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THE CORRELATION STRUCTURE OF STATIONARY BILINEAR PROCESSES

Harry H. Tigelaar

,Cfaotnact

It is shown that the existence condition for stationary bilinear time
series implies the stability condition for the embedded autoregressive
model. An explicit expression for the auto correlation function of such
bilinear processes is derived in terms of the coefficients of the model
and the moments of the error process. It is shown that in general it is
impossible to identify the model on the basis of second order
properties of the observable process, without additional restrictions
on the parameters.
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1. I n t~ad~u.ti.an

In this paper we consider the following class of bilinear models
P P
~ aX -~ bX E t E, tEZ a-1 (l.j)1-O I t-1 k-1 k t-k t-1 t p

where {et,t E a} is a real sequence of i.i.d. random variables defined
on some probability space (S2,B,P) with E(et) - 0 and V(et) - a~~m. From
[5] we know that there exists a unique strictly stationary stochastic
process {xt,t E g} satisfying (1.1) under a condition involving both
the coefficients at, bk and P2. This model is a simple nonlinear
generalization of the well known auto regressive model of order p and
it may be the adequate model in situations where AR or even ARMA models
don't give a good fit to the data. Time series analists often choose an
appropriate model on the basis of the observed autocorrelation
function. Therefore it is important to have an expression for the
theoretical autocorrelation function or equivalently the theoretical
autocovariance function and to know whether this function uniquely
determines the unknown parameters of the model. As in [5], results are
more easily obtained when the model is rewritten in vector notation by
introducing the random vectors Xt -(xt, xt-1, ..., xt- 41 )T t E á,

P
(Xr denotes the transpose of X) and the pxp coefficient matrices A and
B defined by

-a -a ...-a -a1 2 p-1 p
A - I 0 ' B -

p-1

b ... b
1 p

0 ... 0 (1.2)

where Im denotes the mxm unit matrix and 0 a vector of zeros.
C-(1,0,...,0)T E~tp, equation (1.1) can be written as

X- AX } BX e t CE t E ë .t t-i t-i t-i t'

Putting

(1.3)

As in [5], We can, without complicating the discussion, allow A, and B
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to be arbitrary matrices obeying the existence condition

p(A~A f a~2B~B) ~ 1, (1.4)

where p(.) denotes the spectral radius of a matrix and ~ is the
Kronecker product. Also the vector C may be any p-vector. It is however
noteworthy that when A and B are of the form (1.2), taking B-0 makes
(1.4) equivalent to the well known stability condition that the
polynomial Eakzk should have all its zeroes outside the unit circle.
We shall see below that (1.4) in fact implies that this polynomial
satisfies the stability condition.
In 1987 GUEGAN gave some expressions involving moments of bilinear
processes (see [61) , but he did not derive explicit formulae in terms
of the coefficients and the moments of the error process (e ) as wec
intend to do. In particular we shall discuss whether the second order
properties of the observable process identify the model. The necessary
calculations make extensively use of some special matrix theory which
we shall briefly outline in the next section.

2. ~neQirni.iwn.Lea

For the basic properties of Kronecker products we refer to [7]. We
shall also use the vec operator which assigns to the matrix A with
columns al,az,...,a the vector vec(A) -(ai, ..,aT)T. Generally theP 1 D
vec operator is not invertible, but if the dímensions of its argument
are prescribed it is. A well known and usefull lemma that relates
Kronecker products and the vec operator is

~LEMMA 1. If the matrices A, B and X are such that the product AXB is

well defined, then vec(AXB) - (A~BT)vec(X).

PROOF. See [7],th.2 p.30. o

From now on we shall suppose that all ordinary matrix products and sums
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that occur are well defined. As an application of lemma 1 we state the
following result on general linear matrix equations.

PLEMMA 2. Let A1,...,A~ and B1,...,B~ be arbitrary matrices . Then the

matrix equation
n
~ A~X B~ - C (2.1)
~-i

has a unique solution if and only if the matrix

n
~ (A1~ B,)

is nonsingular.

l-1

PROOF. Since the dimensions of X are prescribed by the number of
columns of A1 and the number of rows of B1, we may apply the vec
operation on both sides of equation (2.1) . Application of lemma 1 and
the rule vec(PtQ) - vec(P) t vec(Q), yields that (2.1) is equivalent
with

~ ~ (At~ B~) lvec(X)
i-i 1

vec(C) .

The result follows then easily. o

Kronecker products of the form P~P and sums of such products as in
(1.4) need some special attention. Although they are in general not semi
positive definite, the following lemma shows that in some way they
behave like nonnegative matrices. It is a special case of a more
sophisticated result in [8].

~LEMMA 3. Let P and Q be arbitrary square matrices of equal dimensions
with real elements. Then p(P~P) ~ p(P~PfQ~Q).

PROOF. Let (P)il denote the (i,j)-th element of the matrix P. For sums
of Kronecker products we adopt a notation for the elements as
introduced in [S], thus (..)~1 1J denotes the (i,j)-th element of the
(i,j)-th block when the matrix is partitioned in the obvious way.
Put p- p(P~P t Q~Q) , and let e ~ 0 be arbitrary.
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For all n E PJ we have

(P}e)-N2Pn - (PtE)-n~z
2-n~(PtQ) t (P-Q)]n -

n
- (PtE)

-nI2 2-n
~ ~[ (P } akQ) ~

k-1
ia. z)

where the summation is over all 2n sequences (S )n with S- }1.k k-1~ k
Hence, using the inequality IE alz ~ N E az where N is the number of
terms in the summation, (2.2) implies

z
(ptE)-nl(Pn)1JIz ~ (ptE)-n 2-n ~ I jj (P } SkQ) J -l k-1 1J

-(p.E)-n 2-n ~ I ~[(P t SLQ)~(P t S Q)]I -
k-1

' 11~~J

(ptE)-n 2-n I[(P}Q)~(PtQ) } (P-Q)~(P-Q)ln 1 -
` í1,iJ

- (ptE)-n I [P~P t Q~QIn J ~ (PtE)-ncOnp-1Pn
l 11~~7

for some constant c (see [8]).0
Since p(pte)-1~ 1 and a matrix power series like E Mn convergesn
absolutely if and only if p(M) ~ 1, it follows that E(PtE)-nizpn

n
converges absolutely and so that p((ptE)-1~zP) ~ 1, or equivalently

p(P) ~(ptE)1~z. Since E was arbitrary it follows that p(P) ~ pliz

which is equivalent with p(P~P) ~ p. o

COROLLARY 2.1. Condition ( 1.4) implies p(A~A) ~ 1 which in turn i mplies
that p(A) ~ 1 and so it follows that the matrix I -A is nonsingular. InP
particular, when A i s of the form ( 1.2), it follows that the polynomial
Eakzk has all its zeroes outside the unit circle. More generaliy, it
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follows for arbitrary A that the polynomial det(I -Az) has all its
P

zeroes outside the unit circle. This is the well known stability
condition for the embedded autoregressive model i.e. the model (1.3)
with B- 0. Because of symmetry, a similar conclusion can be drawn for
the polynomial det(I -vBz).

P

3. ~aPc.u.eatian a~ the co~9an.i,an,ce ~uncti,ai

At first we shall introduce some notation that wil be used ín the
sequel.

a'a- ElE ~Z
t ~ F~3- E( Et ) ~ I~4- E ~ Et ~ 4 ,

I~ - E(Xt) ~ Xt- Xt- u.

Rk- E(XtXC-k) , rk- E(XLXC-k) , t,k E~,

`~8- E( XtXt-BEt ), Y- E( XiX~ei ) S, t E a.

Notice that ~Yo and Y are symmetric matrices.
As a first step we shall calculate p. From [S] follows that we can
express Xt in et,et-1,... in the following way

ao J
X- Ce t~ ~(A t Be )Cet t t-k t-J ~J-1 k-1

(a.s. ). (3. 1)

Hence, taking expectations on both sides of (1.3) we obtain

{t - Ap t BCo'2

and since I-A is nonsingular by corollary 2.1, we have
P

p - ( I -A) 1BCa~2 .
P

(3.2)

More complicated is the calculation of the covariance function. Post
multiplying both sides of (1.3) with XT and taking expectations wet-g
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obtain

R- AR t B~Y s~ 1.
a s-1 s-1 '

LEMMA 4. For s ~ 1 we have ~Y -~ZCHT, and for s- 0
s

`Yo - CCT~3t v2(C{~rATt AteC7) f a~4(CCTBTt BCC7)

PROOF. For s~ 1 we have

~Y - E(X XT e)- E{(AX t BX e t Ce )XT e}-8 L t-s t c-1 t-1 c-1 t c-s t

- E(CXT ez) - a~2CF~T ,t-s t

(3.3)

(3. 4)

and for s- 0(using E(Xtet) - Co~2)

~Y - E((AX t BX e t Ce )(AX t BX e t Ce )Te }-o t-1 c-1 t-1 t c-1 L-1 t-1 t t

- AHCTa~2 t E(BX E CTEZ) } E(CXT A7EZ) t E(CXT BTe ez) tt-1 L-1 t t-1 t t-1 t-1 t

t E(CCTe3) -t

- AHCr~Z t BCCTa~4 t CHTATO~2 t CCTBT~4 t CCTu
3

From lemma 4 follows immediately

Hence

r1- R1-~~T- ARot B~Yo- H~T- Arot B~Yo- PZBC~T ,

r- R- HHT- AR -~{~Tt B~Y - Ar s~ 2.s s a-1 s-1 s-1 '

r- As-1 r , s z 2.
s 1

(3.5)

(3.6)

Thus the covariance function can be calculated when r or R can be0 0
calculated. Two more lemmas are needed.

LEMMA 5. The matrices Y and Ro satisfy the following matrix equation

Y - BYBra~z - ARoATa'Zt I' , (3. 7)
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where 1" is defined by

I' - CCTu4t F~3(CF~TAT t AF~CT ) t F~3vz(CCrBTf BCCT ) t~2(A~YoBrt B~YoAT)

PROOF. In a similar way as ín the proof of lemma 4 we have

Y- CCTFl4 t I13 ( G1TAr; A{~OT ) t p3o~2 ( CCTBTt BCCT ) f

t E(AX XT ATeZ) t E(AX XT Bie e2) }c-i t-i t t-i t-i t-i t

t E(BX Xr ATe e2) t E(BX XT BTe2 e2) -t-i c-i t-i t t-i t-i t-i c

- f} o~2AR AT t ~ZBYBT0
which proves the lemma.

(3.8)

LEMMA 6. The matrices Y and Ro satisfy the following matrix equation

Ro-AIZoAT - BYBTf M ( 3. 9)

where M is defined by

M - CCTVZ t (A~YoBTt B~YoAT) (3. 10)

PROOF. As in the preceding lemmas we substitute the right hand side of
(1.3) for Xt in E(XtX~) and calculate the expectations. This gives

Ro - ARoAT t A~YoBT t B~oAT t BYBT t vzCCr

and the result follows easily.

The next step is to solve (3.7) and (3.9) for Ro and Y. Solving (3.9)
for BYBT and substituting the result in (3.7) yields

Y-~ZR t I' -PZM
0

Substitution of this expression in again (3.7) gives
matrix equation for R 0

(3. 11 )

the following
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Ro - ARoAT - a~ZBRoBT - M- o~ZBMBT } BI'BT (3. 12)

By lemma 1 and ( 1.4) this equation has a unique solution which is given
by

vec(Ro) - ( I-A~A-a~ZB~B)-1((A~A)vec(M) t (B~B)vec(i')1 f vec(M) (3.13)

as can be seen after some minor calculations. (The subscript to
indicate the dimensions of the unit matrix is dropped for notational
convenience.) Clearly, substitution of (3.4) in (3.8) and (3.10), and
subsequently in (3.13) gives a very large formula for Ro expressed in
A, B, C and the moments of the error process. Therefore we shall pay
some attention to a special case.

4. ~he un.i,~sani.ate madef usith aymmetnlc en.n,a~. di,otn.iáutin~i.

Since the error distribution is symmetric we have p- 0. In this3
section we consider the univariate model (1.1), or equivalently the
p-variate model where the matrices A and B are given by (1.2) and where
C-(1,0,...,0)T. For practical purposes this is the most important
case. We shall show, however, that without any additional restrictions
on the parameters it is fundamentally impossible to identify this model
on the basis of the second order properties of the observed process.
In order to do so, put b1- 0. Then we have BC - 0, and so by (3.2) it
follows p- 0. Furthermore we obtain ~o- ~i5- 0, s- 1, 2, ... which
implies

R - AR s - 1,2,... .s s-1 ~ (3. 14)

It also implies f- p4CCT, and M- vzCCT , so (3.13) reduces to
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vec(Ro) - (I-AoA-a~2BeB)-1(C~C) . (3. 15)

From (3.14) it follows that the observable process has essentially the
same correlation structure as an autoregressive process and so when p~
2, it is impossible to decide whether B- 0 or B x 0 by investigation
of the estimated autocorrelation function of (x ). In fact we have thatc
the process (X -AX ) is white noise , so (X ) really is anc c-i c
autoregressive process with (r~c) -(BXc-lec-1{ Cet) as error process.
Using (3.9) and (3.15), straightforward calculation shows that the
variables r~t have covariance matrix E given byn

vec(En) - (I-A~A)(I-A~A-a~ZB~B)-1(C~C) . (3. 16)

It is easily seen that En is singular when B is of the form (1.2). From
[4) we know that in that case it i s not sure that A and E are

~
identifiable. But even if they were, it is clear that additional
assumptions concerning B are needed in order to identify B and a'2.
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