

THE CORRELATION STRUCTURE OF STATIONARY BILINEAR PROCESSES

Harry H. Tigelaar P8i
FEW 427

THE CORRELATION STRUCTURE OF STATIONARY BILINEAR PROCESSES

Harry H. Tigelaar

Abstract

It is shown that the existence condition for stationary bilinear time series implies the stability condition for the embedded autoregressive model. An explicit expression for the auto correlation function of such bilinear processes is derived in terms of the coefficients of the model and the moments of the error process. It is shown that in general it is impossible to identify the model on the basis of second order properties of the observable process, without additional restrictions on the parameters.

Keywords: bilinear systems, stationary processes, correlation structure Kronecker product of matrices, identification.

In this paper we consider the following class of bilinear models

$$
\begin{equation*}
\sum_{i=0}^{p} a_{i} x_{t-1}=\sum_{k=1}^{p} b_{k} x_{t-k} \varepsilon_{t-1}+\varepsilon_{t}, \quad t \in \mathbb{Z} \quad a_{0}=1 \tag{1.1}
\end{equation*}
$$

where $\left\{\varepsilon_{t}, t \in \mathbb{Z}\right\}$ is a real sequence of i.i.d. random variables defined on some probability space (Ω, \mathcal{B}, P) with $E\left(\varepsilon_{t}\right)=0$ and $V\left(\varepsilon_{t}\right)=\sigma^{2}<\infty$. From [5] we know that there exists a unique strictly stationary stochastic process $\left\{x_{t}, t \in \mathbb{Z}\right\}$ satisfying (1.1) under a condition involving both the coefficients a_{i}, b_{k} and σ^{2}. This model is a simple nonlinear generalization of the well known auto regressive model of order p and it may be the adequate model in situations where AR or even ARMA models don't give a good fit to the data. Time series analists of ten choose an appropriate model on the basis of the observed autocorrelation function. Therefore it is important to have an expression for the theoretical autocorrelation function or equivalently the theoretical autocovariance function and to know whether this function uniquely determines the unknown parameters of the model. As in [5], results are more easily obtained when the model is rewritten in vector notation by introducing the random vectors $\quad X_{t}=\left(x_{t}, x_{t-1}, \ldots, x_{t-p+1}\right)^{T} \quad t \in \mathbb{Z}$, (X^{T} denotes the transpose of X) and the $p \times p$ coefficient matrices A and B defined by

$$
A=\left[\begin{array}{cccc}
-a_{1} & -a_{2} & \ldots & -a_{p-1} \tag{1.2}\\
& -a_{p} \\
& I_{p-1} & 0
\end{array}\right], \quad B=\left[\begin{array}{lll}
b_{1} & \cdots & b_{p} \\
0 & \ldots & 0
\end{array}\right]
$$

where I_{m} denotes the $m \times m$ unit matrix and 0 a vector of zeros. Putting $C=(1,0, \ldots, 0)^{T} \in \mathbb{R}^{p}$, equation (1.1) can be written as

$$
\begin{equation*}
X_{t}=A X_{t-1}+B X_{t-1} \varepsilon_{t-1}+C \varepsilon_{t}, \quad t \in \mathbb{Z} \tag{1.3}
\end{equation*}
$$

As in [5], We can, without complicating the discussion, allow A, and B
to be arbitrary matrices obeying the existence condition

$$
\begin{equation*}
\rho\left(A \otimes A+\sigma^{2} B \otimes B\right)<1 \tag{1.4}
\end{equation*}
$$

where $\rho($.$) denotes the spectral radius of$ a matrix and \otimes is the Kronecker product. Also the vector C may be any p-vector. It is however noteworthy that when A and B are of the form (1.2), taking $B=0$ makes (1.4) equivalent to the well known stability condition that the polynomial $\Sigma a_{k} z^{k}$ should have all its zeroes outside the unit circle. We shall see below that (1.4) in fact implies that this polynomial satisfies the stability condition.

In 1987 GUEGAN gave some expressions involving moments of bilinear processes (see [6]) , but he did not derive explicit formulae in terms of the coefficients and the moments of the error process $\left(\varepsilon_{t}\right)$ as we intend to do. In particular we shall discuss whether the second order properties of the observable process identify the model. The necessary calculations make extensively use of some special matrix theory which we shall briefly outline in the next section.

2. Preliminaries

For the basic properties of Kronecker products we refer to [7]. We shall also use the vec operator which assigns to the matrix A with columns $a_{1}, a_{2}, \ldots, a_{p}$ the vector $\operatorname{vec}(A)=\left(a_{1}, \ldots, a_{p}^{T}\right)^{T}$. Generally the vec operator is not invertible, but if the dimensions of its argument are prescribed it is. A well known and usefull lemma that relates Kronecker products and the vec operator is
$\triangle L E M M A$ 1. If the matrices A, B and X are such that the product $A X B$ is well defined, then $\operatorname{vec}(A X B)=\left(A \otimes B^{T}\right) \operatorname{vec}(X)$.

PROOF. See [7], th. 2 p. 30.

From now on we shall suppose that all ordinary matrix products and sums
that occur are well defined. As an application of lemma 1 we state the following result on general linear matrix equations.
$\triangle L E M M A$ 2. Let A_{1}, \ldots, A_{n} and B_{1}, \ldots, B_{n} be arbitrary matrices. Then the matrix equation

$$
\begin{equation*}
\sum_{i=1}^{n} A_{i} X B_{i}=C \tag{2.1}
\end{equation*}
$$

has a unique solution if and only if the matrix

$$
\sum_{1=1}^{n}\left(A_{1} \otimes B_{1}^{T}\right)
$$

is nonsingular.

PROOF. Since the dimensions of X are prescribed by the number of columns of A_{i} and the number of rows of B_{1}, we may apply the vec operation on both sides of equation (2.1). Application of lemma 1 and the rule $\operatorname{vec}(P+Q)=\operatorname{vec}(P)+\operatorname{vec}(Q)$, yields that (2.1) is equivalent with

$$
\left(\sum_{i=1}^{n}\left(A_{i} \otimes B_{i}^{T}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(C)
$$

The result follows then easily.

Kronecker products of the form $\mathrm{P} \otimes \mathrm{P}$ and sums of such products as in (1.4) need some special attention. Although they are in general not semi positive definite, the following lemma shows that in some way they behave like nonnegative matrices. It is a special case of a more sophisticated result in [8].

DLEMMA 3. Let P and Q be arbitrary square matrices of equal dimensions with real elements. Then $\rho(P \otimes P) \leq \rho(P \otimes P+Q \otimes Q)$.

PROOF. Let $(P)_{i j}$ denote the ($\left.i, j\right)-$ th element of the matrix P. For sums of Kronecker products we adopt a notation for the elements as introduced in [5], thus (.. (${ }_{1 j, 1 j}$ denotes the (i,j)-th element of the (i, j)-th block when the matrix is partitioned in the obvious way.

Put $\rho=\rho(\mathrm{P} \otimes \mathrm{P}+\mathrm{Q} \otimes \mathrm{Q})$, and let $\varepsilon>0$ be arbitrary.

For all $n \in \mathbb{N}$ we have

$$
\begin{align*}
(\rho+\varepsilon)^{-n / 2} P^{n} & =(\rho+\varepsilon)^{-n / 2} 2^{-n}[(P+Q)+(P-Q)]^{n}= \\
& =(\rho+\varepsilon)^{-n / 2} 2^{-n} \sum \prod_{k=1}^{n}\left(P+\delta_{k} Q\right), \tag{2.2}
\end{align*}
$$

where the summation is over all 2^{n} sequences $\left(\delta_{k}\right)_{k=1}^{n}$, with $\delta_{k}= \pm 1$. Hence, using the inequality $\left|\sum_{1} a\right|^{2} \leq N \sum_{i} a^{2}$ where N is the number of terms in the summation, (2.2) implies

$$
\begin{aligned}
& (\rho+\varepsilon)^{-n}\left|\left(P^{n}\right)_{i j}\right|^{2} \leq(\rho+\varepsilon)^{-n} 2^{-n} \sum\left(\prod_{k=1}^{n}\left(P+\delta_{k} Q\right)\right)_{i j}^{2}= \\
& \quad=(\rho+\varepsilon)^{-n} 2^{-n} \sum\left(\prod_{k=1}^{n}\left[\left(P+\delta_{k} Q\right) \otimes\left(P+\delta_{k} Q\right)\right]\right)_{i j, 1 j}= \\
& =(\rho+\varepsilon)^{-n} 2^{-n}\left([(P+Q) \otimes(P+Q)+(P-Q) \otimes(P-Q)]^{n}\right)_{i j, i j}= \\
& =(\rho+\varepsilon)^{-n}\left([P \otimes P+Q \otimes Q]^{n}\right)_{1 j, 1 j} \leq(\rho+\varepsilon)^{-n} c_{0} n^{p-1} \rho^{n}
\end{aligned}
$$

for some constant c_{0} (see [8]).
Since $\rho(\rho+\varepsilon)^{-1}<1$ and a matrix power series like $\sum_{n} M^{n}$ converges absolutely if and only if $\rho(M)<1$, it follows that $\sum_{n}(\rho+\varepsilon)^{-n / 2} P^{n}$ converges absolutely and so that $\rho\left((\rho+\varepsilon)^{-1 / 2} P\right)<1$, or equivalently $\rho(P)<(\rho+\varepsilon)^{1 / 2}$. Since ε was arbitrary it follows that $\rho(P) \leq \rho^{1 / 2}$ which is equivalent with $\rho(\mathrm{P} \otimes \mathrm{P}) \leq \rho$.

COROLLARY 2.1. Condition (1.4) implies $\rho(A \otimes A)<1$ which in turn implies that $\rho(A)<1$ and so it follows that the matrix $I_{p}-A$ is nonsingular. In particular, when A is of the form (1.2), it follows that the polynomial $\sum a_{k} z^{k}$ has all its zeroes outside the unit circle. More generally, it
follows for arbitrary A that the polynomial $\operatorname{det}\left(I_{p}-A z\right)$ has all its zeroes outside the unit circle. This is the well known stability condition for the embedded autoregressive model i.e. the model (1.3) with $B=0$. Because of symmetry, a similar conclusion can be drawn for the polynomial $\operatorname{det}\left(I_{p}-\sigma B z\right)$.

3. Galculation of the covariance function

At first we shall introduce some notation that wil be used in the sequel.

$$
\begin{aligned}
& \sigma^{2}=E\left|\varepsilon_{t}\right|^{2}, \quad \mu_{3}=E\left(\varepsilon_{t}^{3}\right), \quad \mu_{4}=E\left|\varepsilon_{t}\right|^{4}, \\
& \mu=E\left(X_{t}\right), \quad \tilde{X}_{t}=X_{t}-\mu, \\
& R_{k}=E\left(X_{t} X_{t-k}^{T}\right), \quad r_{k}=E\left(\tilde{X}_{t} \tilde{X}_{t-k}^{T}\right), \quad t, k \in \mathbb{Z}, \\
& \Psi_{s}=E\left(X_{t} X_{t-s}^{T} \varepsilon_{t}\right), \quad Y=E\left(X_{t} X_{t}^{T} \varepsilon_{t}^{2}\right) \quad s, t \in \mathbb{Z} .
\end{aligned}
$$

Notice that Ψ_{0} and Y are symmetric matrices.
As a first step we shall calculate μ. From [5] follows that we can express X_{t} in $\varepsilon_{t}, \varepsilon_{t-1}, \ldots$ in the following way

$$
\begin{equation*}
X_{t}=C \varepsilon_{t}+\sum_{j=1}^{\infty} \prod_{k=1}^{j}\left(A+B \varepsilon_{t-k}\right) C \varepsilon_{t-j} \tag{3.1}
\end{equation*}
$$

Hence, taking expectations on both sides of (1.3) we obtain

$$
\mu=\mathrm{A} \mu+\mathrm{BC} \sigma^{2}
$$

and since $I_{p}-A$ is nonsingular by corollary 2.1, we have

$$
\begin{equation*}
\mu=\left(I_{p}-A\right)^{-1} B C \sigma^{2} \tag{3.2}
\end{equation*}
$$

More complicated is the calculation of the covariance function. Post multiplying both sides of (1.3) with X_{t-s}^{T} and taking expectations we
obtain

$$
\begin{equation*}
R_{s}=A R_{s-1}+B \Psi_{s-1}, \quad s \geq 1 . \tag{3.3}
\end{equation*}
$$

LEMMA 4. For $s \geq 1$ we have $\Psi_{s}=\sigma^{2} C \mu^{T}$, and for $s=0$

$$
\begin{equation*}
\Psi_{0}=C C^{\mathrm{T}} \mu_{3}+\sigma^{2}\left(C \mu^{\mathrm{T}} A^{\mathrm{T}}+A \mu C^{\mathrm{T}}\right)+\sigma^{4}\left(C C^{\mathrm{T}} B^{\mathrm{T}}+B C C^{\mathrm{T}}\right) \tag{3.4}
\end{equation*}
$$

PROOF. For $s \geq 1$ we have

$$
\begin{aligned}
\Psi_{s} & =E\left(X_{t} X_{t-s}^{T} \varepsilon_{t}\right)=E\left\{\left(A X_{t-1}+B X_{t-1} \varepsilon_{t-1}+C \varepsilon_{t}\right) X_{t-s}^{T} \varepsilon_{t}\right\}= \\
& =E\left(C X_{t-s}^{T} \varepsilon_{t}^{2}\right)=\sigma^{2} C \mu^{T},
\end{aligned}
$$

and for $s=0$ (using $E\left(X_{t} \varepsilon_{t}\right)=C \sigma^{2}$)

$$
\begin{aligned}
\Psi_{0}= & E\left\{\left(A X_{t-1}+B X_{t-1} \varepsilon_{t-1}+C \varepsilon_{t}\right)\left(A X_{t-1}+B X_{t-1} \varepsilon_{t-1}+C \varepsilon_{t}\right)^{T} \varepsilon_{t}\right\}= \\
= & A \mu C^{T} \sigma^{2}+E\left(B X_{t-1} \varepsilon_{t-1} C^{T} \varepsilon_{t}^{2}\right)+E\left(C X_{t-1}^{T} A^{T} \varepsilon_{t}^{2}\right)+E\left(C X_{t-1}^{T} B^{T} \varepsilon_{t-1} \varepsilon_{t}^{2}\right)+ \\
& +E\left(C C^{T} \varepsilon_{t}^{3}\right)= \\
= & A \mu C^{T} \sigma^{2}+B C C^{T} \sigma^{4}+C \mu^{T} A^{T} \sigma^{2}+C C^{T} B^{T} \sigma^{4}+C C^{T} \mu_{3}
\end{aligned}
$$

From lemma 4 follows immediately

$$
\begin{align*}
& \mathrm{r}_{1}=\mathrm{R}_{1}-\mu \mu^{\mathrm{T}}=\mathrm{AR}_{0}+\mathrm{B} \Psi_{0}-\mu \mu^{\mathrm{T}}=\mathrm{Ar}_{0}+\mathrm{B}_{0}-\sigma^{2} \mathrm{BC} \mu^{\mathrm{T}} \tag{3.5}\\
& \mathrm{r}_{\mathrm{s}}=\mathrm{R}_{\mathrm{s}}-\mu \mu^{\mathrm{T}}=\mathrm{AR} \mathrm{~s}_{\mathrm{s}-1}-\mu \mu^{\mathrm{T}}+\mathrm{B} \Psi_{\mathrm{s}-1}=\mathrm{Ar} \\
& \mathrm{~s}-1
\end{align*}, \quad \mathrm{~s} \geq 2 . .
$$

Hence

$$
\begin{equation*}
r_{s}=A^{s-1} r_{1}, \quad s \geq 2 \tag{3.6}
\end{equation*}
$$

Thus the covariance function can be calculated when r_{0} or R_{0} can be calculated. Two more lemmas are needed.

LEMMA 5. The matrices Y and R_{0} satisfy the following matrix equation

$$
\begin{equation*}
Y-B Y B^{\mathrm{T}} \sigma^{2}=A R_{0} A^{\mathrm{T}} \sigma^{2}+\Gamma, \tag{3.7}
\end{equation*}
$$

$$
\begin{align*}
& \text { where } \Gamma \text { is defined by } \\
\Gamma= & C C^{\mathrm{T}} \mu_{4}+\mu_{3}\left(C \mu^{\mathrm{T}} A^{\mathrm{T}}+A \mu C^{\mathrm{T}}\right)+\mu_{3} \sigma^{2}\left(C C^{\mathrm{T}} B^{\mathrm{T}}+B C C^{\mathrm{T}}\right)+\sigma^{2}\left(A \Psi_{0} B^{\mathrm{T}}+B \Psi_{0} A^{\mathrm{T}}\right) \tag{3.8}
\end{align*}
$$

PROOF. In a similar way as in the proof of lemma 4 we have

$$
\begin{aligned}
Y= & C C^{T} \mu_{4}+\mu_{3}\left(C \mu^{T} A^{T}+A \mu C^{T}\right)+\mu_{3} \sigma^{2}\left(C C^{T} B^{T}+B C C^{T}\right)+ \\
& +E\left(A X_{t-1} X_{t-1}^{T} A^{T} \varepsilon_{t}^{2}\right)+E\left(A X_{t-1} X_{t-1}^{T} B^{T} \varepsilon_{t-1} \varepsilon_{t}^{2}\right)+ \\
& +E\left(B X_{t-1} X_{t-1}^{T} A^{T} \varepsilon_{t-1} \varepsilon_{t}^{2}\right)+E\left(B X_{t-1} X_{t-1}^{T} B^{T} \varepsilon_{t-1}^{2} \varepsilon_{t}^{2}\right)= \\
= & \Gamma+\sigma^{2} A R_{0} A^{T}+\sigma^{2} B Y B^{T}
\end{aligned}
$$

which proves the lemma.

LEMMA 6. The matrices Y and R_{0} satisfy the following matrix equation

$$
\begin{equation*}
R_{0}-A R_{0} A^{\mathrm{T}}=B Y B^{\mathrm{T}}+M \tag{3.9}
\end{equation*}
$$

where M is defined by

$$
\begin{equation*}
M=C C^{\mathrm{T}} \sigma^{2}+\left(A \Psi{ }_{0} B^{\mathrm{T}}+B \Psi_{0} A^{\mathrm{T}}\right) \tag{3.10}
\end{equation*}
$$

PROOF. As in the preceding lemmas we substitute the right hand side of (1.3) for X_{t} in $E\left(X_{t} X_{t}^{T}\right)$ and calculate the expectations. This gives

$$
R_{0}=A R_{0} A^{T}+A \Psi_{0} B^{T}+B \Psi_{0} A^{T}+B Y B^{T}+\sigma^{2} C C^{T}
$$

and the result follows easily.

The next step is to solve (3.7) and (3.9) for R_{o} and Y. Solving (3.9) for $\mathrm{BYB}^{\mathrm{T}}$ and substituting the result in (3.7) yields

$$
\begin{equation*}
Y=\sigma^{2} R_{0}+\Gamma-\sigma^{2} M \tag{3.11}
\end{equation*}
$$

Substitution of this expression in again (3.7) gives the following matrix equation for R_{0}

$$
\begin{equation*}
R_{0}-A R_{0} A^{T}-\sigma^{2} B R_{0} B^{T}=M-\sigma^{2} B M B^{T}+B \Gamma B^{T} \tag{3.12}
\end{equation*}
$$

By lemma 1 and (1.4) this equation has a unque solution which is given by

$$
\begin{equation*}
\operatorname{vec}\left(R_{0}\right)=\left(I-A \otimes A-\sigma^{2} B \otimes B\right)^{-1}((A \otimes A) \operatorname{vec}(M)+(B \otimes B) \operatorname{vec}(\Gamma))+\operatorname{vec}(M) \tag{3.13}
\end{equation*}
$$

as can be seen after some minor calculations. (The subscript to indicate the dimensions of the unit matrix is dropped for notational convenience.) Clearly, substitution of (3.4) in (3.8) and (3.10), and subsequently in (3.13) gives a very large formula for R_{0} expressed in A, B, C and the moments of the error process. Therefore we shall pay some attention to a special case.

4. The univariate madel with symmetric errar distribution

Since the error distribution is symmetric we have $\mu_{3}=0$. In this section we consider the univariate model (1.1), or equivalently the p-variate model where the matrices A and B are given by (1.2) and where $C=(1,0, \ldots, 0)^{\mathrm{T}}$. For practical purposes this is the most important case. We shall show, however, that without any additional restrictions on the parameters it is fundamentally impossible to identify this model on the basis of the second order properties of the observed process. In order to do so, put $b_{1}=0$. Then we have $B C=0$, and so by (3.2) it follows $\mu=0$. Furthermore we obtain $\psi_{0}=\psi_{s}=0, s=1,2, \ldots$ which implies

$$
\begin{equation*}
R_{s}=A R_{s-1}, \quad s=1,2, \ldots \tag{3.14}
\end{equation*}
$$

It also implies $\Gamma=\mu_{4} C C^{T}$, and $M=\sigma^{2} C^{T}$, so (3.13) reduces to

$$
\begin{equation*}
\operatorname{vec}\left(R_{0}\right)=\left(I-A \otimes A-\sigma^{2} B \otimes B\right)^{-1}(C \otimes C) \tag{3.15}
\end{equation*}
$$

From (3.14) it follows that the observable process has essentially the same correlation structure as an autoregressive process and so when $p \geq$ 2 , it is impossible to decide whether $B=0$ or $B \neq 0$ by investigation of the estimated autocorrelation function of (x_{t}). In fact we have that the process $\left(X_{t}-A X_{t-1}\right)$ is white noise, so $\left(X_{t}\right)$ really is an autoregressive process with $\left(\eta_{t}\right)=\left(B X_{t-1} \varepsilon_{t-1}+C \varepsilon_{t}\right)$ as error process. Using (3.9) and (3.15), straightforward calculation shows that the variables η_{t} have covariance matrix Σ_{η} given by

$$
\begin{equation*}
\operatorname{vec}\left(\Sigma_{\eta}\right)=(I-A \otimes A)\left(I-A \otimes A-\sigma^{2} B \otimes B\right)^{-1}(C \otimes C) \tag{3.16}
\end{equation*}
$$

It is easily seen that Σ_{η} is singular when B is of the form (1.2). From [4] we know that in that case it is not sure that A and Σ_{η} are identifiable. But even if they were, it is clear that additional assumptions concerning B are needed in order to identify B and σ^{2}.

REFERENCES

1. GRANGER, C.W.J. and ANDERSON, A. (1978) An Introduction to Bilinear Time Series Models. Vanderhoeck and reprecht: Gottingen.
2. TUAN DINH PHAM and LANH TAT TRAN (1981) On the First Order Bilinear Time Series Model. J. Appl. Prob. 18, 617-627.
3. SUBBA RAO, T. (1981) On the Theory of Bilinear Time Series Models. J. Royal Stat. Soc. 43, Series B, 244-255.
4. TIGELAAR, H. H. (1982) Identification and Informative Sample Size. Mathematical Centre Tracts 147, Amsterdam.
5. BHASKARA RAO, M. SUBBA RAO, T. and WALKER, A.M. (1983) On the Existence of some Bilinear Time Series Models. J. of Time Series An. Vol.4, No. 2 .
6. GUEGAN, D. (1987) Different Representations for Bilinear Models. J. of Time Series An. Vol.8, No. 4.
7. MAGNUS, J.R. and NEUDECKER,H. (1988) Matrix Differential Calculus with applications in Statistics and Econometrics. Wiley, New York.
8. TIGELAAR, H. H. (1990) On Monotone Linear Operators on Linear Spaces of Square Matrices. To appear.

IN 1989 REEDS VERSCHENEN

368 Ed Nijssen, Will Reijnders
"Macht als strategisch en tactisch marketinginstrument binnen de
distributieketen"
369 Raymond Gradus
Optimal dynamic taxation with respect to firms
370 Theo Nijman
The optimal choice of controls and pre-experimental observations
371 Robert P. Gilles, Pieter H.M. Ruys
Relational constraints in coalition formation
372 F.A. van der Duyn Schouten, S.G. Vanneste
Analysis and computation of (n, N)-strategies for maintenance of a two-component system

373 Drs. R. Hamers, Drs. P. Verstappen Het company ranking model: a means for evaluating the competition

374 Rommert J. Casimir
Infogame Final Report
375 Christian B. Mulder
Efficient and inefficient institutional arrangements between governments and trade unions; an explanation of high unemployment, corporatism and union bashing

376 Marno Verbeek
On the estimation of a fixed effects model with selective non-
response
377 J. Engwerda
Admissible target paths in economic models
378 Jack P.C. Kleijnen and Nabil Adams
Pseudorandom number generation on supercomputers
379 J.P.C. Blanc
The power-series algorithm applied to the shortest-queue model
380 Prof. Dr. Robert Bannink
Management's information needs and the definition of costs, with special regard to the cost of interest

381 Bert Bettonvil
Sequential bifurcation: the design of a factor screening method
382 Bert Bettonvil
Sequential bifurcation for observations with random errors

383 Harold Houba and Hans Kremers Correction of the material balance equation in dynamic input-output models

384 T.M. Doup, A.H. van den Elzen, A.J.J. Talman
Homotopy interpretation of price adjustment processes
385 Drs. R.T. Frambach, Prof. Dr. W.H.J. de Freytas Technologische ontwikkeling en marketing. Een oriënterende beschouwing

386 A.L.P.M. Hendrikx, R.M.J. Heuts, L.G. Hoving Comparison of automatic monitoring systems in automatic forecasting

387 Drs. J.G.L.M. Willems
Enkele opmerkingen over het inversificerend gedrag van multinationale ondernemingen

388 Jack P.C. Kleijnen and Ben Annink Pseudorandom number generators revisited

389 Dr. G.W.J. Hendrikse
Speltheorie en strategisch management
390 Dr. A.W.A. Boot en Dr. M.F.C.M. Wijn Liquiditeit, insolventie en vermogensstructur

391 Antoon van den Elzen, Gerard van der Laan Price adjustment in a two-country model

392 Martin F.C.M. Wijn, Emanuel J. Bijnen Prediction of failure in industry An analysis of income statements

393 Dr. S.C.W. Eijffinger and Drs. A.P.D. Gruijters On the short term objectives of daily intervention by the Deutsche Bundesbank and the Federal Reserve System in the U.S. Dollar Deutsche Mark exchange market

394 Dr. S.C.W. Eijffinger and Drs. A.P.D. Gruijters On the effectiveness of daily interventions by the Deutsche Bundesbank and the Federal Reserve System in the U.S. Dollar - Deutsche Mark exchange market

395 A.E.M. Meijer and J.W.A. Vingerhoets
Structural adjustment and diversification in mineral exporting developing countries

396 R. Gradus
About Tobin's marginal and average q A Note

397 Jacob C. Engwerda On the existence of a positive definite solution of the matrix
equation $X+A^{\top} X^{-1} A=I$

398 Paul C. van Batenburg and J. Kriens
Bayesian discovery sampling: a simple model of Bayesian inference in auditing

399 Hans Kremers and Dolf Talman
Solving the nonlinear complementarity problem
400 Raymond Gradus
Optimal dynamic taxation, savings and investment
401 W.H. Haemers
Regular two-graphs and extensions of partial geometries
402 Jack P.C. Kleijnen, Ben Annink
Supercomputers, Monte Carlo simulation and regression analysis
403 Ruud T. Frambach, Ed J. Nijssen, William H.J. Freytas
Technologie, Strategisch management en marketing
404 Theo Nijman
A natural approach to optimal forecasting in case of preliminary observations

405 Harry Barkema
An empirical test of Holmström's principal-agent model that tax and signally hypotheses explicitly into account

406 Drs. W.J. van Braband
De begrotingsvoorbereiding bij het Rijk
407 Marco Wilke
Societal bargaining and stability
408 Willem van Groenendaal and Aart de Zeeuw
Control, coordination and conflict on international commodity markets
409 Prof. Dr. W. de Freytas, Drs. L. Arts
Tourism to Curacao: a new deal based on visitors' experiences
410 Drs. C.H. Veld
The use of the implied standard deviation as a predictor of future stock price variability: a review of empirical tests

411 Drs. J.C. Caanen en Dr. E.N. Kertzman
Inflatieneutrale belastingheffing van ondernemingen
412 Prof. Dr. B.B. van der Genugten
A weak law of large numbers for m-dependent random variables with unbounded m

413 R.M.J. Heuts, H.P. Seidel, W.J. Selen
A comparison of two lot sizing-sequencing heuristics for the process industry

414 C.B. Mulder en A.B.T.M. van Schaik Een nieuwe kijk op structuurwerkloosheid

415 Drs. Ch. Caanen
De hefboomwerking en de vermogens- en voorraadaftrek
416 Guido W. Imbens Duration models with time-varying coefficients

417 Guido W. Imbens Efficient estimation of choice-based sample models with the method of moments

418 Harry H. Tigelaar On monotone linear operators on linear spaces of square matrices

IN 1990 REEDS VERSCHENEN

419 Bertrand Melenberg, Rob Alessie
A method to construct moments in the multi-good life cycle consumption model

420 J. Kriens
On the differentiability of the set of efficient $\left(\mu, \sigma^{2}\right)$ combinations in the Markowitz portfolio selection method

421 Steffen Jørgensen, Peter M. Kort
Optimal dynamic investment policies under concave-convex adjustment costs

422 J.P.C. Blanc
Cyclic polling systems: limited service versus Bernoulli schedules
423 M.H.C. Paardekooper
Parallel normreducing transformations for the algebraic eigenvalue problem

424 Hans Gremmen
On the political (ir)relevance of classical customs union theory
425 Ed Nijssen
Marketingstrategie in Machtsperspectief
426 Jack P.C. Kleijnen
Regression Metamodels for Simulation with Common Random Numbers: Comparison of Techniques

Bibliotheek K. U. Brabant

17000010663962

