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ABSTRACT

This tutorial gives a survey of strategic issues in the statistical design
and analysis of experiments with deterministic and random simulation
models. These issues concern validation, what-if analysis, optimization,
and so on. The analysis uses regression models and Least Squares
algorithms. The design uses classical experimental designs such as

2k-P factorials, which are more efficient than one at a time designs are.
Moreover, classical designs make it possible to estimate interactions
among inputs to the simulation. Simulation models may be optimized through
Response Surface Methodology, which combines steepest ascent with
regression analysis and experimental design. If there are very many
inputs, then special techniques such as group screening and sequential
bifurcation are useful. Several applications are discussed.

INTRODUCTION

Simulation is a mathematical technique that is applied in all
those scientific disciplines that use mathematical modeling. These
disciplines range from sociology to astronomy, as Karplus (1983) discussed
so eloquently. Simulation is a very popular technique because of its
flexibility, simplicity, and realism. By definition, however, simulation
involves experimentation, namely experimentation with a model.
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Experimentation requires an appropriate statistícal design and
analysis. For real systems, mathematical statistics has been applied since
the 1930's, when Sir Ronald Fisher focussed on agricultural experiments.
Since the ~95o's George Box concentrated on chemical experimentation,
which resulted in the well-known textbook by Box and Draper (1987). Tom
Naylor organized a conference on the design of simulation experiments back
in 1968; the proceedings are found in Naylor (1969}. In 1974~75 my first
book (Kleijnen, 1974~1975) covered both the 'tactical' and the 'strategic'
issues of experiments with random and with deterministic simulation
models. The term tactical was introduced into simulation by Conway (1963);
it refers to the problems of runlength and variance reduction, which arise
only in random simulations (for example, queuing
simulations). Strategic questions are: which combinations of values for
the input variables should be simulated, and how can the resulting output
be analyzed? Obviously strategic issues arise in both random and
deterministic simulations. Mathematical statistics can be applied to solve
these questions, also in deterministic simulation; see Kleijnen (1987,
1990) and Sacks et al. (1989). This contribution focusses on the strategic
issues in simulation experiments.

Strategic problems are also addressed under names like model
validation, what-if analysis, goal seeking, and optimization. Table 1
summarizes some terminology; we shall return to this table.

PART 1: REGRESSION METAMODELS

Figure 1 illustrates the type of graphs that is often used in the
analysis of simulation results; it represents the relationship between the
input and output of a simulation model. The visual analysis of the
resulting 'cloud' of observed points should provide insight into the
global effect an input change has on the output. Moreover, such a figure
enables interpolation and extrapolation to get a quick estimate of the
expected simulation response at an input value not yet observed. Note that
in f.igure 1 the observations at low utilization rates show so little
variation that they seem to coincide, given the scale of that figure.
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Table 1: Terminology

Computer Simulation Regression User
program model model view

Output Response Dependent Result

varíable y

Input Parameter Independent Environment

varíable x

Variable

. Enumeration . Continuous . Validation
. Risk Analysis

. Function . Discrete Controllable

. Scenario . Binary . Optimization

. Goal output
(control)

. Satisfy
(what-if)

Behavtoral re-
Zationshtp

The visual analysis becomes impractical, when there are several
input variables. Therefore we propose to replace the graphical analysis by
an algebraic analysis: we use a regression model. Why is such an analysis
useful? Most important is the resulting insight into the general behavior
of the simulated system. A well-known disadvantage of simulation is its ad
hoc character: the simulation responses are known only for the selected
input combinations. Through regression analysis we can simultaneously
examine all input~output combinations used in the simulation experiment,
and gain more insight, while using a minimum of computer time. Computer
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Figure 1: Relationship between average waiting time
and utilization rate in simulated M~M~1
u - 1.0, a - 0.50,0.75.0.90,
4 times 100 000 customers simulated per combination
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time plays an important role in the search for optimal input combinations
and ín sensitivity analysis. We will show that the Zínear regression model
is an adequate model to gain insight into simulation models. Because we
make a(regression) model of the simulation model, we speak of
(regression) metamodels. That simulation model is treated as a black box
in our approach.

We distinguish between variables and parameters. Following Zeigler
(1976), we define a parameter as a quantity that cannot be observed in the
real system, whereas a variable can be observed directly. Examples of
variables are customer arrival times and number of servers; examples of
parameters are the arrival rate a of the Poisson arrival process, and the
service rate u. When the simulation program is run, the parameters are
known inputs.

REGRESSION METAMODELS

Before systems analysts start experimenting with a simulation model, they
have accumulated príor knowledge about the system to be simulated: they
may have observed the real system, tried different models, debugged the
final simulation model, and so on. This tentative knowledge can be
formalized in a regression model or an Analysis of Variance (ANOVA) model.
ANOVA models are discussed in elementary statistical theory of
experimental design. The simplest ANOVA models, however, can be easily
translated into regression models, as Kleijnen (1987 pp. 263-293) shows.
Because regression analysis is more popular than ANOVA is, we shall use
regression terminology henceforth.

So prior knowledge is formalized in a tentatíve regression

model. (Because this model is only tentative, it must be tested later on
to check its validity.) The regression model specifies which inputs seem
important, which ínteractíons among these inputs seem important, and
which scalíng seems appropriate; we shall discuss these items next.

Table 1 showed that possible 'inputs' are parameters and
variables, but also 'behavioral relationships'. Examples of such
relationships are priority rules in queuing models, and consumption curves
ín economic models. So a module of the simulation model may be replaced by
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a different module. In the regression model such a qualitative change is
represented by one or more binary variables. For example, x--1 if the
priority rule is First Come First Served, and x- tl if the rule is Last
Come First Served. Note that 'inputs' are called 'factors' in experimental
design terminology. The tentative regression model becomes

Y- Po t FJ- 1 PJ xJ t FJ ' i ~s - 1~ 1 SJ a xJ xe }

t Fk ~ XZ t E,
J-1 JJ J (1)

where the symbols have the following meanings. The symbol y denotes the
simulation response. po represents the overall mean response. ~, gives theJ
main or first-order effect of factor j(j - 1,..., k). pJg denotes the
two-factor interaction between the factors j and g(g - jtl,..., k); that
interaction implies that the effect of factor j depends on the 'level' of
factor g; the response curves do not run parallel. gJJ represents the
quadratic effect of factor j; it means that the response function shows
curvature; such effects assume quantitative factors. Finally s denotes
'fitting errors' or noise. Under certain restrictive mathematical
conditions the response function in Eq. (1) is a Taylor series expansion
of the simulation model y(xl,...,xk). Unfortunately, these conditions do
not hold in simulation. Therefore we propose to start with an initial
model, for example, a model like Eq. (1) or even a simpler model with only
main effects (3J besides the overall mean go. The purpose of that model is
to guide the design of the simulation experiment and to interpret the
resulting simulation data.

Note that Eq. (1) excludes interactions among three or more
factors. Such interactions are popular in ANOVA, but they are hard to
interpret. A regression model without such interactions often suffices, as
we have observed in practice.

The regression variables x in Eq. (1) may be transformatfons of
the original simulation parameters and variables; for example, x-ilog(z~) where zl denotes the original simulation input. We shall return to
such transformations. Scaling is also important: if the lowest value of
zt corresponds with xl --1 and the highest value of zl corresponds with
xl - tl, then s1 measures the relative importance of factor 1 when that
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factor ranges over the whole experimental area. In optimization, however,
the response curve is explored only locally if Response Surface

MethodoZogy (RSM) is used, as we shall see. The Zocal regression model may
be a first-nrder model:

} ~k
y- Y~ j- í ój Zj t E.

The midpoint of the local experiment is (z ,., zj,.. , zk) withi '

Fn Z
- i-1 íj~ - (j-1,....k).

(2)

(3)n

where z denotes the value of factor j in factor combination i, and nij
denotes the total number of factor combinations explored locally. The
importance of factor j at the midpoint of the local experiment, is then
measured by y, z. For further details we refer to Bettonvil and KleijnenJ j
(1990).

In all experiments analysts use models such as Eq. (1), explicitly
or implicitly. For example, if they change one factor at a time, then they
assume that all interactions are zero. Of course it is better to make the
regression model explicit and to find a design that fits that model, as we
shall see.

As an example we model a delicatessen store with one queue and s
employees; the service rate is u, and the customer arrival rate is a.
Possible criteria, which summarize the results of the simulation, could be
the utilization rate of the servers, and the mean waiting time of
customers. In this example, however, we concentrate on a single output,
namely average waiting time w. So we summarize the time series formed by
the individual waiting times wl, wz,.., through a single number, namely
the average w. We formulate a regression metamodel; for example
y-~3xZt E, where y represents the average waiting time w, and x
represents the utilization or traffic rate p-~~(Ns). This yields a
figure that resembles figure 1.
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LEAST SQUARES

Suppose that in the queuing example we study six combinations of the three
simulation inputs (arrival rate a, service rate k, and number of servers
s). We select these input values such that the utilization factor p lies
between 0.5 and 0.~. We simulate each input combination for (say) 2000
customers, and compute the average waiting time w. This we repeat 20
times; each replicated simulation run starts in the empty state (no
customers waiting), and uses a new stream of pseudorandom numbers.

A naive metamodel for this queuing simulation would be

w

The simulation inputs correspond with the unscaled regression variables in
Eq. (2), as follows: zl - a,zz - y„ z3 - s, and a dummy variable zo - 1.
This yields the scaled variables x. For example, since ~ ranges between
(say) 1 and 4, we get

y t~ ~ t y u . y s t e. (4}o i z 3

(5)

Of course, there is a dummy variable xo - 1 that corresponds with p in0
Eq. (1). For simplicity's sake we suppose that each combination is
replicated an equal number of times (say) m; in the example m is 20. Then
the Least Squares algorithm can be applied to the average responses; in
the example we have

- ïm w ~m with i- 1,...,n,~-~ ~~ (6)

where n denotes the number of combinations; in the example n- 6. So the
response varíable in Eqs. (1) and (2) is yl - wL. Queuing theory suggests
the use of a logarithmic scale:

log w - y t y 1og a t y log u t,y log s t E,o i z 3 (7)

which implies y- log w, zl - log a, etc. If y1 --~-2 --y3 (which we can
easily test), then (7) implies



9

. ~~~~1 ~ . ~, .
w-~o xs E - ë0 P E. (8)

w ~
where ~~ - log yo and E- log e. Earlier we suggested to approximate the
input~output behavior in figure 1 by the model

- 2
W- Y P t e. (9)

Equation - pz ,(9) implies x in other words, a metamodel that is
quadratic in its inputs can still be linear in the regression parameters.
Eqs. (4) through (9) give alternative metamodels for a simple queuing
simulation. The specification of regression models depends on knowledge of
the simulated system, not on knowledge of mathematical statistics!
Mathematical statistics can help to validate the regression model, as we
shall see.

The standard deviation (or standard error) of the output y can bei
estimated from the m replications, provided m) 1:

- I ~C-i (y1C - yl )2

III` (m - 1) m ~ . (10)

where the factor m is needed because y. is the average of m responses. The~
m replications use identical independent combinations of inputs but
different pseudorandom number seeds. In deterministic simulation,
replication would make no sense; the same output would result.

We can now apply the Ordinary Least Squares (OLS) technique to
estimate the vector of regression parameters p:

P - (X~X) 1X~Y .

y is a vector with n elements, X is an n X q matrix, where q denotes the
number of regression parameters; in Eq. (4) q is four. The variance-
covariance matrix of y, denoted by cov (y), is a diagonal matrix with the
elements oi ; see (10). We can apply not only OLS, but also Estimated
Weighted Least Squares (EWLS), as Kleijnen (1987) discusses in detail. If
different input combinations use the same pseudorandom seed, then cov (y)
is not diagonal anymore. Its elements can be estimated:
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- ~~-1 (Yi - Y.)(Yi~
cov

(Yi. Y;.) - (m-1)

(i, i' - 1,...,n). (12)

For i- i' this equation reduces to Eq. (10). Common seeds in regression
metamodelling are further discussed in Kleijnen (1991). The OLS estimator
~ remains unbiased, even if the distribution of the simulation responses
is not Gaussian. Normality usually holds if the simulation responses are
averages, such as average queuing time.

In determini.stic simulation we can also apply linear regression
models. Then we assume that E, the deviations between the simulation
output and the metamodel prediction, is normally distributed, again with
zero mean but now with constant variance a2. The simplest model assumes
that these deviations are independent, so OLS suffices; see Kleijnen
(1990). A more sophisticated model for E is discussed by Sacks et al.
(1989).

VALIDATION OF REGRESSION METAMODELS

Suppose we have specified and 'calibrated' a metamodel; that is,
we have estimated the values of the regression parameters p. We can then
use this metamodel to predict the output for neta values of the parameters
and input variables of the simulation model: inter- and extrapolation. So
we select a new combination of the q independent variables x' -

(n.l)-

(l,x(n~li),.. , x(n.l)q-1), and through the metamodel we predict the
simulation result:

t 4 ( x - x'yn.l - ~0 ~h-1 sh (n.l)h ntls ~ (13)

To test whether the predictor (13) is accurate (so the metamodel is
valid), we actually run the simulation program with the new input
combination x In determtnistic simulation we 'eyeball' the relativen.l-
prediction error Yn,1,yn.1' is this error 'acceptable'? (We shall discuss
random simulation later.)
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A disadvantage of this method is that the simulation program must
be executed for one or more extra input combinations. An alternative
is cross-validation, which runs as follows.
(i) We eliminate one combination, say i, from the old data. So we

eliminate row i of X and element y, of y. The remaining data are~
denoted by X and y.- i - 1 .

(ii) We estimate the regression parameters p from the remaining data. So
Eq. (11) is replaced by

- (X' X ) IX~ Y- i - i - i - i -

We assume that the number of combinations n exceeds the number of
regression parameters q; otherwise the (n-1) X q matrix X would-1
certainly be singular.

(iii) To predict the result for the eliminated combination we replace Eq.
(13) bY

- So(-i) ~h-1 Sh(-i) xih - xi~-1
} y-1

(15)

(iv) We calculate the relative prediction errors ,y Iy .i i
(v) We repeat steps (i) through (iv) for all n values of' i.
So without any extra simulation effort, we have n prediction errors at our
disposal. These errors can be 'eyeballed' again. We shall give an
application later on.

For random simulation models with Gaussian responses we can adapt
the cross-validation approach, as explained in Kleijnen (198~, 1991). But
there is a more powerful validation test, namely Rao (1959)'s Zack-of-ftt
F test. This test compares two variance estimators. One estimator uses the
Mean Squared Residuals (MSR):

n

~2 - ~i - 1 (yi

n-q - (Y - Y)~(Y - Y)I(n-q), - e' eI(n-q). (lfi)

where y - X s and p denotes the Estimated Generalized Least Squares (EGLS)
estimator
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F~ - (x' [cov (Y)7-` x)-'x' [cov (Y)7-1 Y; (17)

obviously in Eq. (16) the estimated fitting errors are e. The MSE is
unbiased only if the model is correct; otherwise it overestimates the
variance. The other estimator, based on replication, was defined in Eq.
(12). Obviously, the latter estimator does not depend on the regression
model. The model is rejected if the ratio of these two estimators exceeds
F~ ~ with v1 - n- q and v2 - n(m-1):

1 ' 2

F - m-- ntq 1 e' [cov (Y)~ 1 en-Q~m-n.q n-Q (ID-1)

USE OF METAMODELS

(18)

Only after the metamodel has been validated, can it be used to
explain the behavior of the simulation model. To test if an estimated
regression parameter differs significantly from zero, the 1-a confidence
interval for the OLS estimator is computed. For random simulation this
interval is

~ t
tcx~ 2

h m
var (Sh) (h-1,...~q), (19)

where var (ph) is the hth diagonal element of

cov (g) - (X'X)-1 X' cov (y) X (X'X)-1 , (20)

where cov (y) is given by Eq. (12). For deterministic simulation we assume
that cov z(y) - 6 I where o is estimated by (16) provided we replace the
EGLS estimator p in (16) by the OLS estimator p. So for deterministic
simulation we get

cov (g) - (X'X)-1 62 (21)
and

~z - ~i - 1 (yí - yi ) 2
n-9 . (22)
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The degrees of freedom (m) in Eq. (19) must be replaced by n-q
(deterministic simulation has no replications: m- 1).

If ~h differs from zero significantly, then xh is important. This
is the information we seek in r~hat-if analysis. Suppose xh c~epresents a
parameter or a variable that can be influenced by the user. Then to (say)
maximize the system output, the user increases that parameter or variable
if the sign of the estimated regression coefficient ph is positive. The
user may even try to optimize the system, as we shall see later.

We can also give predictions for new input combinations; that is,
we can interpolate and extrapolate from old simulation data. This is
important if a simulation run costs much computer time.

To illustrate the use of inetamodels we summarize Kleijnen and
Standridge (1988). They apply regression analysis to a deterministic
simulation model of a Flexible Manufacturing System (FMS). The goal is to
select x, the number of machines of type i with i- 1,...,4, such that a;
given production volume is realized. The inputs to the simulation may vary
over the following 'experimental domain': xl E(5,Fi), x2 E(1,2),
x3 E(2,3), and x4 E(0,1,2); that is, 24 combinations are of interest.
Actually they simulate only eight combinations and estimate the first-
order metamodel. If one combination is deleted from the data (cross-
validation), then the OLS estimates of S change; especially the values of
the non-significant effects change since they represent noise. Note that
upon deletion of a combination, the degrees of freedom are v- n- q- ~
- 5. The effects of deleting a combination can be shown more compactly by
concentrating on the responses; that is, the criterion becomes prediction
instead of explanation. This yields the relative prediction errors
y,~y in cross-validation. The prediction errors y~y and the instabilities
of p are so large that the additive metamodel is rejected, and a new model
is investigated. This model still uses the old data of the simulation
experiment, X and y. The ~ suggested that the factors 1 and 3 are
unimportant. Therefore a regression model in the remaining factors is
formulated, but now interaction is included:

n
Y-~o t~z

x2 }~4 x4 }~2 4 x2 x4 ~ (23)

In this model all estimated effects remain significant upon run deletion.
The relative prediction errors become much smaller. The new metamodel
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suggests that type 2 and 4 machines are the bottle-necks in the FMS. The
negative sign of the interaction sz4 means that there is a trade-off
between these two machine types.

PART 2: DESIGN OF EXPERIMENTS

Simulation practitioners change the values of parameters and input
variables, and the model structure, in order to analyse the effects of
such changes. In most experiments the examination of all factor
combinations would take too much computer time. Therefore the goal of
experimental design is to gain insight into the system's behavior while
observing relatively few factor combinations.

CLASSICAL EXPERIMENTAL DESIGNS

Figure 2 and table 2 illustrate the following experimental designs that
are often used in practice.
(i) Change a single factor at a time: 'one factor at a time designs'.
(ii) Examine all possible combinations of factor levels: 'full factorial

designs'.
(iii)Examine only part of all possible combinations: 'incomplete factorial

designs', in particular 'fractional designs'.
We shall show that designs of type (iii) can give the same information as
types (i) and (ii) do; yet type (iii) requires fewer observations. In
contrast to type (i), type (iii) can give information on interactions.

Except for the section on RSM, we assume that each factor is observed at
only two 'levels' or values. Therefore the independent variables x satisfy

r-1 if factor j is off in combination i
I (i - 1.2,...n) (J - 1,2....,k)

(24)
~ tl if factor j is on in combination i.



Figure 2: Experimental design for three factors
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Table 2: Experimental design for three factors

(i) one factor at a time

combination x x x
1 2 g

1 -1 -1 -1
2 1 -1 -1
3 -1 1 -1
4 -1 -1 1

(ii) full factorial design

combination x x x1 z 3
1 -1 -1 -1
2 1 -1 -1
3 -1 1 -1
4 1 1 -1
5 -i -1 1
6 1 -1 1
7 -1 1 1
8 1 1 1

(iii) fractional design: 23-1 factors

combination x x x1 2 j

1 -1 -1 1
2 1 -1 -1
3 -1 1 -1
4 1 1 1
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For quantitative factors, 'off' may mean that the factor has a low value.
Equation (24) also holds for qualitative factors, which have only nominal
values. For example, if factor 1 denotes the priority rule and if in
combination 3 the priority rule is First Come First Served (FCFS), we may
say that x - 1 holds; if in combination 4 the priority rule is Last Come31
First Served (LCFS), then x41 --1 holds (also see Part 1 above Eq. 1).
For qualitative factors with more than two levels we refer to Kleijnen
(1987, pp- 275-2~8).

In the example of figure 2 there are three factors, each with two
levels. The underlying simulation model may be a queuing system with the
following factors and levels: priority rule is either FCFS or LCFS, number
of servers is 1 or 3, and utilization degree is 0.5 or 0.8. Table 2 gives
the matrices X-(xiJ) for the three designs; we do not show the dummy
variable xo because it is always }1. Consider a regression metamo-
del or response surface with main effects p, two-factor interactions ~B. ,J JB
and noise s that is normally distributed with zero mean and constant va-
riance o2 (also see Eq. 1):

y - ~ } ~k ~ x } ~k - 1 ~k

t o J-1 J iJ J-i s-J~i~JextJxig} Ei;

Ei~ N(0,6Z) (i-1,...,n). (25)

Table 2(i) shows that changing one factor at a tíme yields Four combina-
tions (n - k} 1- 4), namely the base variant (i - 1) and three more va-
riants. This design assumes that there are no interactions. Intuitively we
estimate the main effects of the factors by

- yl with i- j} 1(j - 1,....k). (26)

Equation (25) implies that ~, is the differential effect of factor j whena
the other factors are fixed at the origin (xig - 0). Since Eq. (25) means
that the response surface has no curvature, the differential effect
(c~~~xJ) equals the difference quotient o y ~ ~ xJ. If 0 xJ - 1 then pJ -
~ y. The estimator

' ~`J ~Z (27)
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is an unbiased estimator of ~~. Equations (25) and (26) imply that the
variance of the estimator a is 262; so V{g }- 02~2. The intuitive~
estimator of go is the overall average:

Po - ~i-i Yi~n. (28)

A full factorial design consists of all possible combinations of
factor levels. In case of two levels per factor, this design results in
2k combinations. To estimate the main effect intuitively, we adapt Eq.
(26): we take the difference between the average result for x--1 and

J
x- 1 respectively, so table 2(ii) yields

al -(YZ t Y4 t Y6 t ye ) ~4 -(yi t y3 t y5 } y7 ) j4

az -(Y3 t Y4 t Y~ t y8 ) ~4 - (yl t yz t y5 t yb ) ~4

a3 -(Y5t Ybt Y~t Y8)~4 -(yl{ y2t y3t y4)~4. (29)

In the general case of k factors, each observed at two levels, the
intuitive estimators become

a~ - Fi - i xi ~ yi with n- 2" .
(n~2)

(30)

We now prove that this intuittve estimator is identical to the OLS
estimator. The matrix X for the 'additive' model consists of the dummy
column (with n- 2" elements equal to tl) and the k coliimns of the
experimental design in table 2(ii); so in the example X is an 8K4 matrix.
This X is orthogonal: X'X - nI. Hence the OLS estimator becomes

-(X~X) ~X'Y - n X~y or R~ - ~ Ei-lxl~yl

(~-o....,k), (31)

cov(~) - 62(X'X)-1 - n2I or var(~~) - n2 (n-2k).

So Eq. (30) specifies the intuitive estimator a for a 2k design; Eq. (31)
1 -

proves that the intuitive estimator equals the OLS estimator (3 multiplied
J
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by two; Eq. (27) relates a~ and ~i. Hence the OLS estimator and the
intuitive estimator are identical indeed. Eq. (31) proves that the ktl
estimators have a constant variance and are independent.

To see which design is more effícient, we compare the variances of
S~i~ and ~~11~, which denote the estimators for designs (i) and (ii)
respectively, but we account for the different numbers of observations, k
t 1 and 2k respectively:

ci~var {p~ }X(ktl) - (6~~2)x(ktl) ktl
var {~~'íi}x2k - (oZ~n)xn - 2

J
(32)

So type (ii) designs are more efficient. This can be explained
intuitively: in type (i) designs the variance remains the same (namely
a2~2) for all values of k, whereas in type (ii) designs the variance
decreases as n- 2k increases; in type (ii) designs each observation i is
used when estimating an effect ~~. It can be proved that an orthogonal
matrix X minimizes the variances of the Si's if cov (y) - cov(E) - 6zI.

Type (ii) designs are not only more efficient; they are also
more effective in that they enable the estimation of ínteractions. To
estimate the interaction between x and x we multiply the vectors of1 a
these two independent variables elementwise; this yields table 3, which
follows from the design in table 2(ii) and the model in Eq. (25). Each
column in table 3, except for the xo column, has an equal number of plus
signs and minus signs. All vectors of X are orthogonal. So analogous to
Eq. (31), the OLS estimator of the two-factor interaction ~ becomes:

J 8

~. - 1 F.~ (x. x. )Y. (n - 2k).~a n ~-i ~~ ~g ~ (33)

The estimators of main effects and interactions remain independent with
constant variance az~n.

Upon including two-factor interactions, the number of effects q
becomes

q- 1 t k 4 k(k-1)~2. (3~)
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Table 3: Independent variables X for the 23 experimental
design including fact.nr interactions

combination x x x x x x x x x x0 1 z 3 1 2 i 3 2 3

1 1 -1 -1 -1 1 1 1
2 1 1 -1 -1 -1 -1 1
3 1 -1 1 -1 -1 1 -1
4 1 1 1 -1 1 -1 -1
5 1 -1 -1 1 1 -1 -1
6 1 1 -1 1 -1 1 -1
~ 1 -1 1 1 -1 -1 1
8 1 1 1 1 1 1 1

So the inequality q( n- 2k holds for k~ 2. For example, in table 3 we
have: q- ~ C n- 8; and for k- ~ we have q- 29 ~~ n- 128. But, if
q( n holds, then we could estimate regression models with more
parameters, in particular models with interactions among three or more
factors. These higher-order interactions, however, are difFicult to
interpret, so we suggest not to add high-order interactions to the
metamodel. Ignoring high-order interactions leads to the experimental
designs of type (iii) in table 2.

If there are no interactions, then the ktl effects can be
estimated from only a fraction oF the 2k observations, as is illustrated
by table 2(iii). The intuitive estimators are analogous to Eq. (29):

a~ - (Yz' Y4)~2 - (Ylt Y3)~2

a2 - (Y3t Y~~)~2 - (Ylt Y2)~2

a3 - (Ylt Y4)~2 - (y2t y3)~2.

(35)

The new matrix X remains orthogonal; so the OLS formulas in Eq. (31) still
apply, but now with n- 2k-P.

Designs of types (ii) and (iii) are equally efficient, if the
number of observations is taken into account:
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var {S~'ii~} 2k-Px (6~,2k-P)x2k-P
' - 1 .

VáP
{S'ii)}x2k - (62,2k)X2k (36)

In practice, however, fractional designs are often preferred, because
their number of' combinations is considerably smaller, so less computer
time is needed for the simulation experiment. Table 2 showed n- 8 and 4
for the 23 and the 23-1 experiment respectively; for k- 7 the full
factorial design needs 128 combinations whereas a fractional design may
need only 8 combinations, as we shall see in table 5. On the other hand,
the full factorial design has a smaller variance because of the larger
number of observations. In comparison with the one at a time design, the
fractional design becomes more efficient, the more factors there are, as
Eq. (32) proves. Both types may require an equal number of observations
(namely ktl). In the example of table 7 n is 4 and V{a } is 262 and 6Z ina
the type (i) and type (iii) designs respectively.

The fractional Factorial designs of the 2k P type imply that the
number of combinations is a power of two: n- 2, 4, 8, 16, 32, and so on.
There are so-called Plackett and Burman designs for first-order
metamodels, where n is only a multiple of four. An example is shown in
table 4, where k- 11 and n- 12. The Plackett-Burman designs have been
tabulated; these tables are reproduced in Kleijnen (1975~ PP. 332-333).

Table 4: Plackett-Burman Design for eleven factors
Combination 1 2 3 4 5 6 7 8 9 10 11

t - t - - - t t t - t
t t - t - - - t t . -
- t t - . - - - , t t~ - t t - . - - - t tt t - t t - t - - - ,
} } } - } 4 - } - - -
- } } } - } } - } - -

- - t t t - t . - t -
- - - t t . - . t - f
4 - - - } } } - } } }

' ~ - - - 4 } } - t ~
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If the number of effects ktl is not a multiple of four, then n is
rounded upwards to the next multiple of four; for example, if k is 4,5,6
or 7 then n becomes 8; see table 4. For k- 4 we eliminate the columns x,5
xb and x7; for k- 5 we do not use the columns xb and x7; for k- 6 we
eliminate the column x .~

If there are interactions, then fractional factorials may give
f'alse conclusions. For example, in table 2(iii) we have x- x x. It can3 i 2
be proved that, for example, á3 is Eq. ( 35) does not estimate a3 but
a t a . Hence if the interaction a is important, 6c is a biased estima-3 i2 1z 3
tor of a3. Therefore we should validate the metamodel that guides the
choice of the design. That validation was discussed in part 1.

The classical theory on experimental designs assumes that
the noise E is normally and independently distributed with constant
variance. We can estimate this constant variance from the Mean Squared
Residuals, as we saw in Eq. (22). In practice, the variances may differ
very much. We can then estimate the heterogeneous variances o2, provided~
we simulate combination i of the k factors m z 2 times, as we saw in Eq.
(10). If common pseudorandom seeds are used, then correlations can be
estimated through Eq. (12).

The literature presents the metamodel and the experimental design
in the form of standardized variables x; that is, x is either fl or -1.
We may also formulate the model in terms of the original variables z that- J
are centered around their averages z. (defined in Eq. 3):

J

y-~ t Ek ~ (Z - Z ) t
0 j-1 J j J

} Lj-1Lh-j}lbjh(zj- zj)(zh- zh) t E. (37)

We assume a balanced experimental design; that is, thece are as many 'low'
values Lj as there are 'high' values Hj for factor j. Such a design
implies

I n
zj - n Fi-tz, j- n(2 Lj t 2 HJ )-(Lj t Hj )~2. (38)

The marginal or main effect of factor j is then áj. The total effect over
the range L.( z( H is á(H - L)- 2g - a. Factor 1 may have a largerJ- j- .1 j j J j J
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marginal effect than factor 2 has; yet the importance of factor 2 may be
higher, given the experimental domain. In sensitivity analysis the
interest is in a or j3 ; then the standardized variables x should be used.J ~
Also see Bettonvil and Kleijnen (1991).

A case study that illustrates the use of fractional designs and
regression analysis is presented in Kleijnen, van Ham, and Rotmans (1990).
The study concerns a large deterministic ecological simulation model that
consists of many modules. This model requires sensitivity analysis to
support the Dutch government's decision making.

SCREENING

In the beginning of a simulation study there may be very many
factors. Obviously not all these factors are important; unfortunately, we
do not know ~hich factors are really important. If there is a very large
number of factors, then the designs discussed so far require too many
combinations and hence too much computer time: they all require n~ k. The
following method may provide a solution.

Table 5: 27-4 Experimental design

combination x x x x - x- x- x-1 z 3 4 5 6 ~
~

x x) x x x x x x xi z 1 3 2 3 i z z

1 -1 -1 -1 1 1 1 -1
2 1 -1 -1 -1 -1 1 1
3 -1 1 -1 -1 1 -1 1
4 1 1 -1 1 -1 -1 -1
5 -1 -1 1 1 -1 -1 1
6 1 -1 1 -1 1 -1 -1
7 -1 1 1 -1 -1 1 -1
8 1 1 1 1 1 1 1

") x~- xixZ stands for x14- x~lx1z, and so on.
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We partition the k factors into G groups. A group
factor w (g - 1,2,...,G) has the value 1(and -1 respectively) if all itss
component factors x have the value 1(and -1 respectively); see table 6
with k- lOC and G- 2(we shall discuss the last column of this table in
a moment). For each group we test whether the group has a significant
effect (say) ~. If the group effect is not significant, we eliminate alls
factors of that group, in the next phase. It can be proved, under not too
stringent assumptions, that if the group is not significant, then none of
the individual factors is important. Group screening quickly reduces the
number of factors in the pilot phase of a simulation project.

Suppose that only x and x are important; that is, only S andt z 1
gz are not zero, there are no interactions, and all other factors are
unimportant (of course, in practice we do not have this príor knowledge).
This yields the last column of table 6. The OLS estimator y for the main,
effect of group 1 follows from the general formulas for OLS, which were
given in Eq. (31). So

,~
~- ~ w; i y~ -yi - yz } y3 } y4~-1 - - 4 - --4

Table 6: Group screening

expectedcombination group factor individual factors result
i w t w 2 x . ..x x ..1 50 51 ~ x

loo
y

1 -1 -1 -1... -1 -1... -1
-~ - ~I z

2 -1 1 -1... -1 1... 1 -g - ~3l z

3 1 -1 1... 1-1... -1 ~ f pt z
4 1 1 1... 1 1... 1 .~t ~z

(39)
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For group 2 we get:

p
E. - 1 w. 2 yi -yl t y2 - y3

ó2 - 4 - 4 (40)

it is simple to prove that the expected value of ~1 is ~I t~2 and that of
y is zero.z

Next we test if the estimates ~1 and y2 differ significantly from
zero, as we saw in Eq. (19). Suppose we test each group effect at level a.
The probability of finding a significant ~r2 is a. The larger (31t pz is,
the higher the probability of a significant ~1 is. Obviously this approach
fails if ~1 and s2 happen to have opposite signs, and they are oF the same
absolute magnitude: g1 t~32 - 0. (Therefore we code the variables x such
that they have non-negative effects, if they have any effects at all; for
example, in multi-server queuing systems we take x- t 1 if traffic rate
is high, service rate is low, number of servers is low, and so on.) So
after only four runs we probably eliminate the 50 individual factors that
form group 2. In the next stage of the investigation (not shown in the
table) we further examine group 1; for example, we apply group screening
to the factors 1,2,...,50. We continue, until so few individual factors
remain that we can apply the classical designs such as 2k-p designs. For
further details we refer to Kleijnen (1987, pp. 320-328).

Recently several alternative techniques for screening have been
developed:
(i) Sequential bifurcation by Bettonvil (1990) is a more efficient

variation on group screening. He applied this technique to
ecological models with nearly 300 factors.

(ii) Search linear models by Gosh (1987) are based on Srivastava (1975)
's designs.

(iii) The frequency domain technique by Schruben and Cogliano (1987) uses
spectral analysis. It is criticized by Sargent and Som (1988).

(iv) Perturbatíon analysis by Ho et al. (1984) does not treat the
simulation model as a black box to which experimental design theory
is applied. Instead they apply mathematical analysis to derive
marginal effects.
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OPTIMIZATION: RESPONSE SURFACE METHODOLOGY

The goal of Response Surface Methodology (RSM) is to find optimum
values for the quantitative input variables that can be controlled by the
user. The method is heuristic; so it is not certain that its answer is
optimal indeed; for example, a local optimum may be found. RSM uses
the steepest ascent algorithm, which determines in which direction the
factors should be changed in order to reach the optimum; it does not gíve
the step size along this path. We now sketch how RSM works; for
illustrative purposes we take a problem with only two controllable
variables, as is illustrated by figure 3.

(i) Initially, we vary the controllable variables z and z over a smalli z
range only. In figure 3 this area is the square with a C z C b and- i -
c C zz C d.

(ii) Because this area is small relative to the total experimental area,
we apply the local first-order approximation

Y - óot ólzlt ózz2. (41)

where the three regression parameters are estimated from the four
observations at the four corners of area 1.

(iii) Next we change zl and zz according to the ratio ~l~,y . It can be
proved that the steepest ascent path is perpendicular~to the line of
constant yields (y~l~ and y~2~ respectively in figure 3). We know
the direction yl~,yz from Eq. (41), but not the step size. We
intuitively choose a step size, which takes us to area 2 in figure
3.

(iv) We repeat (i), (ii), and (iii) until the local first-order model is
not adequate anymore. The liLerature often uses Lhe significnnce of
yl and yz as a criterion; however, we can also test the validity of
the model in the way explained in Part 1. An inadequate first-order
model implies that we are close to an optimum: a plane such as Eq.
(41) can model a hill stde, but not a hill top. This leads to the
next step.

(v) Near the optimum we use a second-order approximation:
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- - - - - - z ' 2
.y- z t z t z z t y z t y z .o i i z z iz i 2 ii i z2 z (42)

Comparing the first - and second - order approximations of Eqs. (41)
and (42) shows that now we must estimate more parameters. So we have
to examine more factor combinations: n~ ltktk(k-1)~2tk. There are
special RSM designs. Figure 4 shows such a design for k- 2 scaled
variables; the five parameters of Eq. (42) are estimated from nine
observations. Moreover because we want to estimate the quadratic
effects y~~ and y22, the factors must have more than two levels
(with two levels we would have: x~ - x~ - xz ). Acturilly there are
five levels: -a,-1,0,1, and a with a~ 1 and a~ 0.

In the general case with k factors, the star design of figure 4
consists of 2k combinations. In each of these combinations, all
factors are zero, except for one factor (the star design is a one
factor at a time design). So the star design is specified by the
following 2k rows where each row has k-1 zero's:

-a, 0, .. , 0
ta, 0, .. , 0
0, -a, .. , 0
0, ta, .. , 0

0, .. , 0, -a
0, .. , 0, ta

In the general case, the 2k design of figure 4 becomes a Zk ' design
with p so small that all two-factor interactions can be estimated

k-D(such a 2 design is called a'resolution IV' design or
2k p design).
tv

(vi) Finally we differentiate the estimated local second-order model for
the controllable variables, and solve the resulting system of linear
equations for these variables:
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~ - yii ~izzz} 2~rrzr - 0
r

~ - yz} yrzzr} 2~zzzz - 0.
~z

-M -N
The resulting values (zl,zz) are the estimated optimum values.

(43)

It is possible that we have not estimated an optimum but either a saddle
point or a ridge (an infinite number of optimum solutions). Furthermore,
we may get stuck on a local optimum. For more details we refer to Kleijnen
(1987. pp. 202-206, 312-316).

A case study is given by Kleijnen (1988). The study concerns the
optimization of a simulated Production Planning System (PPS) with 14
controllable variables. A local first-order model is estimated from the 16

combinations of a 2~~1-1" design. RSM has scaling effects; heuristically a
scale is selected such that changing x from -1 to tl means a 20~ increaseJ
of variable j(j - 1,...,14). Furthermore, not one but two response
variables are of interest, namely the number of productive hours y(which
excludes idle times and switchover times among machines) and the lead time
it takes to deliver products, z. While y is maximized, z is kept below a
given limit. Kleijnen (1988) selects a step size such that one
controllable variable is doubled while the other inputs are less than
doubled. A second local experiment is executed next. This experiment is
a ain determined b a 2r4-lo

desig Y gn. Unfortunately the improvements of y
in tire second experiment are rather small. For further details we refer to
Kleijnen (1988).

CONCLUSIONS

Experimental design and regression analysis are statistical
techniques that have been widely applied in the design and analysis of
data obtained by reaZ Zife experimentation and observation. In simulation,
these techniques are gaining popularity: a number of case studies have
been published. To account for the peculiarities of deterministic and
random simulations, the techniques need certain adaptations. An
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introduction to these techniques is given by Kleijnen and van Groenendaal
(1991); a monograph on the subject is Kleijnen (1987).
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