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ABSTRACT

Confidence intervals for asymmetric distributions can be

based on Student's t statistic or on Johnson's modified t sta-

tistic which has two variants, namely a linear and a quadratic

approximation. Confidence intervals based on the quadratic ap-

proximation, are complicated and are first investigaCed geome-

trically, wtiich results tn new insiRht. Next Monte Carlo experi-

ments yield estimates of the coverage and power of several vari-

ations of Johnson's test. These experiments show that the qua-

dratic approximation is superior.

1. INTRODUCTION

We investígate several confidence intervals for the mean of

an asymmetric distribution. Norman Johnson (1978, p. 537) modi-

fied Student's t statistic, explicitly accounting for skewness

u3 '
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where all symbols are standard (mean u, variance a2, third cen-

tral moment u3, sample mean x, unbiased sample varíance s2, sam-

ple size N). .lohnson (1978, p. 538) further stated "... the ef-

fect of the term ínvolving (x-u)2 in small arder ...neglectínl;

[he term involving ( x-u)1 .... reduces [tI) to the variable

ti...". Our preliminary experiments, however, showed that neR-
~

lecting (x-u)` definitely affects the coverage and power of the

test. Those experiments alsa demonstrated that distribution-free

alternatives like the sign and Wilcoxon's signed rank test do

not work for an asymmetric distribution (and as the sample size

N increases these statistics perform worse). Therefore we shall

compare several versions of Johnson's statistic to the classical

t statistic. First we shall present analytical results; next we

shall discuss Monte Carla estim~tes of coveraKe and power.

2. CONFIDENCE INTERVALS REANALY'l.ED

To analyze confidence intervals based on the quadratic term
(x-u)2, we develop a graphical representation that seems new.
For didactic reasons we first discuss Student's t test; see Fig.
1(a). The t statistic with v degrees of freedom satisfies the
following equation:

~
1- a- P[t~ ~(ta 2)`)

i
- i' I-iN-I'y~~N c x- t~ c tN-~.h~~NÍ (z.l)

If we define

fl(u) - x - v

c - tN,i.s~~N

(2.2)

(2.3)
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u(1) - x - c

u(2) - x t c

then eq. (2.1) implies

f~(u) c c A El(u) a-~.

or

u(1) c u c u(2)

which is equivalent to the well-known result

x- tN,i.s~~N c u c x f tN~i.s~dN.

(2.4)

(2.5)

(2.7)

(2.8)

Now we consider Johnson's linear approximation ti. We have

pLctured a positive u3 in Fig. 1(b) so that the confidence in-

terval moves to the right, when compared to Student's statistic;

the interval is not centered around the sample mean x. For nega-

tive skewness analogous results hold.

Johnson (1975, p. 538) stated: "Use of the variable tl does

not lead to a simple expression for confidence intervals for u

since the numerator of tl ín nonlinear in u;" he does not elabo-

rate. We analyze possible complications, using the graphical

representation of FiK. 1(c). The function E3(u) equals the first

Eactor in eq. (l.l), i.e., f3(u) in a second degree polynomial

in u. The mathematical analysis yields

f3(v) ~ c i V(1) ~ u~ u(4) (2.9)

and (A)
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f3(V) ~- c i u~ u(2) ~ U ~ u(3) (2.10)

so that the mathematical solution (to be distinguished from the

statistical solution; see below) ís

u(1) ~ u~ p(2) ~ u(3) ~ u~ u(4) (2.11)

Mathematical analysis of second-degree polynomials proves that
the interval [u(1), u(2)] cover the sample mean x, just as the

first-order interval of Fig. 1(b) does. The interval
[u(3),

u(4)J does not overlap the interval of Fig. 1(b). The disjunct

lnterval (~i(3),~i(4)] doc~s no[ make sense statistical ly (also see

the Monte Carlo results in tlie next section), so tliat we elimi-

nate this interval. If the skewness is negatíve, then again two

disjunct intervals result; one interval does not cover x and is

rejected.

There is an more complication, namely f3(u) may not inter-

sect the lower horizon[aL line, i.e.,

min [f3( u)] ~ -c (2.12)
V

lJe investigate two heuristic solutions; see Fig. 2. The Eirst
~

solution takes u(2) equal to ~, the value where f3(u) reaches

its minimum. The second solution uses Fig. 1(a) and 1(b), where

f(u) is a straight line with tangent minus one i.e., in Fig. 2
~

we replace f3(u) by -u f c2 where cZ is a constant and U~ u.
~

Obviously ~(2) of the second solution exceeds ~ of the first

solution. Contiequen[ly the coverage (probability that u lies

wíthtn the confídence interval) is higher Eor the second solu-

tion, and the power function ís smaller. The (absolute, not re-

lative) values of the coverages and power functions of the two

solutions are unknown. Therefore we shall resort to Monte Carlo

experimentation in the next section. But first we note one final

complication.
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We estimate u3 in eq. (l.l) through the unbiased estimator

NN - 3
u3 - (N-1)(N-2) i (xi-x) (2.13)

see Kenney and Keeping (1954, p.100). Especially if N is small,

u3 may have the wrong sign. Consequently, if f3(u) is a polyno-

mial with a minimum or "valley", then f3(u) has a maximim or

"hill"; see Fig. 3. The confidence interval based on f3(u)wstíll
covers the sample mean (at ~~ - x ttie slopes oE f3(u) and f3(u)

equal -1). Also see the Appendix for computational details.

3. DESIGNING THE MONTE CARLO EXPERIMENT

(i) Random number generator: We use the multiplicative congruen-

tial generatur whích is standard on our ICL 2960 computer. This

generator was developed by NAG (Numerical Alghorithms Group) ín

England. It uses [he multiplier 1313 and the modulus 259. The

seeds are Kenerated randomly by the computer ítself, using the

internal clock. All Monte Carlo results are independent (differ-
ent seeds), except Eor the fact that each sample is analyzed

though different statistics (t, tl, etc.) which yields dependent

results.

(ii) Sam~le size N: Johnson (1978) used N equal to 13 and 25. We

pick N equal to 10, 16, 25 and 50 in the coverage study, and N

equal to 10 and 25 in the more expensive power study.
(íii) a level: We select a is 0.10, 0.05 and 0.01 in the cove-

rage study, and a ls O.10 and 0.05 in the power study.

(Lv) Type of dístribution: Many asymmetric dis[ributions could

have been selected. We choose the exponential and the lognormal

distributions. Given tlie random numbers r, we sample from the

exponential and the lognormal distributions, using standard pro-

cedures available on our computer. So we sample from the expo-

nential dístribution using the logarithmic transformation
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-(Rn r)~a where u- a- l~a. And if y has a normal distribir

tion with mean uy and variance ay then we know that x- exp (y)

has a lognormal distrihutíon with mean

ux - exp(uytaY~2)

and variance

a2 - ~eXP(2uy~-ay)~~exP(ay) - l~
x

(3.2)

Wc sample y from fhr normnl distrih~itictn u~:in}; the ntandard Box-

Mull.er transformatlon. C)hviously changes in the exponentíal pa-

rameter a do not affect the results of ttte various statistics.

Therefore we fix a at the value 1. For the lognormal distribu-

tion all combinations of ux and ax with a fixed ratio ux~ax

yield identical results so that we study only three combinati-

ons: ax - ux~3, ax - ux and ax ~ 3ux. The exponential might

seem to be the skewest distribution since its mode occurs as the

extreme left; actually its "excess" u3~a3 equals 2 whereas the

lognormal has excess 1, 4 and 36 for ax - ux~3, ax - ux and

ax - 3ux. Johnson (1978, p. 538) selected the XZ and Xi~ dis-

lrihution~;. Th~~ X~ i~: lclentfcal tu the expitnential; ohviously

Che~ xitt Iti m~irr s:ymioc[rl~~. tici we cnver more rxLreme forms of

asymmetry.

We also apply the different statistics to the normal dis-

tribution. In that situation the assumptions of Student's sta-

tistic are satisfied, i.e., the expected coverages should equal

the prespecified nominal values 1-a. We use the normal distribu-

tion not only to verify our computer program, but also to exa-

mine whether the modified t statistics with or without neglec-

tion of (x-u)Z work when the distribution is actually symmetric

(namely Causstan).

(v) Numhc~r ui Mnnte Girl~~ reltlfcatirnie; R: Thi, mc~rc. ofeen wi~ r~-

~u~al thi Muntc~ Carlo c~xpc,rlmrnt, the murc~ n~~curat~~ our reSUIL::
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become. Unfortunately, Monte Carlo experimentation requires much

computer time. Obviously the nunber of replications R needed to

estimate the actual a-error withtn l0i with 9(l~ probability, is

R - (1.6449)~ (1-a)~a. (3.3)

Hence if a is 0.10, 0.05, 0.01 (see iií) then R is 2435, 5140,

26786 respectively. Such high R values are prohibitive, given

our computer budget, so that we use R equal to 2500 to estima[e

coverage and R equal to 400 to estimate power func[tons. For-

tunately the experimental noise turns out to be small relative

to the systematic effects, so that we can detect certain pat-

terns (see next section).

(vi) Sta[istical procedures: We use the Eollowing statistics to

derive a confidence interval for the mean:

(1) Student statistic t; see Fig. 1(a).

(2) Johnson's linear statistic ti; see Fig. 1(b).

(3) Johnson's quadratic sta[istic tl which yields either two

disjunct intervals [~(}),u(~)] and [u(3),u(4)] or one long in-

terval [u(l),p(4)]; see Fig. l(c) and Fig. 2.

(4) Johnson's quadratic statistic tl with elimination of the

interval that does not cover the sample mean x and, if no inter-
~

section occurs, with u(2) equal to ~; see Fig. 2.

(5) Like (4) but u(2) follows from the linearization of f3(v);
see the line with slope - 1 in Fig. 2.

4. MONTF. CARLO RESULTS

We do not bother the reader with the raw data of the Monte

Carlo experiment. (These data were made available to the refe-

rees, and interested readers may write the authors for these

details). Instead we present the ínformation we derived from

these data (see Fig. 4 to which we shall return).
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4.1 Covera~e: Exponential Distribution

We derive confidence intervals, using five different sta-

tistical procedures; see Section 3, sub ( vi). Student's statis-
tic t and Johnson's linear statistic ti give significantly low

coverage, for all twelve combinatfons of. a and N except one (N -

50; a- 0.10); we test this signiElcance through the binomial
distribution with parameters a and R and signiEicance level
0.10; no normal approximation. For Johnson's quadratic statistic
we s[udy three procedures. Pr.ocedure ( 3) of Section 3 has the
highest coverage, but it may have two disjunct intervals so that
i[ is sta[istically unacceptable. Obviously the coverage of prcr
cedure ( 5) exceeds that of procedure (4). Frocedure ( 5) gives
significantly low coverage ln 3 out of 12 cases; these signifi-
cant values are not dramatically low (0.979 for a- 0.01; 0.941
for a- 0.05 and 0.889 for a- 0.10) The Monte Carlo experiment
also shows how often no intersection of f3(p) and -c (- - tN,l
s~~N) occurs. Obviously intersection occurs more often, as N

and a tncrease. "No intersection" occurs with an estimated pro-
bability of 70~ if a i s 0.01 and N is 10, and 3i if a is 0.10
and N is 50. The estimate U3 has the wrong sign, with estimated
probability of 5i if N is j0 and Oi if N i s 50 (obviously a has
no effect).

4.2 Coverage: Lo ng ormal Distributíons

For u is 1 and o is 1~3 the lognormal has smaller excess

than the exponential has. Consequently the coverage of Student's

statistic improves, especially as N and a increase. Johnson's

línear statistic hardly improves the coverage. Johnson's quadra-

tic statistic with linear approximation if needed (procedure 5)

give:: the highest coverage; only 3 out of l2 situations show

sígniEícantly low coverage.
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For u is 1 and a is 1 the lognormal has excess 4. Student's

and Johnson's linear statistics give significantly low coverages

in all twelve situations. The quadratic statistic always impro-

ves the coverage. Somettmes (3 out of 12) the coverage is not

too low; never the coverage is dramatically low; for example,

estimated coverage is 0.969 instead of 0.99 (- 1-a) if N is 10.

For u is 1 and a is 3 the excess is extreme, namely 36.

Student's and Johnson's linear statistics (t and tl) perform

very poorly. The quadratic statistics do relatively better;

tlleir coverages are significantly low, for example, if a is 0.01

and N is 10 then estimated coverage is 0.88 and if a becomes

0.10 then coverage becomes 0.77 (t and [1 give 0.66 and 0.67).

4.3 Power

We estimate [he power functton at 21 values of u, usinl; 400

replications per value (and 2500 replications at u- u0 - 1). We

investigate 13 combinations of different distributions, N values

and a values. We display only three representative examples in

Fig. 4. The estimated power functions of Student's and Johnson's

linear statistics are so close that they cannot be distinguished

in the resulting pictures. The quadratic statístic with two dis-

junct intervals shows curious hehavior, i.e., the power shows a

dip in a certain area left of U0. We have already explained that

two disjunct intervals are statistically unacceptable; the dip

of the power function emphasizes the statistical misbehavior of
this procedure. The quadratic statistic with linearization (pro-

cedure 5 of Section 3) has an estimated power function the

reaches its miniminn at u equal to u0 whereas the linear statis-

tics reach their minimum when u exceeds U0. The values of these

minima are rou~;hly equal. An extremely skew lognormal distribu-

tion (a - 3u) gives an estima[ed power functton with a shape

that differs from the other dtstributions, if the dlstributtons

ís actually normal, thi~n all five yta[ístics y;íve nearly identl-
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cal power functions. So as Johnson (1978, p. 539) has already

noted, the modified t test also works if the distribution hap-

pens to be normal.

5. CUNCLUSIUN

Althougli many studies claim that Student's sta[istic t is

robust, Johnson (1978) proposed a modified t statistic. We find

tliat his statistic [i, which neglects (x-u)2, does not improve
2

the t staCistic. The statistic tl, which includes the (x-~)

term, requires the solution oE second-degree polynomials. This

tl gives excellent resul[s tn the exponential case while the

linear statistics (t and ti) then fail. In the lognormal cases

the quadratic statistic tl does not give perfect results; never-

theless its coverage is quite close to the prespecífied nominal

value 1-n, nnd its results are better than the linear sta[istics

(t and tl). If the distr[but[on is actually norroal, then all

statistics give the desired coverage. So it i.s good practice to

modify the classical t statistic, as proposed by Johnson (1978),

provided we do include the (x-u)2 term; the price we pay is a

slight increase in computation which, however, is negligible

when using a (micro) computer.
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APPENDIX. COMPl1TATIONAI, DETATLS OF CONFTDENCE 1NTF:RVAL US1NC tl

In lhc~ mnln I~~xt wr li.rv~, alrrtidy dcfínc~~l lhc~ (nl luwlnt; s)nn-
bols: x, ti~, 1i3, c. We nuw Jetine cl - u3 ~(b sl N), cL - t~j ~
(3 s4), dl - 1- 4 c2 (cl f c), dz ~ 1- 4 c2 ( cl - c). Next we
introduce K- x.i- 1~(2 c2) -(dl)~ ~(2 c2), L- x t 1~(2 c2) -

(d2)~ ~(2 c2), M - x f 1~(4 c2) f cl f c, N- x f 1~(4 c2) f cl
- c. If u3 ~ 0 and dl ~ 0, d2 ~ 0 then procedure ( 5) yields the
confidence interval [L,K]; i f dl ~ 0 and d2 ) 0 then [L,M]. If
N.J ~ 0 and dl ~ IJ, dZ ~O th~n the lnterval ís [L,K~; if dl ~O

and dZ ~ O then [N,K].
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FIG. 1(a). Student statistic t.
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FI6.1(b). Johnson's first-order modification tl'



FIG. 1(c). Johnson's second-order approximation t~.
~

f3(~u) - (z-u ) t-~ t-~ (z-,tt )2
6 Q N 3Q

--------------------------------------------------------------
~ . i
i ~
i ~
i ~
i i
i i
i ~
i ~
i i

X i ~(2) ~ ~(3)i
i i
i i
i
i i
i i
i i ~i

(4)

-- ----------------------- ----------- -----------------------------------
cr ~ ~



FIG. 2. No intersection with -c.
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FI6. 3. Wrong sign of ~u3



FIG. 4. EstiRatea oower functions (N - 25; ~t - 0.U5)
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