6= �X(��2) and so di�erent points (��; ��2), cf. lemma

2.1.

Condition 3.

The e.f. is di�erentiable in the point (��i; ��
2

i
) i� no corresponding �Xb-vector can be re-

presented by (2.1) with M 0
b
:D = 0.

Proof.

Follows from D 6= O  
! M 0

b
:D 6= 0.

! if �� changes, �Xb changes and �( �Xb) must change (lemma 2.1), so M 0
b
:D 6= 0 (cf.

(3.15)).

 trivial.
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Condition 4.

The e.f. is di�erentiable in the point (��i; ��
2

i
) i� (B�

v
)�1 exists.

Proof.

Follows from (B�
v
)�1 exists  

! M 0
b
:D 6= 0.

! see J. Kriens and J.TH. van Lieshout (1988) p. 190-191.

 if M 0
b
:D 6= 0, all elements of (B�

v
)�1 exist and B�

v
:(B�

v
)�1 = J .

Condition 5.

The e.f. is di�erentiable in the point (��i; ��
2

i
) i�

0
@ M

O

1
A is linear independent of the

vectors of Bv.

Proof.0
@ M

O

1
A linear independent of the vectors of Bv

 
! inverse of B�

v
exists.
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5 Relations with statements on di�erentiability in

the literature

The theorem stated by J. V�or�os (1987) and J. Kriens (1989) are easily checked through

applying the conditions of section 4. We combine these theorems in one new theorem.

De�ne �min := mini �i; �max := maxi �i,

M = (mij) := C
�1
b

(5.1)

f :=
kX

i=1

kX
j=1

mij (5.2)

d :=
kX

i=1

(
kX

j=1

mij�j): (5.3)

Theorem 5.1

If in the investment problem subject to (1.2) and (1.3), C positive de�nite, a corner port-

folio with � 2 (�min; �max) has k(� 1)x-variables in the basis, then the set of e�cient

(��; ��2) points is nondi�erentiable in the corresponding (��; ��2) point if and only if there

exists a representation of �X :

b
= (�x; . . . ; �xk) with 81�i:j�k�i = �j.

Proof.

We distinguish between k = 1 and k > 1.

Su�cient.

k = 1. Suppose �xi > 0, then �xi = 1; Cb1 = (cii);Ab = (1);Mb = (�i). Substitution of

these values into (3.14) leads to

D = 1

2

h
C�1
b1
� C�1

b1
A0

b
(AbC

�1
b1
A0

b
)�1AbC

�1
b1

i
Mb

= 1

2
c�1
ii

h
1 � (c�1

ii
)�1c�1

ii

i
�i = 0:

(5.4)

So D = O and from condition 2 nondi�erentiability follows.

k > 1. Let the representation with k variables in the basis be
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Xb =

0
BBB@

x1
...

xk

1
CCCA ;Cb1 =

0
BBB@

c11 . . . c1k
...

...

ck1 . . . ckk

1
CCCA ;A0b =

0
BBB@

1
...

1

1
CCCA ;Mb =

0
BBB@

�1
...

�k

1
CCCA ;

then

(AbC
�1

b1
A
0

b)
�1 =

1

f
(5.5)

and D can be rewritten as

D =
1

2
M

2
6664J �

1

f

0
BBB@

P
imi1 . . .

P
imik

...
...

P
imi1 . . .

P
imik

1
CCCA

3
7775

0
BBB@

�1
...

�k

1
CCCA : (5.6)

If �1 = . . . = �k, then D = O and condition 2 leads again to nondi�erentiability.

Necessary.

k = 1. Trivial.

k > 1. If there is nondi�erentiability then there exists a representation with D = O. For

this vector (5.6) is equivalent to

2
6664J �

1

f

0
BBB@

P
imi1 . . .

P
imik

...
...

P
imi1 . . .

P
imik

1
CCCA

3
7775

0
BBB@

�1
...

�k

1
CCCA =

0
BBB@

0
...

0

1
CCCA ; (5.7)

or

0
BBB@

�1
...

�k

1
CCCA =

1

f

0
BBB@

P
j (

P
imij) �j

...
...

P
j (

P
imij) �j

1
CCCA =

0
BBB@

d

f
...
d

f

1
CCCA ;

so nondi�erentiability implies �1 = . . . = �k.

Remark 5.1

In the case of constraint (1.1) instead of (1.3), Xb cannot contain only one x-variable if
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(1.1) contains two or more independent constraints.

Remark 5.2

Theorem 5.1 combines the theorems 5.1 and 5.2 in J. Kriens (1989) and generalizes the

case k > 1 to situations in which the basis contains x-variables with value 0. The theo-

rem also generalizes theorem 2 by J. V�or�os (1987).

Remark 5.3

The theorem can likewise be proved by directly applying condition 5 from section 4.
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6 The standard portfolio selection problem with

one riskless asset.

The standard portfolio selection problem with conditions (1.2) and (1.3) can also be

formulated as

min
X

�2(X) = X 0CX (6.1)

subject to

X � O (6.2)

nX
j=1

xj = 1 (6.3)

M 0X = �; (6.4)

using � as a parameter; the optimal solution is denoted as �X(�).

Now, consider the standard portfolio case with one riskless asset: minimize (6.1) subject

to (6.2),

nX
j=1

xj + y = 1 (6.5)

M 0X + i y = �; (6.6)

where y is the share of capital invested in the riskless asset and i is the rate of interest;

we allow y to be positive, 0 or negative.

We can easily state that for � = i the optimal solution runs �y = 1; �X(i) = O with

�2(r( �X(i))) = 0. Thus we can restrict to the case � > i; furthermore we assume

i < maxjf�jg. Let again X 0b = (x1; . . . ; xk) represent the set of basic x-variables and
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X 0nb = (xk+1; . . . ; xn) the set of non-basic x-variables. Denote the Lagrange multipliers

of (6.5) and (6.6) by u1 and � respectively, and let In =

0
BBB@

1
...

1

1
CCCA with n elements. The

Kuhn-Tucker equations for the problem (6.1), (6.2), (6.5), (6.6) are:

2Cb1Xb + Ik:u1 �Mb� = O (6.7)

2Cb2Xb + In�k:u1 �Mnb� � O (6.8)

�u1 + i� = 0 (6.9)

X � O (6.2)

I0kXb + y = 1 (6.10)

M 0

bXb + iy = �: (6.11)

From (6.7) we have

Xb = �
1

2
u1C

�1

b1
Ik +

1

2
�C�1b1

Mb: (6.12)

With (5.2), (5.3) and

e :=
kX

i=1

kX
j=1

mij�i�j (6.13)

we can derive from (6.10) and (6.11)

I0kXb = �
1

2
fu1 +

1

2
d� = 1� y (6.14)



19

M 0

bXb = �
1

2
du1 +

1

2
e� = �� iy: (6.15)

Lemma 6.1

The expression fi2 � 2di+ e is always positive, except in the case 8i2f1;...;kg�i = i.

Proof

(Mb � iIk)
0C
�1

b1
(Mb � iIk) = fi2 � 2di+ e = 0 i� Mb = iIk

 �
! 8i2f1;...;kg�i = i (cf. also J.

V�or�os (1987)).

As 8i2f1;...;kg�i = i implies � = i, the case we excluded, fi2�2di+ e is always > 0 in our

model.

Lemma 6.2

For a given set of basic x- variables Xb the problem (6.1), (6.2), (6.5), (6.6) has a unique

solution.

Proof

Eliminating y from (6.14), (6.15) and using (6.9) we �nd

� =
2(�� i)

fi2 � 2di+ e
(6.16)

and

u1 =
2i(�� i)

fi2 � 2di+ e
: (6.17)

From these equations and (6.12) it follows that the solution is unique.

In the remainder of this section we exploit the well-known property that in the (�;�)-

plane the e.f. of the model (6.1), (6.2), (6.5), (6.6) is a straight line through the point

� = i; � = 0 which touches the e.f. of the risky assets of the model (6.1),...,(6.4) if this

e.f. is di�erentiable (cf. e.g. Th.E. Copeland and J.F. Weston (1988) p. 179-180). This

property implies that we can �nd the e.f. of the risky assets by using i as a parameter:

with every value of i there corresponds one point of the e.f. of risky assets and so one
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set of basic variables Xb. Formulae (6.12) and (6.8) provide a simple procedure for

deriving the corner portfolios of the risky assets. Therefore we rewrite (6.12) and (6.8)

by substituting (6.16) and (6.17) into

C
�1

b1
Mb � i C�1b1

Ik � O (6.18)

Cb2C
�1

b1
Mb �Mnb + i(In�k � Cb2C

�1

b1
Ik) � O: (6.19)

The algorithm runs as follows.

Step 1: Determine maxf�jg and �ll up the sets Xb and Xnb.

Step 2: Find the smallest value of i for which (6.18) and (6.19) hold.

Step 3: If i = �1 then stop. Otherwise remove the variable from Xb into Xnb if Xb � O

gives the smallest i, or inversely. Repeat step 2.

If we apply this algorithm to the well-known Markowitz example

M =

0
BBB@

1

3

5

1
CCCA C =

0
BBB@

3 3 �1

3 11 23

�1 23 75

1
CCCA ;

then �3 = maxf�jg;Xb1 = (x3) and we �nd successively

Xb2 =

0
@ x2

x3

1
A ;Xb3 = (x2) ; xb4 =

0
@ x1

x2

1
A ;Xb5 =

0
BBB@

x1

x2

x3

1
CCCA ;Xbb =

0
@ x1

x3

1
A :

The expressions (6.7) (or (6.12)) and (6.8) are a special form of the equations (3.1).

Raising the value �� of � from 0 to the largest relevant value in the standard algorithm

is the same as lowering i = u1
�
from the largest relevant value to �1 in the algorithm

just presented. Both algorithms produce exactly the same steps, albeit in a reverse order.

The model of this section gives us the opportunity to present another proof of theorem

5.1.
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Another proof of theorem 5.1.

If the e.f. of the risky assets is nondi�erentiable in a point P there are di�erent interest

rates i from where we can draw subgradients to P . For this interval of values i the return

on the portfolio of risky assets is the same i.e. independent of i. Using (6.15) we get

M 0

bXb = �
1

2
du1 +

1

2
e� = � (6.20)

with � the expected return of the corresponding portfolio. We substitute (6.16) and

(6.17) for � and u1 to �nd

(d� f�)i� (e� d�) = 0: (6.21)

This can hold for the whole interval of i-values i�

d� f� = 0 and e� d� = 0 (6.22)

from which follows

f�2 � 2d�+ e = 0 (6.23)

and with lemma 6.1: �i = �j = � for all xi; xj 2 Xb.

Considering the case �i = �j = � for all xi; xj 2 Xb we �nd with (5.2), (5.3), (6.13)

e = �2f and d = �f (6.24)

and with (6.12)

Xb = �
1

2
(u1 � ��)C�1b1

Ik: (6.25)

Substitution of the equations (6.16) and (6.17) leads to

Xb =
1

f
C
�1

b1
Ik; (6.26)

which is independent of i, so subgradients can be drawn to a whole interval of i-values.
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