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Abstract

This paper considers a generalisation of communication situations, namely con-
trolled communication networks. Three solution concepts for controlled commu-
nicatíon networks are introduced, the Myerson value, the position value and the
mixed value, which are inspired by corresponding solution concepts for communi-
cation situations, and a~ciomatic characterisations of these concepts are provided.
Further, network games associated with controlled communication networks are
considered and it is shown that every TU-game can be obtained as a network
game.
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1 Introduction and Preliminaries

In a cooperative TU (Transferable Utility) game (N, v) as modelled by von Neumann
8t Morgenstern (1944), N is a finite set of players, and the chazacteristic function v
assigns to each subgroup of players a real number which is to be interpreted as the
maximal gains (minimal costs) this coalition can achieve by cooperating, regardless of
the actions of the other players.

It is generally assumed that each subgroup of players can form and cooperate to obtain
its value. However, this approach fails to take into account communication restrictions
that may cause deficiencies in cooperation in some coalitions. Myerson (1977) introduced
communication graphs to model non-transitive communication restrictions. In such a
graph the vertices are the players and an edge between two players represents the fact that
these players can communicate directly. The general procedure is the following: given
a TU-game (N, v) and a communication graph (N, A), one defines a rewazd function
r on collections of vertices and edges which takes the communication restrictions into
account, and then new games are extracted. This model was elaborated further by Owen
(1986), Borm, Owen 8a Tijs (1992), Van den Nouweland, Borm, Owen and Tijs (1991)
and Van den Nouweland 8z Borm (1991). A survey on this subject is given in Borm, Van
den Nouweland 8s Tijs (1991).

In this paper, we generalise communication situations by allowing the vertex set of
the graph to differ from the set of players N, and by starting out with a reward function
r, instead of deriving it. This means that we can assign different rewards to different
connected graphs with the same vertex set. We assume that the players control the
vertices and edges of the graph through so-called control games. In section 2 we provide
the formal definition of controlled communication networks and we introduce three so-
lution concepts for these networks, the Myerson value, the position value and the mixed
value. These solution concepts are characterised axiomatically in section 3. Finally, in
section 4 we present an alternative way of constructing a TU-game correeponding to a
controlled communication network, and we show that all TU-games can be obtained as
such a network game.

Preliminaries

Let N:- {1,...,n}, and 2N :- {S ~ S C N}. We denote the class of all transferable
utility games with player set N by TUN.

For each S E 2N`{~}, the unanimity game (N, us) E TUN is defined by
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~ 1 ifSCT
us(T) -

0 otherwise

for all T C N.

It is well known that {(N, us) ~ S E 2N`{~}} forms a basis of TUN.
The Shapley value ~(cf. Shapley, 1953) is a linear function TUN -. RN defined by

~;(N~ us) - ~ ~S~
0

for all S E 2N`{0}.

if iES
if i E N`S

2 Controlled Communication Networks

Consider a finite undirected graph ( V, E) without loops or parallel edges. We assume
that for each vertex v E V a simple control game (N, c„) with veto players is given and,
similarly, for each edge e E E a simple control game (N, c~) with veto players is given.
Here, a TU-game (N,c) is called simple if c(S) E {0,1} for all S C N and c(N) - 1.
Moreover, a player i E N is called a veto player of the simple game (N, c), denoted by
i E veto(c), if i can block a positive outcome, i.e. c(S) - 0 for all S E 2N`{~} with
i~ S. If c„ is the control game for vertex v E V, then a coalition S C N is allowed to
use vertex v if and only if c„(S) - 1. The control games (N, c~) for edges have a similar
interpretation.

Furthermore, we assume that there is a reward function r on subsets of vertices and
edges r: 2~ x 2E --~ R, measuring the economic value of subnetworks. Keeping in
mind that edges are to model communication channels, it seems reasonable to assume
that an edge is useless without both its end points, i.e. for all W C V and F C E
it holds that r(W,F) - r(W,F`{{vl,vz}}) if {vl,v~} E F is such that {vl,vz} is not
a subset of W. So, the reward of a network (W, F) does not depend on the edges
not in F(W) :- {{v,w} E F ~ v E W,w E W}. Moreover, in a network (W,F),
W is partitioned into communication components in the following way: C C W is a
component within (W, F) if and only if (C, F(C)) is a connected subgraph of (W, F(W))
and is maximal with respect to this property. The resulting partition of W is denoted
W~ F.

Correspondingly, we assume that the reward function is additive with respect to these
components, i.e.
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r(W, F) - ~ r(C, F(C))
CEw~F

for all W C V and all F C E.
For simplicity, we assume that r is zero-normalised, i.e. r({v},0) - 0 for all v E V.

A controlled communication network is a 6-tuple (N, V, E, {c„~v E V}, {c~~e E E}, r)
as described above. The set of all controlled communication networks with player set N
will be denoted CCNN.

The purpose of this paper is to present and characterize some solutions to the problem
of how to distribute the reward r(V, E) among the players in N. Formally, a solution
concept on CCNN is a function ry : CCNN -~ RN assigning y;(C) to player á in the
controlled communica.tion network C E CCNN. One way to obtain solution concepts
on CCNI" is to construct for each controlled communication network a TU-game corre-
sponding to this network in which the players are the edges and~or Vertices of the graph.
To this game one can apply a solution concept from cooperative game theory, for exam-
ple the Shapley value. This yields a Value for edges and~or vertices and this Value can
be distributed among the players according to veto control. Concentrating on vertices
this procedure yields the Myerson value (cf. Myerson, 1977) and concentrating on edges
it yields the position value (cf. Borm, Owen, and Tijs, 1992). If no such distinction
between vertices and edges is made, one obtains the mixed Value.

Let C- (N,V, E, {c„~v E V}, {c~~e E E},r) be a controlled communication network.
Then the Myerson value p(C) E RN is defined by

~v(y, rE)
f~~(C) :- ~ ~ veto(c„)~vEV:iEveto(c~)

for all i E N, where the vertex game (V, rE) is a game in which the Vertices are the
players, defined by rE(W) - r(W,E) for all W C V.

Further, the position value z(C) E RN is defined by

a;(C) :- ~ ~`(E'rv)
eEE:iEveto(c.) I VetO(Cc)I
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for all i E N, where the edge game (E, ry) is a game in which the edges are the players,
defined by ry(F) - r(V, F) for all F C E.

Finally, the mixed yalue p(C) E RN is defined by

p~(C) .- ~ ~j(V U E, r)
j E vUE:i Eveto(c~ ) ~ veto(cj)~

for all i E N, where the game (V U E, r) is defined by r(J) - r(J fl V, J fl E) for all
JCVUE.

3 Axiomatic characterisations

In this section we provide axiomatic characterisations of the three solution concepts in-
troduced in section 2. It will turn out that all three concepts can be characterised by
four axioms, three of them being the same for all three solution concepts.

For concision, if C is a controlled communication network and F C E a set of edges we
will use C-F to denote the network where the edges in F have been omitted, and where
the reward function has been restricted accordingly. We now introduce some properties.
A solution concept ry on CCNN is called efGcient if for each controlled communication
network C, ry distributes exactly r(V, E) among the players. In formula:

~ ry;(C) - r(V, E).
~EN

A solution concept ry on CCNN is called additive if it is additive with respect to the
reward function ( ceteris paribus).

A solution concept ry on CCNN is said to have the superfluous edge property if for all
C E CCNN and all edges e E E that are superfluous for C it holds that

7(C) - 7(C-{~}).

Here, an edge e E E is called superfluous for C if for all F C E,

r(V, F) - r(V, F`{e}).
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Note that for an edge e to be superfluous, we only consider the whole set of vertices V;
we do not demand r(W, F) - r(W, F`{e}) for all W C V and F C E. However, this
turns out to be an equivalent demand.

Lemma 1 Let C E CCNN. Then an edge e E E is superfluous for C if and only if

r(W, F) - r(W, F`{e})

forallWCVandaIlFCE.

Proof. The "if~ part is straightforward. For the ronly if" part, note that

r(W, F) - ~ r(C, F(C))
CEW~F

- ~ r(C, F(C))
CE w~F(W )

(') ~ r(C, F(C)) - r(V, F(W))
CEV~F(W)

for all F C E and W C V.
Here, equality (~) follows from the fact that r is zero-normalised.
Hence, for a superfluous edge e

r(W, F`{e}) - r(V, (F`{e})(W))

- r(V, F(W)`{e})

- r(V, F(W))

- r(W, F)

for all F C E and W C V. This competes the proof. O

In a graph (V, E), we denote by D(V, E) the set of vertices that have at least one neigh-
bo~ir in the graph, and we will shorten this notation to D whenever this does not lead
to confusion.
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The fourth property of solution concepts on CCNN we introduce is anonymity. A
controlled communication network is said to be anonymous if the reward function only
depends on the number of non-isolated vertices and edges, i.e. there exists a function
f:{0,..., ~D U E~} --~ R such that

r(W, F) - f(~(W fl D) U F~)

for all W C V and F C E.
A solution concept ry on CCNN satisfies anonymity if for all anonymous C E CCNN,
the solution is proportional to the veto power of the players over the non-isolated parts
of the graph or, in formula: there exists an a E R such that for all i E N

ry(C)-a' ~
1

` jEDUE:iEreto(ej) I VetO(Cj)I

The mixed Value p satisfies the four properties mentioned. This is shown in

Lemma 2 Tl~e mixed value p satisfies efficiency, additivity, anonymity and the super-
fluous edge property.

Proof. Let C be a controlled communication network. Then

~ Pi(C) - ~ ~ ~j(V U E,r)
iEN iENjEVUE:iEveto(ej) I VetO(Cj)I

~ VUET ~ 1
- jE~E '( ~ ) iEveto(e~) I VetO(Cj)I

- ~~j(V U E, r`) (-) r(V, E),
jEVUE

where equality (~) follows from efficiency of the Shapley value ~. Hence, p is ef6cient.
Additivity of p follows straightforward by using additivity for ~.
In order to prove the superfluous edge property, take C E CCNN and e E E that is
superfluous for C. It clearly suffices to prove that ~~(V U E, r') - 0 and ~j (V U E, r") -
~j(VUE`{e}, r) for all j E VUE`{e}. Using Lemma 1 we easily obtain r"(J) - r"(J`{e})
for any J C V U E. Hence, e is a zero playet in the game (V U E, r`), and consequently
~~(V U E,r`) - 0 and ~j(V U E,r`) -~j(V U E`{e},r) for all j E V U E`{e}. We
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conclude that p satisfies the superfluous edge property.
Now let C E CCNN be anonymous, and let f:{0,..., ~D U E~} -~ R be such that
r(W, F) - f(~(D fl W) U F~) for all F C F, and W C V. Then all vertices v E V`D are
zero players in the game (V U E, r), and all j E D U E are symmetric in this game. By
symmetry, efiiciency and the dummy property of ~ this implies

-{ ~E if'EDUE
~j(V U E,T) ~DuE~ ~

0 ifjEV`D.

Hence, Pi(C) - a' ~ ~~~t~~,)I' where a:- ~ouÉ~ . O
1EDUE:iE~eto(e~)

Before we prove that p is characterised by the four properties,we introduce two more
definitions.

Let (V, F.) be a graph. Then we denote by ?Z(V, E) the set of (V, F.)-admissible reward
functions, i.c.

R(V, E) :- {r : 2~ x 2E -~ R ~ r is additive w.r.t. components and zero-normalised}.

Moreover,

B(V, E) :- {uiy,F : 2V x 2E -~ R ~ (W, F) is a connected subgraph of(V, E),

and ~W~ ~ 2},

where uyy,F is defined by

-~ 1 ifWCW'andFCF'uiy,F(W', F') :
0 otherwise.

Then we have the following

Lemma 3 Let (V, E) be a fixed graph. Then li(V, E) forms a basis of the vector space
1Z(V, E).

This lemma is an easy corollary of the fact that the set of unanimity games
{(N,us) ~ S E 2N`{0}} forms a basis of TUN, and that the reward functions are zero-
normalized. However, the proof is rather technical, and therefore we omit it.
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Theorem 4 The mixed value p is the unique solution concept on CCNN satisfying
effïciency, additivity, anonymity and the superfluous edge property.

Proof. According to Lemma 2 p satisfies the four properties. Hence, we only have to

show that there is at most one solution concept satisfying these properties. Suppose ry

is a solution concept on CCNN that satisfies the four properties. Using lemma 3 and

additivity of ry and p, we see that it suffices to prove ry - p for situations in which
r- Qux;F for some Q E R and some connected subgraph (W, F) with ~ W~~ 2. Hence,
let C C CCNN be a controlled communication network with r- Qury,F for some ~i E R
and some connected subgraph (W, F) with ~ W~~ 2. Since every edge e in E`F is

superfluous for C, the superfluous edge property implies that ry(C) - ry(C-E`F).

Furthermore,

Q ifWCW'andF'-F
r(W~, F~) - Quw,F(W~~ F~) -

0 otherwise

for all W' C V and F' C F.

Since (W, F) is a connected graph, it holds that D(V, F) - W. So, defining
J: {0,...,~DUE~}--~Rby

J(k) -{,B if k- ~W U F~

0 otherwise

we see that the controlled communication network C-E~F is anonymous. Now, by
anonymity of ry we know that there exists an a E R such that

ry~(C-E`F) - ~ ' L

1
i

jEWUF:iEveto(cj) I VetO(Cj)I

for all i E N.

Using efficiency, we obtain

[~ 1
,B - r(V, F) -~ ry~(C-E`F) - L. ~' ~

veto c -~' I W U F~.
iEN iEN jEWuF:iEveto(e~) I ( j)I -

Hence, ~- Q - ~W U F~-' and recalling ry(C) - ry(C-~F), we see
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7i(C) - IW U F~ ~ ~ veto(ci)~ - Pi(C).
7 EW uF:i Eveto(c~ )

We proceed by providing axiomatic characterisations of both the Myerson value and the
position value. Both values can be characterised by efficiency, additivity, the superflu-
ous edge property and an anonymity axiom. The anonymity axioms we need are vertex
anonymity and edge anonymity.

A solution concept ry on CCNN is said to be vertex anonymous if for every
controlled communication network C E CCNN such that there exists a function
f:{0,..., ~D(V,E)~} -~ R with r(W,E) - f(~D fl W~) for all W C V, there is an
~ E R such that for all i E N

ry;(C) - ~ . ~ ~ veto(c„)~-1.
vED:iEveto(e~ )

A solution concept ry on CCNN is called edge anonymous if for every C E CCNj" such
that there exists a function f: {0,..., ~E~} --~ R with r(V,F) - f(~F~) for all F C E,
there is an a E R such that for all i in N

7i(C) - ~ - ~ ~ veto(c~)~-1.
eEE:iEveto(c~)

Theorem 5

i) The Myerson value p is the unique solution concept on CCNN that satisfies ef~i-
ciency, additivity, the superfluous edge property and vertex anonymity.

ii) The position value ~r is the unique solution concept on CCNN that satisfies effi-

ciency, additivity, the superfluous edge property and edge anonymity.

The proof of theorem 5 runs along the same lines as the proof of lemma 2 and theorem

4 and therefore it is left to the reader.

Remark. The axiomatic characterisations of the Myerson value and the position value

provided in theorem 5 are similar to axiomatic characterisations provided in Borm, Owen
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and Tijs (1992) for TU-communication situations. However, the reader should note that
our characterisations hold for all controlled communication networks whereas Borm,
Owen and Tijs (1992) had to restrict to cycle-free communication graphs.

4 Network games

In the previous sections we approached the problem how to divide the reward r(V, E)
of a controlled communication network amongst the players in an indirect way, by first
determining the value of vertices and edges and then distributing these values among
the veto players in the corresponding control games. In this section we will describe a
direct way of dealing with the problem.

Let C be a controlled communication network. Now we define an associated game
with player set N in the following way:

Let S C N. Then V(S) :- {v E V ~ c„(S) - 1} is the set of all vertices that coalition

S can control, and E(S) :- {e E E ~ c~(S) - 1} is the set of edges that coalition S can
control. Correspondingly, coalition S can obtain

vc(S) :- r(V(S),E(S)).

Hence, we associate with C E CCNN the network game (N, vc) as defined above.
Consequently, some solution concept for TU-games could be applied to the game (N, vc).

This approach seems interesting, because a number of games associated with economic
situations can be seen to be network games in a more or less natural way. Some examples

are sequencing games (Curiel, Pederzoli 8z Tijs, 1989), permutation games (Tijs et al.,

1984) and assignment games (Shapley 8s Shubik, 1972).

However, some scepticism is in place here, because every TU-game is a network game in
a trivial way:

Let (N, v) be an arbitrary TU-game. We proceed by defining a controlled communica-

tion network corresponding to (N,v). Let V:- N and E:- {{i, j} ~ i,j E N,i ~ j}.

Hence, (V, E) is the complete graph with vertex set N. The control game for each vertex

i E N is (N,u{;}) and the control game for each edge {i, j} is (N,u{;,~}). Hence, every

player is a dictator for his own vertex and an edge between two vertices is controlled by
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Lhc two playc,rs iL conn~c.Ls. Finally, thc reward function r a.vsigns n(.S) t.o thc aubgraph
(S, E(S)) for all S C N, and is extended in some feasible way to all subsets of vertices
and edges. It is easily seen that the network game associated with the controlled com-
munication network described above is the game (N, v).

Note that in the above discussion we did not restrict to zero-normalised games. How-
ever, the restrictions to zero-normalised reward functions was only made for simplicity
and is not essential. Hence, we do not have to worry about it here.
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