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`;ummary .

The paper 3eals with the concept of identification in inferential statistics.

t11. first a genernl concept of identification is defined and developed.

'1'hereat'trr, l.he f,ruernl theory is applied to univuriute linear regression

au~t simultan~~~~us equat.icw systems. I'inally, at,tc~ntion is paid to models

with lagged variahles and some new related problems are stated.



- 2 -

Contents.

1. Introduction

2. Basic ideas

3. Extensions

4. Univariate linear regression

5. Simultaneous equation systems

6. Models with lagged variables

References

Page
3

7

9

12

;? 1



- 3 -

I . It~truduct ion.

The problem of identification arises in various fields of inferential

statistics. In univariate linear regression it has led to the theory of

estimable or identifiable functions (e.g. see Bose [2] and Scheffé [2,

section 1.4]). In símultaneous equation systems it culminates in the question

of the identification of structural equations (Koopmans [7], Fisher [4],

Malinvaud [ 6, chapter 18] , SchSnfeld [ 1 1, chapter 151 ). Other fields that

should be mentioned are time-series (Hannan [7] and [8]), factor analysis

(Lawley [8, chapter 2]and Anderson [1J) and statistical decision theory

(Ferguson [ 3, chapter 4] ).

In literature as indicated above the formulation and the treatment

of the identification problem varies with the field of application. The

aim of this paper is:
- to develop a concept of identification for the general model of (non-

sequential) inferential statistics (sections 2 and 3),
- to apply the general theory to some useful particular models in univariate

linear regression and simultaneous equation systems and to show that in

these cases the well-known results on identification still hold under

very weak conditions with respect to the parameterspace (sections 4 and 5),
- to pay attention to some new identification problems in models with

lagged variables and autocorrelation, suggested by the general approach

(section 6).



2. Basic ideas.

In (non-sequential ) inf~~r~~ntiril s1.ri.ti:rLiu~ t.h~~ r.~~t ol' ~Irrt~i i:;
considered to be an outc~~rn~~ ~~I' :urme raudom v~~ctor ~(t,}rc. ;~r~~,t„)~ Wtrirh
has posaible values in a set Y(the sample space) and is measurable ~aith
respect to some a-field ~ of subsets of Y. Of the true probability distri-
bution of y it is only known that it belongs to some given (non-empty) class
~~ of probability distributions on (Y, j3 ).

A statistical conclusion indicates the true probability distribution
or, more general , the true function value of some given function a on the
class ~(e.g. mean, variance). The statistician should reach his conclusion
by means of a statistical procedure which is based on the properties of
the class J"and not on something else, because only the elements of r~ influence
the outcome of the sample.

In most statistical problems the class .~ of all possible sample
distributions is not primarily given but is thought to be generated hy
some parameter, chosen in some natural and simple way. More precisely, there
is given a mapping P from some known space 9(the parameter space) into
some given class of probability distributions on (Y „~ ). The range of this
mapping gives the class ~ of all possible sample distributions. If P~
denotes the image of 0 E 6 under P then we can shortly write J"- {p ~p E g},

0Now, a statistical conclusion can be considered to be an indication of the
true parameter value, or more general, of the true function value of some
given function on the space A.

The parametric formulation is very attractive in practice because
of the direct interpretation of the parameter. However, it can introduce the
problem of idéntification. Let ry be a funetion defined on A. If ~ coïncides
with some function a on ~(~,(~) - a(po) for all 0 E 6 for some a) then there
is no problem at all. In this case we call ~, identifiable. However, if ry is
not identifiable there exist 0~,02 E A with ~(Oi) ~ry(02) and P~ - P~ . Now

~ Lthe statistician should never indicate the function value of ry. If he ~i~~es
so, he.discriminates between two values 0~ en O1 with the same sampl~.
distribution. Then his conclusion cannot be bas~-d upon a pr~,c~.rl~ir~. r.hj~r. ~,r~ly
depends on the properties of the elements of J'. In particular, t,h~~ i~1~-nr,ii.~
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(~(0) - 0 for all 0 E 6) is identifiable iff (if and only if) there exists

an 1-1 correspondence between A and ~(i.e. the inverse of P on ~exists).

Herewith, the relevance of the following definition of identifi-

cation in inferential statistics is justified:

Definition 1.1. Let ~~- {pC,p E e} be a parametric class of probability

distributions on a space (Y, J`3 ). A function ~y defined on A is called

identifiable (with respect to .~ ) if for all 01,02 E A we have:

~V(01 ) ~ V~(02) ~ P ~ P01 02

In particular, the class ~ is called identifiable if the identity is

identifiable.

Every function of an identifiable function is identifiable. A

vectorial function ís identifiable iff all its components are identifiable.

If the parametric class ~ is identifiable then any function of its para-

meter is identifiable.
In testing problems the usual concept of identification is a

particular case of definition 1.1. Consider the testing problem (H~, H1)

with HC v H1 - 9 and Hp n H1 -~. If OC E Hp and 01 E H1 implies PO ~ p00 1
then the testing problem is called identifiable. If (H~, H1) is not identi-

fiable then there exist OCEHO, 01EH1 with PC -PC and now the statistician
0 1

should refuse any choice between HD and H1. Identifiability of testing

problems in this sense is equivalent to the identifiability of the indicator

function of the set HQ (or H1).

In point-estimating problems any function, for which an unbiased

estimator exists, is identifiable. This immediately follows from the fact

that different expectations of an estímator imply different sample distri-

butions. Of course, in general the converse statement is wrong.

We terminate this section with an example for illustrative purposes.

Example. Let ~-(~1,...,~) be a random sample from the normal distribution

N(u,a2) with unknown mean u and unknown variance a2. By specifying
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6-(u,a) the distribution P~ of y on (R n,~n) is determined. If we choose
6-{(u,a): -~ ~ V ~ m, a? 0} then u and a(more precisely the functions
~~(U,a) - u and ~2(~,a) - a) are identifiable. However, if we choose
A-{(v,a): - m ~ u, a ~ m} then y is identifiable but a i3 not.
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3. Extensions.

In statistical analysis the data set is almost always finite. This

leads to models containing a finite number of random variables. However,
in studying asymptotic properties of statistical procedures or time series

it is often desirable to enlarge those finite models in such a way that

they contain infinitely many random variables. We give a general framework

for this and discuss the concept of identification within this context.

Let {~,t, t E T} be a random vector process with one-sided discrete
time domain T-{1,2,...}. Here ~t is interpreted as the observable random

vector at "time" t. Measurability of events in terms of the process refers
to the a-field generated by all finite products of some fixed a-field of

subsets of the state space with itself. The set of data is supposed to be

an outcome of the part of the process corresponding to the time epochs
t- 1,....,n. In this way a sample y(n) -(~~,...,y,n), a sample space Yn

and a a-field of subsets ~ of Yn are generated for each n- 1,2,...,

It is supposed that the unknown true probability distribution of

the process {~ , t E T} belongs to some given parametric class ~-{P ,0 E 6}.

Then the probability distribution of the sample y.(n) belongs to the c~lass

7n -{ppn),0 E 6}, where P(n) is the marginal distribution of P~ corre-

sponding to the first n components.

Identifiability of a function ~ can be considered with respect

to ~~ as well as to ~, n- 1,2,.... .identification with respect to ~N

implies that with respect to p and ~ for all n- N, Nt1,... . From

Kolmogorov's law it follows that identification with respect to ~ implies

that with respect to ~N for some N sufficiently large.

From a statistical point of vieuw only identification with respect

to the class.~n, where n is the sample size, is relevant. It follows that

results on identification with respect to ~ have not much value. This

point ís often ignored in literature dealing with identification in time

series. (We will make this more precisely in section 6 in a special case).

In particular, consistent estimation does not imply identification.

Let ~ be consistently estimated by the sequence tn - tn (~(n)). Then
~(0~) ~ V~(02) implies P~ ~ PD and therefore ~ is identifiable with respect

1 2
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to ~}íowever, without furt.her information nothing can bc suid eibuuL

identification wit.h respecl, to ~ for some fixed sample sirc n.n
In the foregoitig the assumption that T is one-sided is not

essential and extensions can be made for two-sides T-{...-1, 0, 1,...}

in an obvious way.



4. Univariate linear rep~ession

In univariate linear regression with n observations (n - 1,2,...)
we start with

~-xstE-utE,

where Y is the (observable) random n-vector with values taken by the dependent

variable, X is the (observable) non-random nxk-matrix taken by k explanatory
variables (k - 1,2,...), S an k-vector of regression coefficients and e
a(non-observable) random n-vector of disturbances with expectation zero.
Therefore v- Xs is the expectation of y.

We suppose that the distribution is not fully known and is characte-
rized by some parameter S with values in a given set Z(more formally:
there is given a mapping from Z into some given class of n-variate probability

distributions, all having expectation zero).
Furthermore, we assume that it is only known that S belongs to a

given subset K of R k. Then the distribution of the sample ~ can be characte-
rized by 0 - (s,~).

Finally, we assume that the distribution of e does not depend on
the regression coefficients, formally expressed by the choice A- KxZ. This
leads to a parametric class ~- {pp,0 E 6} of probability distributions

of the sample ~.
In this linear model we are interested in the identifiability

of the vector R of regression coefficients (i.e. the function g(0) - s)
or, more general, of some function ~ of this vector (i.e. the composed
function ~(S(0)) where ~(S) is defined for S E K).

The identifiability of the expectation vector u(i.e. the function
u(s) - XS) is clear. Therefore any function v of this vector (the composed

function v(u(R(0))) where v(u) is defined for v E L- u(K)) is identifiable.
The following theorem states that only functions of thïs particular type

are identifiable.
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Theorem 4.1. The function ~y(R(0)) is identifiable iff there exists a
function v from L- u(K) onto 4' - ~y(K) such that v(U(S)) - V~(s) for all
S E K.
Proof. ("If"). Let 01,02 E 6 with ~(S(01)) ~ ~y(R(02)). Then v(v(S(01))) ~

v(U(S(02))) and therefore PO ~ PC since v(u(R(e))) is identifiable. Then
1 2

~(S(0)) is identifiable by definition.
("Only if"). It suffices to show that ~(s1) iE ~V(s2) implies u(S1) ~ u(B2)
for all S1,S2 E K. Therefore, let S1,S2 E K with ~(B1) ~ V~(B2). Choose some
{ E Z and let 01 -(61,~), 02 -(R2,~). Then 01,02 E KXZ - 6 with
s1 - s(o1), a2 - s(o2). Thus, v~(s(o1))) T V~(a(o2)) ana ~(01) -~(02).
Since ~y(B(0)) is identifiable it follows that P ~ P . Therefore01 02

V(B(01)) ~ u(B(02)) since the distribution PO is completely determined by
(U(s(8)),~(0)). This gives u(81) ~ U(R2).

Of course, results of the foregoing type are well-known in literature

but are always stated with superfluous conditions (e.g. linear space K,

linear function ~, some specific Covariancestructure of the disturbances).

Theorem 4.2. The function s(0) is identifiable iff for every u E L the

equation U- XS has at most one (and therefore a unique) solution S E K.

Proof. Follows-from theorem 4.1 by taking ~(s) - S.

Theorem 4.3. Sufficient for the identifiability of the function s(0) is

the non-collinearity condition r(X) - k. If K is open in R k then this

condition is also necessary.

Proof. We use theorem 4.2.

("Sufficient"). Let U- XS1 - XS2 E K. Then R1 - S2 since r(X) - k.

("Necessary"). Let u- XS1 with S1 E K. If r(X) ~ k then there exists an

g0 ~ 0 with XSO - 0. Then u- X(s1 t e60) - X(32 with S2 - 61 tes0. For

e~ 0 sufficiently small we have s2 E K since K is open.

From theorem 4.1 some more special results can be derived.

For arbitrary K it follows that a testing problem in terms of
S E K is identifiable iff it is equivalent to a testing problem in terms
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of u E L.

Furthermore, let K be u linear subspace of R k. Then L is a linear
subspace of R n. I~'or a linear function ~(s) - DB a corresponding function
v of theorem b.l is necessarily linear. Therefore we can write v(u) - Au.
It follows that the function DR is identifiable iff for some A we have
that AXS - Ds for all S E K. In particular, for K- R k this leads to
the condition AX - D for some A or, equivalently, to the classic condition
that the rows of D are linear combinations of the rows of X(compare
Scheffé. [ 10, section 1.4] ).
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5. Simultaneous equation systems

Mar~y models in linear regression can be reduced to the univariate
model of section 4 as far as it concerns identification. As a start for
simultaneous equation systems we mention the Zellner-model ( see e.g. Zellner
[15]), wh~ch contains n observations on m dependent and k explanatory
variables. It has m equations of the form

~i - Xi s1 f e-i ' i - t,... ,m.

where in the ith equation ~i is the (observable) random n-vector with
values taken by the ith dependent variable, Xi is an (observable) non-
random nxki-matrix by a subset of ki explanatory variables, Si an ki-vector
of regression coefficients, and ei a(non-observable) random n-vector of
disturbances with expectation zero (1 c k c Eki). This model can easily
be written in the form of the linear model of section 4. The identification
problem is reduced to that of the univariate linear model.

Such a reduction to the univariate case is no longer possible and
new difficulties arise if on the right side of the ith equation other dependent
variables appear. Then we get a simultaneous equation system of the form

~i - Xi Si } Yi ai } ei - [ Xi ~]ISi~ } Ei - Wi di } ~, i - 1 , . . . . ,m

a.i

where Yi is the (observable) random nxmi-matrix with values taken by a
subset of mi dependent variables and ai is an mi-vector of regression
coefficients (1 c m ~ Emi). We set ni - ki } mi~ N- Eni (with ni ~ 1) and
è-(á~,....,dm)', the N-vector of all regression coefficients.

The structural equations (5.1) can be written as

(5-2) YA t XB t E- 0

where Y - [~1,...,y~] , E-[ e1,...,e~, X-[x1,...,xk] , A an mxm-matri:c
containing diagonal elements - 1; the regression coefficients of the a.i
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and zero's otherwise, B an kxm-matrix containing the regression coefficients

of the 6i and zero's otherwise. Since the dependent variables should be
functions of the explanatory variables and the disturbances we have to

assume det(A) ~ 0(completeness of the system).
In the complete system of (5.2) the reduced form becomes

(5.3) Y-XJItE~-MtE~

where Il -- BA-1 and E~ -- EÁ 1. Therefore M- X!i is the expectation of Y.

Note that A, B and II are completely determined by d.
We proceed as in the univariate linear model of section 4. We

suppose that the distribution of E is characterized by some parameter ~

with values in a given set Z.

Furthermore, we assume that it is only known that d belongs to a
given subset 0 of ]R N such that every d-value generates a complete system

(det(A(d)) ~ 0 for all d E ~). Then the distribution of the samply Y can

be characterized by 0 - (d,~).
Finally, we assume that the distribution of E does not depend

on the regression coefficients (9 - OXZ). This leads to a parr~metric
class J"- {PD,O E A} of probability distributions of the sample Y.

In this model we are interested in the identifiability of some

function ~y of the vector d(i.e. the composed function ~(d(0))). As in the

univariate case the identifiability of a function v of the expectation M
(i.e. the function M(d) - XII(d)) is clear. However, the converse in the

sense of theorem 4.1 no longer holds in general. The main point is that

the distribution of E~ in (5.3) depends on d and therefore can help with
identification. This does not take place in cases where the system is closed

under non-singular linear transformations. We proceed with such cases.

Definition 5.1. The system (5.1) or (5.2) is closed (under non-singular

linear transformations) if the class of all distributions of E equals the

class of all distributions of ET for every non-singular mXm-matrix T.
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Theorem 5.1. Sufficient for the identifiability of the function ~y(d(0))

is that there exists a function v from L- M(A) onto 4' -~y(0) such that

v(M(d)) -~(d) for all d E A. If the system is closed then this condition

is also necessary.

Proof. ("Sufficient"). Compare the "if" part of the proof of theorem b.1.

("Necessary"). It suffices to show that ~(d1) ~~(d2) implies that

M(d1) ~ M(d2) for all d1,d2 E 0. Therefore let d1,d2 E 4 with ~y(d1) ~~y(d2).

Choose some distribution of E corresponding to ~1 E Z. Since the system is

closed there exists an ~2 E Z such that

Distr.(E~~2) - Distr.(E.Á 1(d1).A(d2)I~1)

or, equivalently,

Distr.(EZI01) - Distr.(-E Á 1(61)I~1) - Distr.(-E Á1(62)I~~) -

- Distr.(E~~02)

where 01 -( d1,~1), 02 -(d2,~2) E OxZ - A. Furthermore, since ~(d(0)) is

identifiable it follows from

v~(d(o1)) - ~(s1) ;E v~(a2) - v~(a(o2))

that PC ~ PC . Therefore, M(d(01)) ~ M(d(02)) since the distribution PC of
1 2

Y is completely determined by M(d(0)) and Distr.(E~~O). This gives
M(ó1) iE M(d2).

From theorem 5-1 some special cases can be derived. We cc~nsider the

identifiablility of d(0) or, equivalently, A(d(~)) and B(d(0)) (th~. identi-

fiability of the structural form).

Theorem 5.2. (identifiability of the structural form).
Sufficient for the identifiability of d(0) is that for every M E L the
equation
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M - XII(d) - - XB(d)Á 1(d)

has at most one (and therefore á unique) solution d E ~. If the system is

closed then this condition is also necessary.
Proof. The result immediately follows from M- XII, II -- BÁ 1 and theorem
5. 1 by taking ~y( d) - d.

It is not easy to verify the condition in theorem 5.2. Therefore

we give another one that can be verified straightforwards from the

structural form. We have to introduce some new notations (compare Theil

[13, section 10.2j).

For fixed i we think (merely for sake of convenience) the variables

in (5.2) and (5.3) ordered in such a way that the variables in the ith

equation of (5.1) are preceeding the other ones.-Furthermore, we think

the dependent variable on the left side of this equation to be the first

one. Then we can split up (5.2) and (5.3) in a corresponding way (not

interesting submatrices are denoted by stars)

(5.2)~ [~i Yi ~) -1 ~ t[ Xi ~) Bi x t E- 0

a. x 0 B.
i i

0 A.i

( 5.3 )' [ ~i Yi ~] - [ Xi X~1 ni ni ~ ~ } Ez ,

n~` n~ n~~ ~ ~

with the obvious interpretations if mi - 0, mi - m-1, ki - 0 or ki - k.

Comparing (5.2)' e.nd (5.3)' it follows that the relationship

IIA - -B is equivalent to

n. TI. --1i i -Si
- for all i - 1,....,m,

n~ n~ a. 0
i i i
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or

n~ - II~ a.i i i
(5.4) i - t, .. ,m

Si - ni - ~i ai

Furthermore, it follows from II --BÁ t and -I --AA-t that

nz nx n'."` o -B.
~ ~ ~ ~

0 0 I 0 A.i

and with the first equation of (5.4) this leads to

(5.5) r(Ci) - r(nz) t (m-mi-t),

where Ci - ~ Ai Bi~ '
With the relationships (5.4) and (5.5) we are in the position to

prove the following theorem:

Theorem 5.3. (rank condition for the structural form)

Sufficient for the identifiability of the function d(0) are the conditions

r(X) - k and r(Ci(d)) - m-1 for all i- 1,...,m and all d E ~. If the

system is closed and A is open in ~iN then these conditions are also

necessary.
Proof. According to (5.5) we can replace the conditions of the theorem

by r(X) - k and r(Iiz(d)) - mi for all i- 1,....,m and d E ~.
("Sufficient"). From the sufficient part of theorem 5.2 we see that we have

to prove that for every M E L the equation M- XII(d) has at most one
solution d E 4. Let M- XII(dt) - XI[(d2) with dt,d2 E ~. Since r(X) - k

this gives II(dt) - II(d2). Denote by dit or ait, Sit the ith part of dt
(the part corresponding to the ith equation). Similarly for d2. Since

r(IIx(d)) - mi for all d E 0 we get from (5.4) that ai1 - ai2' Si1 - Si2
for all i, or dt - d2.

: Á 1



("Neccessary"). From the necessary part of theorem 5.2 we see that we have

to prove that for some M E L the equation M- XII(d) has at least two

solutions d E ~ if the conditions fail.

At first, suppose r(II~(d1)) ~ mi for some i and some d1 E A. Then there

exists an s~ 0 with ii~(d1).s - 0. So, for fixed TI(d1) the equations (5.4)

are satisfied for the components ai1' Si1 of d1 as well as for

f E.S
ai2 - ai1 , Bi2 - Bi1 - e. IIi(d1).s

Replace in d1 the ith part ai1, si1 bY ai2' Si~ and denote this vector

by d2. Then II(ó1) - II(d2) and d2 E ~ for E~ 0 sufficiently small since 0

is open. This implies M- XII(d1) - XII(d2) with ó1 ~ d2 and d1,d2 E p,

Finally, suppose r(X) ~ k and r(Ii~(d)) - mi for all i- 1,...,m and all

d E p. Take some M E L. Then we can write M- XII(d1) with d1 E ~. Since

r(X) ~ k there exists an c~ 0 with 0- Xc -[Xi Xi1[ci ci 1'. Take some

fixed i and replace in d1 the ith part ai1' Si1 by

a. - a. t E{n~~`(d~)n~(d )}-1 c~, s. - s. t E[c.-n.(s ).{n~~(d )n.(d )}-1~~`]
i2 it i i 1 i i2 i1 i i 1 i 1 i 1 i

Denote this vector by d~. Then 62 E 4 for E~ 0 sufficiently small since A

is open. Furthermore, II(d2) - Il(d1) tEIID where IlD is a matrix with ith

column equal to c and with elements zero elsewhere. This gives

M- XII(d1) - X(Il(d1) tEIIp) - XII(62) with d1 ~ d2 and d1,d2 E A.

In practice without further knowlegde of the regression coeffi-

cients one would like to take ~- R N. However, due to the completeness

and identifiability conditions almost always closed subsets of lower di-

mensions of R N have to be excluded. The condition in theorem 5.3 that ~

is open in R N matches perfectly to this situation.

In literature in this field as mentioned in the introduction

a somewhat different approach is followed. In the foregoing situation one

takes for 0 some set such that ~2N - 4 has Lebesgue ( or some other)

measure zero. Then with the general definition 1.1 of identification the

theorem 5.3 needs no longer to be true for some particular choice of ~.

Therefore if one wishes that this theorem maintains to hold the.
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definition of identification has to be changed. From an axiomatic point
of view this seems to be unsatisfactory. However, approaches of that kind
has been made in literature. For an overview see e.g. Schdnfeld [1~~.

By the way, another argument that makes open sets ~ attractive
comes from point estimation. Usual estimators for d ( e.g. 2SLS, 3SLS) can
take values outside ~ and therefore, at least formslly, should be defined
there in some other way. However, if 0 is open then such changes have no
influence on asymptotic properties ( e.g. consistency, asymptotic normality)
and therefore in such cases one can be a little careless in the definitions.
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6. Linear models with lagged variables.

In univariate linear regression with lagged variables we start with

a random process {~t, t E T} with T-{.,,-1,0,1,...} which satisfies

for sll t E T the difference equation ( convergence in mean square):

( 6. 1) E ag y,-,t-g - S' xt } et ' a0 - 1g-0

with

, YO - 1,Et - hE0 Yh ~t-h

where for the tth-period yt is the (observable) random value of the dependent

variable, xt is an (observable) non-random k-vector taken by the explana-

tory variables and Et is a(non-observable) disturbance generated by a

(weakly) white noise process {nt, t E T} with expectation zero.

We want to define {~t} .as the (a.s) uniquely determined solution

of (6.1). Therefore we restrict ourselves to covariance stationary

processes {~t} with non-e~ponentially increasing expectation ut for t-~ -.

If the power series A(z)-E ag zg , C(z) - E Yh zh have convergence radii
0 0

larger than 1 wich A(z) ~ 0 for all ~zl ~ 1 and if xt does not increase

exponentially fast for t-~ - m then this uniqueness is guaranteed. Further-

more, the solution has the one-sided representation

y,t - B' ó~Vr xt-r } ó~r nt-r

where

~(z) - E ~pr zr - C(z)~A(z),`~(r) - E~r zr - 1~A(z), ~z~ ~ 1.
0 0

The foregoing conditions are rather strong but always satisfied in practice.

Since our aim is identification we feel no nPed to weaken them.

We suppose that the distribution of {nt} is not fully known and

is characterized by some parameter ~ with values in Z. Furthermore, we

assume that a-(a1,a2,...) E A, S E K, Y-(Y1~Y2~-..) E C such that for



-zo-

every a E A and Y E C the corresponding A(z) and C(z) have convergence

radii larger than 1 with A(z) ~ 0 for all Izl ~ 1. Then with 0-(a,6,Y,~)

there corresponds a distribution PC of {Yt, t E T}, uniquely determined

by (2.1)~in the class of all covariance stationary distributions

with non-exponentially increasing expectation for t-r - W. This leads to

a parametric class ~- {PC,O E 8} of probability distributions of the

process (~t,t E T} if we take A 3 AXBxCxZ.

Finally, we suppose that the process {y~,t E T} is actually

observed in the time period {1,....,n}. Then Y(n -(~1,...,y~) has to

be considered as the sample. This leads to the parametric class

~-{P~n),9 E 6} of distributions of ~(n), where P~n) is the marginal

distribution of PD with respect to the time period {1,....,n}.
Questions concerning the identifiability of fiznctions of the para-

mèter with respect to the class ~ have been discussed by Hannan [5,6]

for some related cases. As pointed out in section 3, from a statistical

point of view the identifiability with respect to the class ~ is more

interesting. Problems of that kind are hardly treated in literature. The

only paper known to me is Tigelaar [14], which contains some results

for the case of finite sums. It would be valuable to extend these results
and to generalize them to multivariate difference equations and, even
more general, to simultaneous equation systems with lagged variables.
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