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Abstract

Several variable dimension simplicial restart algorithms have

been proposed for solving systems of nonlinear equations. Each different

algorithm is ct~aracterized by the number of rays along which the star-

ting point can be left. Computational results thusfar suggest that the

2n and 3n-1 ray algorithm are favorable to the 2n ray algorithm whereas

the other algorithms including Merrill's homotopy method perform worse

than the 2n ray algorithm. In this paper, however, we show that the ex-

pected length of [he shortest paths for both the 2n and [he 2n ray algo-

rithm is the same when the K' triangulation underlies the algorithms and

the solution point is uniformly distributed in the unit cube. These

results are confronted with the computational results concluding that

the latter must be considered with some caution. Also the expected shor-

test path length for Merrill's algorithm is calculated and compared with

the others.

Keywords: Simplicíal subdivision, shortest path, piecewise linear
approxímation.

~) This research is part of the VF-Program "Equilibrium and disequili-
brium in demand and supply"
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S40RTEST PATHS FOR SIMPLICIAL ALGORITHMS

]. In[roduction

Variable dimension simplicial algorithms for solving an n-dimen-

sional system of nonlinear equa[ions f(x) ~ 0 trace a piecewise linear

path in a subdivision of Rn which leads from an abritrarily chosen s[ar-

ting point v to an approximate solution x~. When the accuracy of the

approximate solution is not sufficient, the algorithm can De testarted
ín x~` with a finer simplicial subdivision of Rn, inducing a refinement

of the piecewise linear approximation to f. The algorithms follow the

piecewise linear path by generating a path of simplices of varying

dimension. The various algorithms are characterized by the number of

one-dimensional rays along which the starting point v can be left. Along

these rays efficient movements can be made by generating a path of one-

dimensional simplices. Buildíng up the dimensíon of the simplices, not

necessarily monotonically, a path of simplices of varying dimension ís

generated until an n-dimensional simplex is found which yields a zero of

the píecewise linear approximation to f. Starting with the nfl ray algo-

rithm [S] and the 2n ray algorithm [6], [8], algorithms were developed

with 2n rays [12], 2 rays [9], [13], and 3n-1 rays [3].

The efficiency of the various algorithms has been investigated

in e.g. [3], [4] and [1]. Because the 2 ray algorithm can easily exploit

separability and sparsíty but does not seem to work very well generally,

in these studies only the cr~l, 2n, 2n and 3n-1 ray algorithms have been

compared. In general the nfl ray algorithm is superseded by the other

algorithms. Moreover the computational results show that the 2n and 3n-1

ray algorithms seem to be favorable to the 2n ray algorithm, although

the results do not permit us to be conclusive. The 2n and 3n-1 ray al-

gorithms differ only slightly. Whereas in the references mentioned above

the number of function evaluations to find an approximate solution is

compared, in this paper we make a theoretical comparíson between the 2n

and 2n ray algorithms. These two algorithms can be seen as the extreme

cases of a class of 3~1 ray algorithms. An element of this class is
charac[erized by a variable Y between 0 and l~n. For y 3 0 we obtain the
2n ray algorithm and for y~ l~n the 2n ray algorithm. We only compare
the two extreme cases because for the other elements in the class the
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calculations become much more complica[ed and seem to be a hard task.

Moreover, for y not close to 0 or l~n, the computational resul[s for the

3n-1 ray algorithms do not differ very much from those for the 2n ray

algorithm. The n-F1 ray algorithm is not considered for two reasons.

Fírstly, also in [his case the calculations become rather complicated,

and secondly the computational results are much worser than with the

other algorithms.

Both the 2n and 2n ray algorithms usually utilize the K' trian-

gulation of Rn, originally proposed by Todd [10], and obtained by re-

fiecting the well known Freudenthal triangulation over the orthants.

Taking this triangulation, Broadie [1,2] calculated for the 2n ray algo-

ri[hm the shortest path through this subdivision of Rn to reach an a

priori given point w starting at the origin. This shortest path is the

number of generated simplices if the underlying problem is gíven by

f(x) - w-x. Notice that for (non)linear problems the number of function

evaluations equals the number of generated simplices, since at each new

simplex a new vertex is coming in for which the function must be eva-

luated ín order [o determine which vertex must be replaced at the next

step.

In this paper we compare the shortest paths for the 2n and 2n

ray algorithms. By averaging these numbers over all points uniformly

distributed in a cube, we obtain a formula for the expec[ed length of

the shortes[ pa[hs. It will appear that this expected length ís the same

for bo[h algorithms. These calculations are done in the next section. In

section 3 we discuss several questions which are related to this analy-

sis. Since the choice of a cube is rather arbitrarily, we are also con-

cerned with the expected length of the shortest path when averagíng over

points uniformly distributed in a ball or a octahedron. Further the

results of the theoretical calculations are confronted with the computa-

tional results. This is rather interesiing because there seems to be a

discrepancy between the shortest path calculations and the computational

results reported in the literature. Another point of discussion is the

amount of work to be done in a given dimension. In higher dimensions

much more work has to be done in updating the system of linear equations

at each linear programming step. So, algorithms which are working rather

long in low dimensions are more attractive than algorithms which are

working most of the time in high dimensions. Further we give the expec-
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ted length of the shortest path when using the so-called J' triangula-

tion, recently proposed by Todd [11]. Finally, the shortest path for

Merrill's algorithm is calculated.



4

2. The calculation of the shortest paths

The K' triangulatíon of Rn proposed in [lOj, is obtained from

the Freudenthel triangulatlon of Rn res[ricted to the positive orthant,

by reflection across the axes. For a grid size 6, the orthant

X(s) ~{x E Rn~sixi ~ 0, 1 z 1,...,n}

with si E{fl,-1} for all 1, is subdivided in n-dimensional simplíces
o(yl,n,s) being the convex hull of the ntl pointe yl,,.,,yml in X(s)
with all components of yl integer multiples of 6, n a permutation of the
elements of In ~{1,2,...,n} and yifl ~ yi t ósx e(ni), i a 1,...,n

i
where e(j) is the j-th unít vector. For simplicíty we take the origin as

[he starting point for the algoríthms. When a point v is chosen to be

the starting point the triangulation is translated such ihat {v} t X(s)

is subdivided as above.

Let f(x) - 0 be a system of n nonlinear equations and i the píe-
cewise linear approximation of f induced by the K' triangulation. To
find an approximate zero to f, the 2n ray algorithm follows a piecewise
linear path such that for each x on the path the complementarity condi-
tions

xifi ~ 0

fi(x)[maxjlxjl-~xil] - 0
i ~ 1,...,n (2.1)

hold. For si a sign xi if Ixil - maxjlxjl and si - 0 if Ix I~ maxjlxjl,
let ~s~ be the number of zero elements of s~(sl,...,sn)~. Then a path
in the (~s~ f 1)-dimensional region

{x E Rnlsixi ~ maxjlxjl if si ~ 0}

is followed as long as fi(x) f 0 for all 1 with si ~ p and
~xil ~

maxjlxjl if si ' 0. As soon as fi(x) becomes equal to zero for some i

with si t 0, say index h, then sh is set equal to zero and ihe dimension
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i~ increased. As soon as Ixi~ becomes equal to maxjlxjl for some i with

si s 0, say index k, then sk is set equal to sígn xk and [he dimension

is decreased. So a piecewise linear path is followed in regions of vary-

ing dimension. Zn a t-dímensional region the pa[h is followed by genera-

ting a path of adjacent t-dimensional simplices.

For the K' triangulation with gtid size á ~ 1 we will calculate

the shortest path to reach an a priori given point w, i.e. the number of

simplices encoun[ered by following the path from the origin to w. The

last generated simplex is the simplex in which w lies and is deno[ed

by a(w,n,s). Observe that w is the integer part of w. Since the K'

triangulation is symmetric around the axes and diagonals, we can re-

strict ourselves to points w in the subset

W a {x E Rn ~0 ~ xl ~ x2 ~... C xn} .

An approxímate formula is derived by observing that on the path the con-

ditions (2.1) must hold with f(x) z f(x) s w-x. The path leaves the ori-

gin 0 in the direction e~(1,1,...,1)T until the point wle is reached.

Sínce the path from 0 to wle is in the one-dimensional region

{x E Rn Ixi s maxj I x j I, í- 1, 2, ... ,n} a path of one-dimensional simpli-
ces is generated and hence wl steps have to be done to reach wle. Then
the path goes in the direction e-e(1) until (wl,w2,...,w2)T is reached.
This takes 2(w2-wl) s[eps sínce now a path of two-dimensional simplices
is generated. Generally, for i~ 2,...,n, it takes 1(wi-wi-1) steps to
go ftom (wl,w2,...,wi-1'...'wi-1)T [o the point (wl,w2,...,wi,...,w1)T.
So, the length of the path, i.e. the total number of steps of the algo-

rithm becomes

wl ~- Ei62 1(wi-wi-1) a(tr~l)wn - Ei~l wi . (2.2)

Observe that in the t-dimensional region {x E Rn~xi ~ maxj~xjl, i~
t,...,n, xi C maxjlxjl, i ~ 1,...,t-1} the number of steps is equal to
t(wt-wt-1) with w~ a 0. As shown in Broadie [1], this approximate number
differs from the exact formula by only n t 1- n 1(n) -~i-1(wi-wi)'
which can be ignored for w sufficiently far from the origin.
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Similarly as above we can derive an approximate formula for the

2n ray algorithm. Thís algorithm follows a piecewise linear path such
that for each x on the path the complemen[arity conditions

xifi(x) ~ 0

xi[maxjÍfj(x)I - Ifi(x)IJ ~ 0
i s 1,...,n (2.3)

hold. Observe that the conditions (2.3) are dual to the conditions
(2.1). From (2.3) it follows that with si ~ sign xi if xi ~ 0 and si s 0
if xi - 0, a path in the (n-IsI)-dimensional region

{x E Rn Isixi ~ 0, i z 1,...,n}

is followed as long as ~fi(x)I ~ max.If (x)I for all i wíth si - 0 and
x x 0 for all i with s~ 0. If f j1 1 I i(x)I becomes equal to maxjlf~(x)I

for some i with si ~ 0, say index h, then sh is set equal to sign fi(x)
and the dimension is increased. If xi becomes equal to Zero for some i

with si ~ 0, then si is set equal to zero and the dimension is decrea-

sed.

Again, let w be a point ín W and a(w,n,s) the simplex containing
w with which the algorithm terminates. Now the path followed for f(x) s
f(x) ~ w-x, leaves the origin by increasing the component h for which
wh ~ maxjwj. Since wn ~ wn-1 )..' ~ wl ~ 0 and taking the highest com-
ponent in case of an equality we have that h z n. So, a path of one-di-
mensional simplices in {x E Rnlxn ~ 0, xi ~ 0, i~ 1,...,n-1} i s gene-
rated until wnxn becomes equal to wn-1, i.e. the path goes in the
direction e(n) until the point ( 0,...,O,wnw~l)T is reached. For 6 a 1
this takes wn-w~l steps. Then the path goes in the direction e(n)f
e(n-1) wM 1-w~Z steps until the point ( 0,...,O.wn-l-wn-2'wn w~2)T is
reached. Since now two-dimensional simplices are generated this takes

Z(wn-l-wn-2) steps. In general, for í~ n-l,n-2,...,1, the path goes
from ( 0,...,O,wi}1-wi' "''wnwi)T to the point ( 0,...,O,wi-wi-1' "''wn
wi-1)T with w0 ~ 0, i.e. in the ( n-ifl)-dimensional region {x E Rnlx ~
0, j~ i,...,n, xj a 0, j ~ 1,...,i-1} the path goes in the direction
En e(j), Sínce all components j- i,...,n are increased with wi - wi-1j~i
this takes (n-itl)(wi-wi-1) steps. So, the approxímate length of the



path becomes

Ei~l (n-ifl)(wi~i-1) ~ Ei-1 wi '
(2.4)

since w~ ~ 0. It can be shown that again this differs from the exact

length only by n f 1- n 1(n) - En (w -w ).
1~ 1 i i

We now compare the approximate leng[hs of the shortest paths

given in (2.2) and (2.4). Taking a point w arbitrarily in Rn we obtain

that

P(2n) -(n-~1) max~ (w~ I- Ei-1 ~wi ~

and

P( 2n) - Ei- 1 Iwi ~

with P(k) ihe length of the shortest path for the k ray algorithm. So,

for some w in Rn

P(2n) ~ P(2n) if max~~w~~ i ml Eizllwil .

Thís says that if w i s close to one of the axes, e.g. w~(wl,e2,...,
En)T with E2 ,..., en small relative to wl , the 2n ray algorithm
should be used. However, if w is close to one of the diagonals, say w-

T(wl,wl-e2,...,w1-en) it is better to use the 2n ray algorithm. In gene-
ral, we do not have any information about w a priori. Therefore we com-
pare the expected path lengths of the two algorithms. Again we may re-
strict ourselves to W. Now, Let al,...,an be a random sample from a uní-

form distribu[ion over the interval [O,a] for some a~ 0 and let a(1) ~
a(2) ~... C a(n) ~ a. Then the expected value E(wi) of the i-th compo-
nent of w ~(a(1),e..,a(n))T is equal to ia~(nfl). So, for the expected
values of P(2n) and P(2n) we obtain

E{P(2n)} - (ntl)E(wn) - Ei~l E(wi) - ~na (2.5)

and
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E{P(2n)) a Ei~l E(wi) ~ }na (2.6)

and hence for both the 2n ray and the 2n ray algorithm the expected

values of the approximate shortest path to a point w uniformly distribu-

ted in the cube {x E Rn ~ Ix M ~ a} is equal to }na, where 1. 1 denotesm z m
the max-norm. Since E{n 1(n)} a}(n-FI) and E(wi-wi) L}, the expected

value of the approximate leng[h differs from the expected value of the

exact length only by }. It should be observed that the mesh of the K'

triangulation is á~n with ó the grid size. Normalizing the mesh to be

equal to one by taking ó a l~:n, the expected value increases with a

factor 6 1 s ~n.

Corollary 2.1. The expected length of the approximated shortest path to

a point uniformly distributed in {x E Rn Ilxl~ ~ a} is for both the 2n

ray and 2n ray algorithm equal to }an~n, when taking the K' triangula-
tion with mesh one.
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3. Further remarks and conclusions

In the previous section we have calculated [he expected length

of the shortest path to a point unlformly distributed in a cube. How-

ever, the choice of a cube is rather arbitrarily. Some other posslble

choices are the ball or the octahedron. Doing so we have to take a uni-

for~ distribution over a set with the Euclidean norm 1.12 respectively

the one-norm 1.11 bounded by some positive number a, instead of taking

the max-norm. In particular the Euclidean norm seems to be a very

natural choice. Unfortunately the calculations of the expected length of

the shortest paths become much more complicated when taking the Eucli-

dean norm or the one-norm, since then we need the expected values of

wl,"2, "',wn with (wl,w2,...,wn)T a random point from a uniform distri-

bution over the ball or octahedron, yielding the condition Ei31 wi ~ a2

and Ei-l~wil ~ a respectively. Therefore we restrict ourselves to the

case n-2. It-should be observed that the ratío between the lengths of

the paths for the 2n ray and the 2n ray algorithm does not change when

we [ake a uniform distribution over the boundary. Recall from the pre-

vious section that P~(2n)~Pm(2n) ~ 1, with Pp(k) the expected length of

the k ray algorithm fot the p-norm.

For n-2 and p-1 and with w E W, we have to take a uniform dis-
T

tribution over the line segment between the points(O,a)T and (}a,~a) .

So, E(w) s}a and E(w2) s}a and hence from (2.2) and (2.4) it follows

that P1(2n) ~ 5a~4 and P1(2n) a a. For n~2 and ps2, w is a random point

from the uniform distribution over the ball segment {x E Rn~xl ~

a sín a, x2 a a cos a, 0 ~ a~} n}. Clearly, E(wl) ~ a sin n~8 and
E(w2) 6 a cos n~8 and it follows from (2.2) and (2.4) that P2(2n) -

2 a cos n~8 - a sin n~8 - 1.47a and P2(2n) - a cos n~8 -F a sin n~8 -

1.31a. Concluding we have that for n~2 holds

P~(2n) P2(2n) P1(2n)
a 1 ~ ~ 0.89 ~ ~ 0.80 ,

Pm(2n) P2(2n) P1(Zn)

which says that for the 2n ray algorithm the expected length of the

shortes[ path is less than for the 2n ray algorithm when taking the Eu-

clidean norm or the one-norm. We have seen already in section 2 that
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P(2n) ~ P(2n) íf max j~ wj~ C 2(n-~1)-1 Ei~l~ wi~ and reversely. Taking a

uniform distribution over the cube, the area of the region with points

for which P(2n) ~ P(2n) is equal to [he area of the region with points

for which P(2n) ~ P(2n). However, taking [he Euclidean norm there are

more points with P(2n) ~ P(2n) than the reverse and the difference be-

comes even larger when taking the one-norm. Therefore we may expect that

(3.1) also holds for n~ 2. In fact we have that taking a finite norm

there are more points close to [he axes than close to the diagonals. So

we may conclude that the 2n ray algorithm seems [o perform slightly be[-

ter than the 2n ray algorithm, supposing that the analysis done so far

for the linear case gives an índication for the amount of work to be

done in nonlinear cases. However, from the computational results repor-

ted in Kojíma and Yamamoto [13], van der Laan and Seelen [4] and Broadie

[1,2], the 2n ray algorithm appears to the slightly more efficient. We

may ask whether this should be due to the nonlinearity of the problems

and hence whether we have to reject the supposition just sta[ed above.

In our opinion this supposition should not be rejected. We think that

the results in the references mentioned above are not unbiased since

almost all computational experiments have be done with standard test-

problems. By the structure of these problems and the starting points

chosen in the experiments it occurs that in most of the cases the zero

point is on or close to one of the diagonals. Foz instance, some of the

problem have a solution at the point e~(1,...,1)T whereas the algo-

rithms were started at the origin. As we have seen in the previous sec-

tion it is advantageous to use the 2n ray algorithm in such cases. So

the compu[ational results do not contradict the theoretícal analysis of

this paper.

In [1,2] it is observed that for a 10-dimensional version of a
problem of Kellogg, Li and Yorke, the 2n ray algorithm spends over 80X
of the time in regíons of dimension less than 10 and over 50X of the
time in regíons of dimension 7 or less. Recall that in regions of low
dimension computer time can be saved in updating the system of linear
equa[ions. In section 2 we have seen that for the linear problem f(x) z
w-x the number of steps in dimension t is equal to t(w -w . With w at t-1)
point from a uniform distribution in a cube we have

E(wt~t-1) a a~(tr~l)

and hence the expected number of steps in dimension t is ta~(ntl). Since

the to[al number of steps is }na we have that the expected amoun[ of
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work in dimension t is 2t~n(ntl) x 100X. So, for ns10 the expected

amount of work in dimension 10 is 18X and the expected amount of work in

dimensions 7 or less ís S1X. These numbers confirm the computational

results of Broadie. From the analysis in section 2 it follows immedia-

tely that for the 2n ray algorithm the expected amount of work in dimen-

sion t is also 2t~n(n-F1) x 100X. So, again the results are the same for

the two algorithms when taking a uniform distribution over the cube. In

[4] it is observed that the 2n ray algorithm consumes considerably less

computer time per function evaluation than the 2n ray algorithm, which

is ascribed to the fact that the 2n ray algorithm works rather long in

low dimensions. Again this might be caused by the fact that most of the

testproblems have zeroes close to the diagonals, in which case the 2n

ray algorithm works most of the time in high dimensions and the 2n ray

algorithm works most of the time in low dimensions.

We conclude this paper with two additional results. First, we

give the expected length of the paths for the J' triangulation, recently

proposed by Todd [11]. For this triangulation we have that in the region

W the movement in the direction e(1) is twice as fast as for the K'

triangulation, whereas the mesh of the triangulation is equal to the

mesh of the K' triangulation. Since also the J' triangulation is symme-

tric around the axes and the diagonals, we may restrict ourselves to

points ín W. So, the only difference is that in the direction e(1) we

need as half as much steps than for ihe K' triangulation. It follows

from section 2 that for the 2n ray algorithm the expected number of

steps reduces with }na~(nfl) and for the 2n ray algorithm with }a~(nfl).

We see that the J' triangula[ion is more efficient for the 2n ray algo-

rithm than for the 2n ray algorithm. However, for the 2n ray algorithm

the expected number of steps reduces only with a factor n~(ntl).

Secondly, we give the length of the path for Merrill's algorithm

(see [7]). Starting in (v,0), thís algorithm follows a path of zeroes of

[he homotopy function H(x,t) - tf(x) t(1-t)(v-x), 0 c t c 1. Clearly,

when f(x) ~ w-x and v~ 0 this path is the straight line from (0,0)

to w ~(w,l). In Todd [10, theorem 3.2] it is stated that the number of

simplices on this line is equal to
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Ei ; Iwi i} Ei~ j I Iw j I- Iwi I I.

Taking w in the region W we obtain that the number of simplices is ap-

proximately equal to

n n ]
L1~1 wi t ï~-1 ~izl ( wj-wi) .

With E(wi) ~ ia~(ntl). it follows that the expected number of simplices

is an t an(n-1)~6. Since 50X of the generated simplices have a new ver-

tex on the zero-level the expected amount of work on the one-level be-

comes

E{P(Merrill)} ~ }an f an(n-1)~12 .

Compared with (2.5) and (2.6) the expected amount of work has an addi-

tional term of the order of n2.
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