RESEARCH MEMORANDUM

ILBURG UNIVERSITY

EPARTMENT OF ECONOMICS

stbus 90153-5000 LE Tilburg
etherlands

FEW 214

The theory of wage differentials: a correction

$$
337
$$

A.J.W. van de Gevel

The authoritative article by Bhagwati and Srinivasan (1971)
tried to prove that when there is a distortionary wage differential
between sectors the production possibility curve might have both convex and concave stretches. This was based on the sign of the second derivative. However, their complex equation (15) and their next ones as special cases contain a mistake. This paper presents the correct outcomes. The BwagwatiSrinivasan conclusions are affected in the following way.

1. The conditions unde which the fron tier is convex at one specialisatior. roin.t and concave at the other are somewhat more intricate than those stated by Bhagwati and Srinivasan. A general classification of the conditions leading to different combinations of curvatures at the specialisation points is presented.
2. In the special case of CES production functions, the production possibility frontier will be convex under less stringent condition than those stated by Bhagwati and Srinivasan.

The correct equation for the second derivative is:
$\frac{d^{2} Q_{1}}{d Q_{2}^{2}}=\frac{-w\left(R_{2}-R_{1}\right)^{2}}{D^{2}}\left[\frac{N\left(\gamma R_{1}-R_{2}\right)}{\left(w+R_{1}\right)\left(\gamma w+R_{2}\right)}+\frac{(\gamma-1) R_{1} P_{2} f_{1}^{1} f_{1}^{2}}{D}\right.$

$$
\times\left\{\left\{\left(R_{2}-R\right) \sigma_{1} R_{1}+\left(R-R_{1}\right) \sigma_{2} R_{2}\right\}\left\{\sigma_{1}\left(R_{2}-R\right)+\sigma_{2}\left(R-R_{1}\right)\right\}\right.
$$

$$
\left.-w\left(R_{2}-R_{1}\right)\left(R_{2}-R\right)\left(R-R_{1}\right)\left\{\sigma_{2} \frac{d \sigma_{1}}{d w}-\sigma_{1} \frac{d \sigma_{2}}{d w}\right\}\right\}
$$

$$
\left.\frac{-(\gamma-1) f_{1}^{1} f_{1}^{2}}{D}\left\{\sigma_{1} R_{1}\left(R_{2}-R\right)+\sigma_{2} R_{2}\left(R-R_{1}\right)\right\} \sigma_{1} \sigma_{2}\left(R_{2}-R_{1}\right)\left(R_{1} R_{2}-w R\right)\right\}
$$

This result influences the outcomes for the cases of complete apecialisation. In the case of complete specialisation in Q_{1} the result is:
$\frac{d^{2} Q_{1}}{d P_{2}^{2}}=\frac{-w\left(R_{1}-R\right)^{2}}{D^{2}}\left[\frac{N\left(\gamma R-R_{2}\right)}{(w+R)\left(\gamma w+R_{2}\right)}\right.$

$$
\left.+\frac{(\gamma-1)}{D} f_{1}^{1} f_{1}^{2} \sigma_{1}^{2}\left(R_{2}-R\right)^{2} R^{2}\left\{R_{2}\left(1-\sigma_{2}\right)+\sigma_{2} w\right\}\right]
$$

where $N=-f_{1}^{1}\left\{\left(w+R_{2}\right)\left(R_{2}-R\right) \sigma_{1} R\right\} \geqslant 0$ as $R_{1} \stackrel{\geqslant}{<} \geqslant R_{2}$
and

$$
D=f_{1}^{2}\left\{\left(\gamma w+R_{2}\right)\left(R_{2}-R\right) \sigma_{1} R\right\}>0 \text { as } R_{1} \gtrless R \geqslant R_{2}
$$

For the case of complete specialisation in Q_{2} the result is:
$\frac{d^{2} Q_{1}}{d Q_{2}^{2}}=\frac{-w\left(R-R_{1}\right)^{2}}{D^{2}}\left[\frac{N\left(\gamma R_{1}-R\right)}{\left(w+R_{1}\right)(\gamma w+R)}\right.$

$$
\left.+\frac{(\gamma-1)}{D} f_{1}^{1} f_{1}^{2} \sigma_{2}^{2}\left(R-R_{1}\right)^{2} R^{2}\left\{R_{1}\left(1-\sigma_{1}\right)+\sigma_{1} w\right\}\right]
$$

where $N=-f_{1}^{1}\left\{\left(w+R_{1}\right)\left(R-R_{1}\right) \sigma_{2} R\right\} \geqslant 0$ as $R_{1} \geqslant R \geqslant R_{2}$
and

$$
D=f_{1}^{2}\left\{\left(\gamma w+R_{1}\right)\left(R-R_{1}\right) \sigma_{2} R\right\}>0 \text { as } R_{1} \gtrless R \geqslant R_{2}
$$

These revised outcomes have certain consequences for the conditions under which the second derivative in the neighbourhood of the points of specialisation is negative or positive. These conditions differ
from those of Bhagwati and Srinivasan especially with respect to $\sigma_{i}(i-1,2)$

In case $R_{1}>R>R_{2}$, so that $N>0$ and $D<0$, the second derivative for complete specialisation in Q_{1} is negative, i.e. concavity, if both terms in square brackets are positive. This holds if $\gamma R>R_{2}$, what is certain if $\gamma>1$ and is possible even if $\gamma<1$, and either if $\gamma>1$ and $\sigma_{2}>1$ or if $\gamma<1$ and $\sigma_{2}<1$. For complete specialisation in Q_{2} the second derivative is positive, i.e. convexity, if both terms in square brackets are negative. This holds if $\gamma R_{1}<R$, that requires that $\gamma<1$, and either if $\gamma>1$ and $\sigma_{1}<1$ or if $\gamma<1$ and $\sigma_{1}>1$. Thus there is a concavity for complete specialisation in Q_{1} and convexity for complete specialisation in Q_{2} if $\gamma<1, \gamma R>R_{2}, \sigma_{2}<1, \gamma R_{1}<R$ and $\sigma_{1}>1$.

In case $R_{2}>R>R_{1}$, so that $N<0$ and $D>0$, the second derivative for complete specialisation in Q_{1} is negative if both terms in square brackets are positive. This holds if $\gamma R<R_{2}$, what is certain if $\gamma<1$ and is possible even if $\gamma>1$, and either if $\gamma>1$ and $\sigma_{2}<1$ or if $\gamma<1$ and $\sigma_{2}>1$. For complete specialisation in Q_{2} the second derivative is positive if both terms in square brackets are negative. This holds if $\gamma R_{1}>R_{1}$ what requires that $\gamma>1$, and either if $\gamma>1$ and $\sigma_{1}>1$ or if $\gamma<1$ and $\sigma_{1}<1$. Thus due to the requirement that $\quad \gamma>1$. There is a possibility of concavity for complete specialisation in Q_{1} and convexity for complete specialisation in Q_{2} if $\gamma>1, \gamma R<R_{2}, \sigma_{2}<1, \gamma R_{1}>R$ and $\sigma_{1}>1$.

In order to save space we summarize the different possibilities by presenting next table.

Table 1

Finally Bhagwati and Srinivasan consider the case in wich the elasticities of substitution in both sectors are equal and constant. The revised second derivative should read as:
$\frac{d^{2} Q_{1}}{d Q_{2}^{2}}=\frac{-w\left(R_{2}-R_{1}\right)^{2}}{D^{2}}\left[\frac{N\left(\gamma R_{1}-R_{2}\right)}{\left(w+R_{1}\right)\left(\gamma w+R_{2}\right)}\right.$

$$
\left.+\frac{(\gamma-1)}{D} f_{1}^{1} f_{1}^{2}\left(R_{2}-R_{2}\right)^{2} \sigma R\left\{R_{1} R_{2} \sigma(1-\sigma)+\sigma^{2} w R\right\}\right]
$$

where $N=-f_{1}^{1} \sigma\left\{\left(R_{2}-R_{1}\right)\left(R_{1} R_{2}+w R\right)\right\} \geqslant 0$ as $R_{1} \geqslant R_{2}$
and

$$
D=f_{1}^{2} \sigma\left\{\left(R_{2}-R_{1}\right)\left(R_{1} R_{2}+\gamma w R\right)\right\}>0 \text { as } R_{1} \geqslant R_{2}
$$

In case $R_{1}>R>R_{2}$ throughout convexity is possible if $\gamma R_{1}<R_{2}$, what requires that $\gamma<1$, and if $\sigma>1$. In case $R_{2}>R>R_{1}$ throughout convexity is possible if $\gamma R_{1}>R_{2}$, what requires that $\gamma>1$, and if $\sigma>1$.

For the CES function $f^{i}=\left[\alpha_{i} R_{i}^{-\varepsilon}+\left(1-\alpha_{i}\right)\right]^{-\frac{1}{\varepsilon}}$ the revised second derivative becomes:

$$
\begin{align*}
\frac{d^{2} Q_{1}}{d Q_{2}^{2}} & =\frac{-w(\eta-1)^{3} R_{1}^{3} f_{1}^{1}}{D^{2}}\left[\frac{(\eta-\gamma) R_{1} \sigma\left(w R+\eta R_{1}^{2}\right)}{\left(w+R_{1}\right)\left(\gamma w+\eta R_{1}\right)}\right. \\
& \left.+\frac{(\gamma-1) R\left\{R_{1}^{2} \eta \sigma(1-\sigma)+\sigma^{2} w R\right\}}{\left(\gamma w R+\eta R_{1}^{2}\right)}\right] \tag{16}
\end{align*}
$$

If $\alpha_{1}=\alpha_{2}$ and $\sigma<1$ the second derivative is positive because either $1>\eta>\gamma$ or $\gamma>\eta>1$. Thus the production possibility curve is indeed convex throughout, although the condition on the
elasticity of substitution is less stringent than suggested by Bhagwati and Srinivasan.

References:
J.N. Bhagwati and T.N. Srinivasan, 1971, The theory of wage differentials: production response and factor price equalisation, Journal of International Economics, 1, 19-35.

IN 1985 REEDS VERSCHENEN

```
168 T.M. Doup, A.J.J. Talman
    A continuous deformation algorithm on the product space of unit
    simplices
169 P.A. Bekker
    A note on the identification of restricted factor loading matrices
170 J.H.M. Donders, A.M. van Nunen
    Economische politiek in een twee-sectoren-model
171 L.H.M. Bosch, W.A.M. de Lange
    Shift work in health care
172 B.B. van der Genugten
    Asymptotic Normality of Least Squares Estimators in Autoregressive
    Linear Regression Models
173 R.J. de Groof
    Geisoleerde versus gecoördineerde economische politiek in een twee-
    regiomodel
174 G. van der Laan, A.J.J. Talman
    Adjustment processes for finding economic equilibria
175 B.R. Meijboom
    Horizontal mixed decomposition
176 F. van der Ploeg, A.J. de Zeeuw
    Non-cooperative strategies for dynamic policy games and the problem
    of time inconsistency: a comment
177 B.R. Meijboom
    A two-level planning procedure with respect to make-or-buy deci-
    sions, including cost allocations
178 N.J. de Beer
    Voorspelprestaties van het Centraal Planbureau in de periode }195
    t/m 1980
178a N.J. de Beer
    BIJLAGEN bij Voorspelprestaties van het Centraal Planbureau in de
    periode 1953 t/m 1980
179 R.J.M. Alessie, A. Kapteyn, W.H.J. de Freytas
    De invloed van demografische factoren en inkomen op consumptieve
    uitgaven
180 P. Kooreman, A. Kapteyn
    Estimation of a game theoretic model of household labor supply
181 A.J. de Zeeuw, A.C. Meijdam
    On Expectations, Information and Dynamic Game Equilibria
```

182	```Cristina Pennavaja Periodization approaches of capitalist development. A critical survey```
183	J.e.C. Kleijnen, G.L.J. Kloppenburg and F.L. Meeuwsen Testing the mean of an asymmetric population: Johnson's modified T test revisited
184	M.O. Nijkamp, A.M. van Nunen Freia versus Vintaf, een analyse
185	A.H.M. Gerards Homomorphisms of graphs to odd cycles
186	P. Bekker, A. Kapteyn, T. Wansbeek Consistent sets of estimates for regressions with correlated or uncorrelated measurement errors in arbitrary subsets of all variables
187	P. Bekker, J. de Leeuw The rank of reduced dispersion matrices
188	A.J. de Zeeuw, F. van der Ploeg Consistency of conjectures and reactions: a critique
189	E.N. Kertzman Belastingstructur en privatisering
190	```J.P.C. Kleijnen Simulation with too many factors: review of random and group- screening designs```
191	J.P.C. Kleijnen A Scenario for Sequential Experimentation
192	A. Dortmans De loonvergelijking Afwenteling van collectieve lasten door loontrekkers?
193	R. Heuts, J. van Lieshout, K. Baken The quality of some approximation formulas in a continuous review inventory model
194	J.P.C. Kleijnen Analyzing simulation experiments with common random numbers
195	P.M. Kort Optimal dynamic investment policy under financial restrictions and adjustment costs
196	A.H. van den Elzen, G. van der Laan, A.J.J. Talman Adjustment processes for finding equilibria on the simplotope

197 J.P.C. Kleijnen
Variance heterogeneity in experimental design
198 J.P.C. Kleijnen
Selecting random number seeds in practice
199 J.P.C. Kleijnen
Regression analysis of simulation experiments: functional software specification

200 G. van der Laan and A.J.J. Talman
An algorithm for the linear complementarity problem with upper and lower bounds

201 P. Kooreman
Alternative specification tests for Tobit and related models

```
202 J.H.F. Schilderinck
    Interregional Structure of the European Community. Part III
```

203 Antoon van den Elzen and Dolf Talman
A new strategy-adjustment process for computing a Nash equilibrium in a noncooperative more-person game

204 Jan Vingerhoets Fabrication of copper and copper semis in developing countries. A review of evidence and opportunities.

205 R. Heuts, J. v. Lieshout, K. Baken An inventory model: what is the influence of the shape of the lead time demand distribution?

206 A. v. Soest, P. Kooreman
A Microeconometric Analysis of Vacation Behavior
207 F. Boekema, A. Nagelkerke
Labour Relations, Networks, Job-creation and Regional Development A view to the consequences of technological change

208 R. Alessie, A. Kapteyn
Habit Formation and Interdependent Preferences in the Almost Ideal Demand System

209 T. Wansbeek, A. Kapteyn Estimation of the error components model with incomplete panels

210 A.L. Hempenius The relation between dividends and profits

211 J. Kriens, J.Th. van Lieshout A generalisation and some properties of Markowitz' portfolio selection method

212 Jack P.C. Kleijnen and Charles R. Standridge Experimental design and regression analysis in simulation: an FMS case study

213 T.M. Doup, A.H. van den Elzen and A.J.J. Talman
Simplicial algorithms for solving the non-linear complementarity
problem on the simplotope

Bibliotheek K. U. Brabant

