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Simplictal algoríthms for solving the nonlinear complementarity problem

on the simplotope

by

T.M. Doup, A.H. van den Elzen and A.J.J. Talman

Abstract

Interesting problems like the search for a Nash equilibrium vec-

tor in a noncooperative game or a price equilibrium vector in an inter-

national trade model can be formulated as a nonlinear complementarity

problem on the simplotope. Tn this paper we present three variable di-

mension simplicial algorithms For solving this problem. Al.l these algo-

ri[hms can start anywhere and itnd an approximate solution by generating

a sequence of simplices of varying dimension. The algorithms presented

here differ from each other in the nwnber of rays along which the star-

ting point can be left. First we present the already known sum- and pro-

duct-ray algorithm in case the simplotope ís subdivided by the so-called

V-triangulation. We remark that the presentation of the sum-ray algo-

rithm applied to that tríangulation is new. The main part of the paper

deals with a new algoríthm on the simplotope, the so-called exponent-ray

algoríthm. Again the underlying triangulation is the V-triangulation.

Furthermore, the interpretation of the three algorithms as adjustmen[

processes is díscussed. This interpretation further explains the diffe-

rence be[ween the three algorithms. The paper is concluded with compu-

tational results. These results show that for probl.ems on the simplotope

the sum-ray algorithm is inferior to the exponent-ray algorithm and the

product-ray algorithm.

Keywords: triangulation, simplicial algorithm, equi.líbriuro, complementa-
rity
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1. Introduction

The simplotope S, being the product space of N unit simplices,
is defined by

N n.
S - II S ~

j-1

where, for j-1,...,N,

n n.fl n.fl
S j-{xj E IR}~ I dE xjk - 1}

k-1

is the nj-dimensional unit símplex. An element x in S can be denoted by
r n

(xi,x2,...,xN)T E S with xj -(xjl,...,xjn,}1) E S d for all j E IN -
N ~

{1,...,N}. Let n be equal to E nj. The nonlinear complementarity pro-

blem (NLCP) on S consists of finding a vector x~ in S such that
n;~l

z(x~) s 0, where z-( z1,...,zN)T:S -. R~n with zj:S } R~ for all
j E IN. The function z is continuous and x~zj(x) - 0 for all j E IN and

for all x E S.
Some interesting problems can be stated in such a form. First we

mention the problem of finding a Nash equilibrium in a noncooperative N-
person Kame. In this context a vector x E S is interpreted as a strategy

vector in the strategy space S and a solution to the NLCP gives a Nash

equilibrium strategy vector of the game. Another example concerns the

search for equilibrium prices in an international trade model with do-
mestic goods, traded within only one country, and internationally traded

common goods. The formulation of such a model as an NLCP on S is shown

in van der Laan [4~. Again the set of solutions to that NLCP on S in-

duces the set of equilibriwn prices in the economy. A specíal case of

the NLCP on S is the case when N-1. The NLCP on one unit simplex can be

used to compute equilibrium prices in so-called Walrasian economies. The

unit simplex is then interpreted as the price space of the economy.

T3oth for the NLCP on S and the NLCP on Sn so-called variable

dimension simplicial restart algorithms have been developed to approxi-

mate a solution. These algorithms generate in a simplicial subdívision



z

of S(or Sn), starting from an arbitrary grid point, a sequence of ad-
jacent simplíces oE varyíng dimension which termínates with a simplex
that approximates a solution. improvements of the approximate solutir,n
.rre ohtalned by decreasíng the mesh oE the underlyinK trlanf~r~lntinn in~l
restarting the algorithm in the just found approximation.

For solving the NLCP on Sn there are the algorithms of van der
Laan, Talman and Van der Heyden [8] (see also [5]), Doup and Talman [1],
and Doup, van der Laan and Talman [2]. These algorithms differ from each
other in the number and the direction of the rays along which the star-
ting point can be left. In the algorithm on Sn of [8] there are n-F1
rays, one to each facet of Sn. The algorithm in [1] possesses crEl rays
pointing to each vertex of Sn while the so-called exponent-ray al~orithrn
in [2] has 2~1-2 rays, one to each face of the unit símplex.

In van der Laan and Talman [7] several convergent adjustment
processes for solving the NLCP on the unit simplex were described. Each
of these processes is related to one of the algorithms mentioned ahove
in the sense that the path generated by each process can be followed
arbltrary close with the corresponding algorithm by taking the mesh of
the triangulation small enough. In [7] it is shown that these processes
have an attractive economic interpretation when applied to the problem
of finding equilibrium prices in a pure exchange economy.

The algorithms on Sn of both van der Laan and Tal.man [S] and
Doup and Talman [1] were generalized for application on the sirnplotope.
The algorithm in [5] on Sn was generalized to a símplicial variable di-

Nmension algorithm on S with E(n,fl) rays to leave the arbitrary star-
j31 ~

ting point. This so-called sian-ray algorithm on S was introduced in [6)
and was adapted i n [8] for a more general applicability. The algorithm

Nin [1) was generalized to the product-ray algorithm on S with II(n~tl)
j-1rays. The names of the algorithms are derived from the respective nrunher

of rays along which one can leave the starting point. The adjustment
processes induced by the sum- and product-ray algorithm on S were des-
cribed in van den Elzen, van der Laan and Talman [3). In that paper also
a third process which can be considered as the generalization of the
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exponent-process on Sn, was given. This exponent-process on S pos-
N n.~-1

sesses n (Z ~-2) rays to leave an arbitrarily chosen (i nterior) ini-
1-1

tial poínt. As argued i n [3], the latter process has a very attractive
interpretation as a price- or strategy-adjustment process when applied
to Eind equilibria in an economy and a noncooperative N-person game res-
pectively.

In this paper we describe a new simplicial variable dimension

restart algorithm on S which can start anywhere and terminates withín a

finite number of iterations with an approximate solution of the NLCP on

S. Moreover, the sequence of adjacent simplices of varying dimension
generated by the algorithm follows approximately the path of points of

the exponent-process on S. Therefore we call thi.s algorithm the expo-

nent-ray algorithm. The so-called V-triangulation uf S developed in [1]
underlying the product-ray algoríthm on S will also underly the new
algorithm having an exponential number of rays. Furthermore, we will
adapt the sum-ray algorithm on S to the V-triangulation. This latter al-
gorithm follows approximately the path of the sum-process on S as des-
cribed in [3]. In [6] and [8] the sum-ray algorithm has only been des-

cribed for the well-known Q-triangulation of S since the V-triangulation

is of a more recent date. As argued in [1] and [2] the V-triangulation
of Sn and S is much more natural than the Q-triangulation especially

when the algorithm ís interpreted as following the path of a correspon-

ding adjustment process (see also [3]).

The paper is organized as follows. In section 2 both the sum-ray

and the product-ray algorithm on S are described. For the first algo-
rithm the V-triangulation will also be the underlying simplicial subdi-

vision. The new exponent-ray algorithm on S is presented in section 3.
Section 4 explains how the algorithms can be interpreted as path follo-

wing discrete procedures oE the processes given ín [3]. Special atten-

tion will be paid to how the variables are adapted during the algo-
ríthms. Computational results are presented in sectton 5. The examples
used concern both international economies and noncooperative games.
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2. The sum- and the product-ray algorithm on the simplotope

l.et S again he as defined Sn the previous section. For j ~
{1,...,N},the index set I(j) denotes the set

N N
{(j,l).(j.2),...,(j,njfl)}

and I- u I(j). The number n equals E n,. In the algorithms the set
j'1 j-1 d

S is subdivided by the V-triangulation originally developed in [L]. This
triangulation is completely determined by the starting point (of the
algorithm) and its projection on each of the faces of S. Let v be the
(arbitrarily chosen) starting point in S. For a subset K of the index
set I we denote the number E vjh by Sj(K), for all j E I.,..

(j,h) E K n I(j)
Then the (N~-n)-vector p(K) in S is defined by

I(1-Sj(K))I(Sj(K)~-IK~I) . (j.h) E Ko

Pjh(K) -

if Sj(K) ~ 1 and by

pjh(K) - ~

(vjh(1fIK~l))I(Sj(K)f~K~~) , (j,h) E K~,Ko

0 . ( ),h) ~ K ,

Il~(IK~ItSj(K))

vjh~(IK~~tSj(K))

L

, (j.h) E Ko

, ( j,h) E K`~Ko

, (j,h) ~ K,

if Sj(K) - 1. Here K~ -{(j,h) E K n I(j)Ivjh - 0} and ~K~~ is the car-
dinality of K~. If K,1 I(j) - Q we define pj(K) - vj. In particular,
p(Q) - v. We call p(K) the (relative) projection of v on the boundary
set S(K) -{x E Slxjh z 0 for all (j,h) ~ K}. Although the V-triangula-
tion is completely determined by v and all p(K)'s, K C I, the descri.p-
tion of its simplices depends on the specific algorithm used.

N
We will first describe the sum- or E(n,tl)-ray algorithm. As

j-1 ~mentioned in section 1, this algorithm was already described in [6] for
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n.
the case in which each S ~, j E IN, is triangulated by the well-known Q-
triangulation. Here this algorithm is adapted to the recently developed
and more natural V-triangulation of S(see [1]).

T,et T be a subset oF I such that Por each j E IN the set Tj -
'I~~ I(j) is a proper subset of I(j). Fur[hermore, t denotes the number

of elements in T and t(j) - ITjI, j-1,...,N.

Defínition 2.1 Let yj(Tj) -((j,kl),...,(j,kt(j))) be a permutation of

the t(.j) elements of the proper subset Tj of i( j), j E IN, and let the

pennutation vector y(T) be Riven by

YCT) - (Y1(T1),...,yN(TN)).

Tlten the set A1(y(T)) i s defined by

N t(j)
A1(Y(T)) -{ x E Slx - v f E E a(j,kh)ql(j,kh) with

j-1 h-1 (2.2)
0 C a(J,kt(j)) c...c a(j,ki) t 1, j E IN},

wherr~ the (Nfn)-vectors ql(j,kt), i- 1,...,t(j), j E IN, are given by

qf~( J,kj) - ~

pj({(.l,k~),...,(l,ki)})-Pj({(,1,k~)....,(j,ki-1)}) ,

0 , ht.j.

Further A1(T) - U A1(y(T)), where the union is over all permutatíon
Y(T)

vectors y(T) of T. Observe that A1(Q1) is equal to {v}.
The dimension of the set A1(T) ís equal to t if and only iE for

each permutation vector y(T) of T, the rank of the (N-Fn)xt-matrix
j-1

Q1(y(T)) with ( E t(h)ti)-th column equal to ql(j,ki), i-1,...,t(j),
h-1

jc- IN, is maximal and thereFore equal to t.

Lcmma 2.2 The rank of the matrlx {~l(y(T)) ts less than t tf and only iF

for some j EIN,vjh - 0 Eor all (j,h) ~ Tj holds. We allow Tj to be eyual
to I(j). Moreover, the rank of Q1(Y(T)) i s independent of the permuta-
tion vector y(T) of T.
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In the sequel we only consider sets A1(T) and A1(y(T)) ~f dimen-
sion t- ~T~. The set of subsets T of I for which this holds is denoted
by 71. We remark that p E tl. The boundary of A1(y(T)), denoted by
bd A1(y(T)), consists of (t-1)-dimensional subsets which are obtained bv
setting exac[ly one of the inequalíties in (2.2) to an equality, i.e.
for some j E IN either a(j,kt(j)) - 0 or a(j,ki) - a(j,ki-1) for some í,

2 c i c t(j), or a(j,k~) - 1. If a(j,k~) - a(j,kJ- ) for some j E I and1 1 i 1 N
some i, 2 c i c t(j), the eorresponding boundary set of A1(y(T)) is also

a boundary set of another area A1(y(T)). The boundary set belonging to

a(j,kC(j)) - Q equals A1(y('T`{(j,kt(j))})) whereas the boundary set
corresponding to a(j,ki) - 1 is equal to S~(T) '~ AI(y(T)) with SJ(T) -

{x E S Ixjh - 0 for all h, (j,h) ~É Tj}. Now it i s straightforward to
derive that the boundary of A1(T) is equal to

N
bd A1(T) ~( U A1(T`{(i,h)})) U( V(SJ(T) ~~ A1(T))).

(i,h) E T j-1

This description of bd A1(T) will be of use when explainíng the algo-
rithm.

Next we describe how each t-dimensional set A1(T), T E~l, is

triangulated i nto t-dimensional simplices or t-simplices and liow all
these tríangulations form the V-triangulation of S. The numher m-1 is
the grid size of the triangulation with m some posítive integer.

Definítion 2.3 Let T be an element of T1. The set G1(y(T)) is the set of
t-simplices o(yl,n(T)) with vertices yl~~~~~y[fl such that

N [( j)
(i) yl - v f E F, a(j,kh)m-lql(j,k~) for integers a(j,kF), such

j-1 h31
that 0 c a(j.kt(j))c...ca(j.k~) c m-l, j-l....,N

(ii) n(T) -(nl,...,nt) is a permutation of the t elements of T such

tha[ for a11 i-2,...,[(j):p~p' if a(j,ki) - a(j,ki-1) where n-
P

(j.ki) and n ~(j.k~ ). j E Ip' i-1 N
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(iii) yi-}-1 - yifm 1q1(ni). 1-1,...,t, where ql(j.~). (j.~) E T, are

defined as in defínition 2.1.

The tiet C}(y('t)) iti a triangulatíon of A1(y(T)) whereas the
union G1(T) of G1(y(T)) over a11 permutation vectors of T triangulates
A1(T). The set G1 - U 1 G1(T) yields the V-triangulation of S with

T E T
grid síze m 1. The notion of a triangulation implies that each (t-1)-
face oF a t-simplex, called a facet, in G1(y(T)) is either a facet oE
exactly one other t-simplex of G1(y(T)) or lies in bd A1(Y(T)). A t-sim-
plex has tfl facets one opposite to each vertex. Two different simplices
are adjacent i f they share a common facet or if one of them is a facet
of the other. Since the algorithm moves from one simplex to an adjacent
one we will first describe how the representation of the latter one can
be obtained from the representation of the first simplex if they share a
common facet. So, let a(yl,n(T)) and o- a(yl,n(T)) be elements of
G1(y(T)) with common facet i opposite, say vertex yp of o, ltpttfl,

then Q can be obtained from o as given in table 1 where e(j,k) is the
j-1

( E(nifl)tk)-th unit vector in Di~n, k-1,...,ni-~1 and j-1,...,N. Fur-

i-1 j-1
ther, the vector a is the (Ntn)-vector wtth ( E(ni-F-1)tk)-th element ajk

í-1
equal to a(j,k) íf (j,k) E T and zero otherwise. When going from the t-
simplex Q(yl,n(T)) to o we say that the vertex yp has to be replaced.

-1
Y a

yli~m-1q1(n})

yl

y1-m-lql(nt)

(nZ,...,nt,ní)

(Rl,...,~r Z,n ,n 1,.. ,nt)
F' P P-

(xt'xl'~~"xt-1)

Table 1 p is the index of the vertex of o(yl,n(T)) to be replaced.

In lemma 2.4. we describe the cases in which a facet lies in the bounda-

ry of A1(Y(T))~
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Lemma 2.4 Let o(yl,n(T)) be in G1(y(T)) and let 7 be the face[ of o op-
posite vertex yp, ltptttl. Then T lies in the boundary oE A1(y(T)) iff
one of the following cases holds:

a) p~l : n1-(j,k~) for some j E IN and a(j,ki)~m-1

b) l~p~ttl : nP (j,ki),np-la(j,ki-1) for certain j E IN and 1Cict(j),
and a(j,ki)na(j'ki-1)

c) p~ttl : nt (j,kt(j)) for some j E IN and a(j,kt(j))-0.

The lemma follows immediately from the definitions of G1(y(T))

and A1(y(T)). If a facet r in bd A1(y(T)) does not lie in bd A1(T),

then i ís a facet of exactly one other t-simplex Q in G1(T) but o lies

in an area A1(y(T)) different from A1(y(T)). If T lies in bd A1(T), theti

either t lies in Sj(T) n A1(T) for some j E IN or i ís a(t-1)-simplex

in G1(T'~,{(i,h)}) for some (i,h) E T. These three different cases are

described in the following lemma.

Lemma 2.5 Let a(yl,n(T)) be in G1(y(T)) with a facet i in bd A1(y(T)).
If T is the facet opposite vertex yl, then t is a(t-1)-simplex in S-~(T)
where j as given i n lemma 2.4.a. When T lies opposite the vertex yP,
l~p~t~-1, then T is a facet of the t-símplex o(yl,n(T)) in G1(y(T)) with
y.(T.) ~ ((j,kj),...,(j,kj- ).(j.kj),(j,kj- ),....(j.kj )).Y (T ) -~ .~ I 1 2 i i 1 t( j) h h
yh(Th) for all h s j, and n(T) -(nl'~~~'xp-2'xp'np-1'"''nt)~ where j
and i as i n lemma 2.4.b. In the case that T lies opposite vertex yt}1, T
is the ( t-1)-símplex o(yl,n(T)) in G1(y(T)) wíth T-T`{(j,kt(j))},

yj(Tj) -(( j.ki)....,(j.k~(j)-1))r Yh(Th) - yh(Th) for all h~j, and

n(T) -(nl'~~~'nt-1)' with j as in lemma 2.4.c.

In the foregoing we described the subdivision of S in t-dimen-
sional subsets A1(T), T E T1, and the way in which each sucli subset is
subdivided by the V-triangulation with grid size m 1 in [-dimensional
simplices. Moreover the steps of moving from one simplex to an adjacent
one were given. Now we are ready to describe the sum-ray algorithm with
underlying V-triangulation i n order to solve the NLCP on S. For varyinl;
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T in Ti and starting with T-~, the algorithm generates a sequence of ad-
jacen[ t-simplices ín Ai(T) having so-called T-complete facets i n common.

Defínition 2.6 For g-t-l,t, where t-lTl and T C 1, a g-simplex
o(yl~~~~~ygtl) is T-complete if the system of linear equations

g-}-1
F. a(z(Yi)) f- E u. (e(j~k)) - R(e) -(~) (2.3)

i-1 i i (j.k) ~ T Jk 0 0 l

aith 0[he (Nfn)-zero vector and e the (Nfn)-vector of ones, has a solir

tion ai ~ 0, i-1,...,gf1, u~k ~ 0, (j,k) ~ T, and s~. A solutton of
~ ~ ~

(2.3) is denoted by (a ,u ,R ).

We need a nondegeneracy assumption on this system to guarantee
convergence of the algoríthm.

Nondegeneracy assiunption. For g-t-1 the system (2.3) has a unique solir
~ ~ ~ ~ ~

tion (a ,u ,R ) wi:th at ~ 0, i-1,...,t, and ~jk ~ 0, (j,k) ~ T, while
~ ~

(ur K-t ,~t most unv variabte of (a ,~~ ) is equal to zero.

The algorithm terminates as soon as a complete simplex is found.
This notion is defined in definition 2.7 and we show in lemma 2.8 [hat

such a simplex yields an approximate solution to the NLCP on S. Lemma

2.9 sta[es when a simplex in some area A1(T), T E ii, is complete.

1 tDefinttion 2.7 For T C I, a T-complete ( t-1)-simplex o(y ,...,y ) is
complete i f there is an index j E IN such that for all x in o, xjk - 0
if (j,k) ~ Tj. We allow Tj to be equal to I(j).

Lemma 2.8 Let e~ 0 be such that max ~zih(x)-zih(y)I ~ e Eor all x
(i,h) E I

and y in a simplex o of the V-triangulation of S and let o~ be a comple-
~ ~ ~

te (t-1)-simplex, for some T C I, with a solution ( ~ ,u ,g ) of (2.3)
~ ~

such that ~i ~ O,í - 1,...,t, and u~k ~ p~(j,k) ~ T. Then x s
t
E~~ i lies in ~ ~ E f Furthermore ~ ~`íY a and R (-e, e). .Izih(x )-S I ~ e

i- t
If (i,h) f T and zih(x~) G R~ f e if (i,h) ~ T.
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Lemma 2.9 The 0-simplex a(v) is complete i ff for some (j,k) E I bnth v~k

- 1 and a(v) i s {(j,k)}-complete. A T-complete facet t of a T-complete

t-simplex o(yl,n(T)) in A1(T) is complete iff i lies opposi.te yl in
bd A1(T). if a(yl,n(T)) i s a(T U{(j,k)})-complete simplex in AI(T) Cor
some (j,k) ~ T then a is complete iff vjh - 0 for all (j,h) ~ Tj u
{(j,k)}.

Assuming nondegeneracy, the T-complete t-simplices o(yl,,r(T))

in A1(y(T)) for given T E rl form sequences of adjacent t-simplices
having T-complete common facets. Each sequence not being a loop has [wo

end simplices. When an end simplex is not complete it ís either a(T u

{(j,k)})-complete t-simplex or a t-simplex having a T-complete facet T
in bd A1(y(T)). The flrst case ís described in lemma 2.10, whtle the

latter case was treated i n lemma 2.5.

Lemma 2.10 Let a(yl,n(T)) be a(T u{(j,k)})-complete t-simplex in

A1(Y(T)) for some (j,k) ~ T. If a is not complete then a is a(T u

{(j,k)})-complete facet of exactly one (ttl)-simplex

o(yl,n(T u{(j,k)})) in G1(T U{(j,k)}). More precisely, Q is the (ttl)-

simplex a(Yl,n(T U{(j,k)})) in G1(Y(T u{(j,k)})) with y~(T~ u{(j,k)})

a ((j,ki),...,(j,kt(j)),(j,k)), and n(T U {(j,k)}) ~ (nl,...,nt,(l,k))-

Combining the foregoing we see that a sequence of adjacent t-
simplices in A1(T) having T-complete common facets ts either a loop or a
path with two end simplices. Each end simplex which is not complete or
equal to a(v) can be connected wíth an end simplex of either a sequence
of (t-1)-simplices i n A1(T`{(í,h)}) for some (i,h) E T or a sequence of
(t-~1)-simplices in A1(T U{(j,k)}) for some (j ,k) ~ T. ConnectinR the
sequences in this way we can form sequences of adjacent T-complete t-
simplices with T-complete common facets in areas A1(T), T E T1, where t
varLes between 0 and n. Among these sequences there i s, one connecting v
and a complete si.mplex, while all the other sequences not being a lo~p
connect two complete simplices. The Eirst sequence is í;enerated by th.~
sum-ray algorithm. Aecause the total niunber of simplíces ín S is finitr,,
the number of simplices in the sequence is also finite. The solutions [o
(2.3) for the simplices in this sequence determine a piecewise linear
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paUi of putnts i n S frum v to x~, wíth x~ as described in lemma 2.8.
'Chis path i s in fact followed by the sum-ray algorlChm by performing
alternating linear programming pivot steps i n system ( 2.3) and replace-
ment steps according to table 1 and lemma 2.5. If, for some T, in A1(T)

T T
a T-complete facet t in A1(T~,{(i,h)}) is generated then ( e(i,h),0) is
reintroduced in the system ( 2.3) with respect to T . On the other hand,
when a T-complete t-simplex a in A1(T) is also (T U{(j,k)})-complete
for some ( j,k) ~ T while a i s not complete, a linear programming pivot

tf2 Tstep i n the system ( 2.3) with respect to a is made with (z~y ),1),
where yt}Z is the new vertex of the unique ( tfl)-simptex a in
At(T u{(j,k)}) havi.ng a as facet ( see lemma 2.10). In section 4 it is
shown that this piecewise linear path approximately follows the sum-pro-
cess described i n van den Elzen, van der Laan and Talman [3]. We con-
clude the treatment of the sum-ray algorithm with a presentation of the
steps ef the algorithm.

Let (j,kJ) be the unique index for which z (v) - max
1 jki (i,h) E I

If v - 1 then o(v) ís complete and the algorithm stops, else

jkl
{(j.ki)}. t-1, yl-v. n(T) -((j~kl)). a- a(Yl.n(T)). P~Z.

aih0 for all (i,h) E I, uih - z j(v)-zih(v) for all (i,h) ~(j,ki),

fi - z .(~)
jkJ

1

and a1-1. jkl

Step I. Calculate z(yp). Perform a pivot step by bringing (z(yp),1)Tin

the linear system

tEl ai(z(li)) t F, u~k ( e(J~k)) - a(~) -(1).
i-1 (j.k) ~ T
(tp

[f u, hecometi zcro for home (,j,k) ~: 'C thc:n go to step 3. Else a tti

eliminated for exactly one p t p and the facet 1 yp-l~ypfl~~~pT(Y ,...,
.,Yt}1) is T-complete.

Step 2. If p-1, nl -(j,ki) and a(j~ki) - m-1, then T is a complete sim-

plex and the algorithm stops.
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If l~p~tfl, and if for some i ~2, np-1 - (J'kí-1)' np -(j'ki)
and a(j,ki-1) - a(j,ki), then o(yl,n(T)) and Y(T) are adapted according
to lemma 2.5; return to step 1 with p equal to p.

If p-tfl, nt -(j,kt(j)) and a(j,kt(j)) ~ 0, then the di,nension

is decreased; set t~t-1, T- T',{(j,kt(j))}, (i,h) ~(j,ki(j)) whiLe

o(yl,n(T)) and Y(T) are adapted according to lemma 2.5; go to step 4.

In all other cases a(yl,n(T)) is adapted according to table l;

return to step 1 with p equal to the index of the new vertex of o.

Step 3. If vjh - 0 for all h, (j,h) ~ Tj U{(j,k)}, then o is a complete

simplex and the algorithm stops. In all other cases the dimension is

increased, a(yl,n(T)) and y(T) are adapted according to lemma 2.1t7, set

t-ti-1 and T- T U{(j,k)}, and return to step 1 with p the index of the

new vertex of o.

T
Step 4. Perform a pivot step by bringing ( e i,h),0) in the linear system

tEl ~(z(Yi)) t E u. (e(J.k)) -!3(e) - C~).
1-1 1 1 (j~k) ~ T Jk 0 0 1

(j,k) ~ (i,h)

IE for some ( j,k) ~ T, ( j,k) t(i,h), u jk becomes zero, go to s[ep 3.

Otherwise return to step 2 with p the index of the verfex whose c~~rres-

pondinR vartable ?, is ellminated.
P

N
We now continue with the product-ray or 1I (n,fl)-ray al~orithm

j-1 J
on S. This algorithm was already described in Doup and Talman [l]. We

remark that the projections used in this paper slígthly differ from the

ones whích underly the V-triangulation in [1].

Let T be a proper subset of I containing for eac}i j E IN at
least one element of I(j) and let To be a subset of T containing exactly

one element, say (j,k~), of each I(j). By Tl we denote the complementary
part of To in T. Hor ja1,...,N, let Ti - T1 !~ I(j) consist of tl(j) e1N-

ments and let Yj(Tj) be some permutation of the elements of Tl~ The vec-
J

tor y(T1) denotes the permutation vector Y(T1)
s(Y1(T1)'~~~'YN(TN))~
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Definitiun 2.11 Let T he a subse[ of I for which IT.I ) 1, j E IN, and
]

let T`~ and y(T1) be as given above. Then the set A2(To,y(T1)) is eyual

to

AZ(To,Y(T1)) -{x E Slx-v f Sq2(To) t E a(i,h)q2(i,h), with
(i,h) E Tl

( 2.4 )

Ota(j,k~l ) c...ca(j,kl)tsCl, j E IN},
t (j)

where the (Nfn)-vector qz(To) is gíven by q2(To) - e(To)-v, with e(To)

ttie vertex of S Eor which ejh(To) - 1 if h~ k~, j E IN, and zero other-

wise. The (Ntn)-vectors qZ(j,ki), (j,ki) E T~, j E IN, are equal to

qh(j.ki) - ~

pj({(j. ,...,(j.ki)}) - Pj({(j.k~)....,(j~ki-1)})' h~d

Also here we have to ínvestigate when the rank of the matrix

Q2(T",y('I'1)) with first column qZ(To) and (1 t jEltl(h) f i)-th column
h31

ql(.j,kj), i- 1,...,t1(j), j E IN, ís maxtmal, i.e. when
N

r(QZ(To,y(T1))) - t- 1 f E tl(j). Observe that t- ITI - N t 1.
j-1

Lemma 2.12 The rank of the matrix Q2(To,y(T1)) is not equal to t iff
vjk-0 for all ( j,k) ~ T, where we allow Tj to be equal to I(j) for any
j E IN.

Clearly, the dimension of A2(To,y(T1)) ís independent of To and

y(Tl) anci equal to t iff r(QZ(To,y(Tl))) - t. In the sequel we only con-
si~ier the t-dímensional regíons AZ(To,y(T1)). The (t-I)-dimensional sub-
set5 forming [he huundary of AZ(To,y(Tl)) are obtafned by setting exact-
ly one ínequality in (2.4) to an equality. The union of the
AZ(To,y(T1))'s over all sets To and permutation vectors y(T1) is denoted
by AZ(T). The dimension of AZ(T) is equal to t if r(QZ(To,y(T1))) - t

for any To and T1. The set of subsets T of I for which the dimension of
AZ(T) equals t is denoted by TZ. Now let S be triangulated by the V-

triangulation with grid size m 1, where m is some positive i nteger.
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Definition 2.13 The set G2(To,y(T1)) is the set of t-simplices
o(yl,n(T)) with vertices yl,...,ytfl such that

(i) yl - v t bm lqz(To) f E 1 a(i,h)m lq2(i,h) for inte~ers b
(i,h) E T

and a(i,h), (i,h) E T1, such that for all j E IN, 0 t a(j,kl~ )
t (-j)

C... t a(j,ki) t b ~ m-1

(ii) n(T) -( nl,...,nt) is a permutation of the t elements consistinQ

of To and the t-1 elements of T1 such that for all j E IN and

i~l,...,tl(3) if a(j,ki) - a(j~ki-1), np -(j,ki) and np, -

(j,ki-1) then p~ p'. In the case i-1 we have a(j,k~) - b and
0

n p, - T

(iii) yttl : yi } ~ lq2(ni), i-1,...,c.

The set GZ(To,y(T1)) is the triangulation of AZ(To,y(T1))

índuced by the V-triangulation of S. The triangulation of A2(T) is the

union of the GZ(To,y(T1))'s over all To and T1 and will be denoted hy

C2(T). The rela[ton between two adjacent t-simplices in the same set

G2(To,y(T1)) is again ae given in table 1 where now ajk ~ a(.j,k) if

(j,k) E T1, ajk - b for all (j,k) E To, and ajk - 0 otherwise. Qbserve
also that n might be equal to the set To. The remainder of this sectton

P
is a review from Doup and Talman [1] and only gives the maín results.
For a further insight and interpretation of the replacement steps and
the steps of the algorithm we refer the reader to [1J.

Lemma 2.14 Let o(y1,R(T)) be a t-simplex in G2(To,y(T1)) and T the facet
opposite vertex yp, 1 t p ~ tfi. Then T lies in the boundary of
A2(To,y(T1)) iff one of the following cases holds:

a) p ~ t : nl z T and b a m-1;
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b) 1 ~ p ~ tfl : np -( j,ki)' rp-1 - ( ~'ki-1) for certain j E IN and

2 t i t tlíj) while a(j,ki) - a(j,ki-1)~ or n~l - To,

np -(j,ki) and a(j,ki) L b for some j E IN;

c) p- tfl : nt -(j,kjl ) and a(j,k~l )- 0 for some j E IN.
t (j) t (j)

In case a) T ís a(t-1)-simplex ín bd S. More precisely, T lies

in S(T), where S(T) is gíven by S(T) -{x E Slxjk ~ 0 for all (j,k) ~

T}. In case b) with i~ 1, T ís a facet of the t-simplex

o(Yl,n(T)) in GZ(To,Y(T1)) wíth yj(Tj) -((j,ki),...,(j,ki-2), (j,ki),

(j,ki-l),(j,kifl)~...,(j,k~l )), Yh(T~) - Yh(T~) if h~ j, and
t (j)

n(T) -(nl'~~~'xp-2'np'xp-1'nptl'~ "'nt)' If i~ 1 then T is a facet of

the t-simplex o(yl,n(T)) in GZ(To,Y(T1)) with T~ -{(j,ki)},

Th - Th iE h~ j, T~ -(T~`{(j,ki)}) U{(j,k~)}, Th a Th if h t j,

Yj(T~) -((J,k~),(j,k2),...,(j,k~l )), Yh(Th) - YhCTh) if h~ j,
t ( j)

and n(T) -(nl'~~~'np-2'To'(~'k0)'rpfl' "''nt)' In case c) r is the

(t-1)-simplex a(yl,n(T`{(j,k~ )})) ín the subset AZ(To,Y(T1)) of
tl(j)

Á(T`{(j,kd )}) with T1 - T1`{(j,k~ )}, T1 - T1 if h~ j,
tl(j) ~ ~ tl(j) h - h

Y7(T)) -((j,kl),...,(j,k~l )), Yh(Th) - Yh(Th) if h~ j, and
t ( j)-1

ní'f~,{(j,k.l ) }) - (n ,...,n ).tl(j) 1 t-l

For varying T, the product-ray algorithm generates in AZ('P) a

sequence of adjacent t-simplices with T-complete common facets.

Defini[ton 2.15 For g- t-l,t, where t- ITI-Ntl, T c I, a g-simplex
1 8}1 is T-complete if the system of linear equationsa(Y ~...,Y )
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gEl ,1i(z(ii)) t E ujk(e(jók)) - E- sj(e~j)) -(~) (2.5)
i-1 ( j, k) ~ T j-1

where e(j) denotes the (Nfn)-vector with eih(j) - 1 for all (i,h) E I(j)
~ ~

and eih(j) - 0 otherwise, has a solution ai ~ 0, i-1,...,g-F1, ujk ~~~~
for all (j,k) ~ T, and Bj for all j E IN. A solution of (2.5) is deno[ed

bY (a~.u~~s~).

Nondegeneracy assumption. For g~t-1 the system ( 2.5) has a unique solu-
( ~ ~r ~r ,~ ~x

tion ~ ,~~ ,g ) with 7~1 ~ 0, isl,...,t, and ujk ~ 0 Eor all (j,k) ~ T,
~ ~

whereas for g~t at most one varlable of (~ ,u ) is equal to zero.

1 t is com lete ifDefinition 2.16 A T-complete (t-1)-simplex o(y ,...,y ) p
for each x E o we have xjk - 0 for all (j,k) ~ T.

The next lemma gives an estimate of the accuracy of an approxi-

mate solution obtained from a complete simplex.

Lemma 2.17 Let e~ 0 be such that max ~zjk(x)-zjk(y)~ ~ e for
(j~k) E I

all x and y i n a simplex of the V-triangulation of S and let
Q~(yl,...,yt) be a complete simplex with solution ( a~,u~,g~), Then
~ t ~t i ~ ,~ ~ ~
x- E aiy lies i n a, Sj E(-e,fe) for all j E IN, ~zjk(x )- Bj~ ~ e

i-1
when x~ ~ 0, and z, ( x~) ~ s~ f e if x~ - 0.~k ~k ~ ~k

Lemma 2.1A The 0-dimensional simplex o(v) is complete iff for some
T E r2, a(v) is To-complete and v ís equal to the vertex e(To) of S.

A T-complete facet t of a T-complete t-simplex o(yl,n(T)) in
A2(To,y(T1)) is complete iff T lies opposite the vertex yl of o in the
subset S(T) !l AZ(To,y(T1)) of bd S. If a(yl,n(T)) is a(T v{(j,k)})-

complete t-simplex in AZ(T) for some (j,k) ~ T, then o is complete iff

vih - 0 for all (i,h) ~ T u{(j,k)}.



Again, for given T E TZ, the T-complete t-simplices a(yl,n(T))
in A~(T) form sequences oE adjacent simplices with common T-complete

Facetti. An encl simplex of a sequence not being a loop is either a
('f ~~ {( j,lc)})-compli:te L-simplex ~ir :~ t-simplex with a T-complete f~ret

in hel A"'('P). fn the latter case thi~; Facet is either a complete (t-I)-

símplex or a(v) or an end simplex of. a sequence of adjacent (T~.~{(i,h)})-

complete (t-1)-simplices in AZ(T'~,{(i,h)}) for some (i,h) E T. In the

first case a is either complete or a is a(T U{(j,k)})-complete facet

of the uniquely determined (tfl)-simplex a- a(yl,n(T U{(j,k)})) E

G2(To,Y(Tl)) in A2(T U{(j,k)}), where T~ - T~ U{(j,k)}, Th - Th if

htj. Yj(T~) -((j.ki),....(j,k~l ).(j.k)). Yh(Th) - Yh(Th) if
t ( .j )

h~ j and n(T U{(j,k)}) -(nl,...,nt,(.j,k)). Moreover, a is an end

simplex of a sequence of adjacent (T U{(j,k)})-complete (tfl)-simplices

[n A~(T U{(j,k)}). Linking of the sequences of adjacent T-complete

t-símpli.~es in AZ(T) over all T in TZ yields one sequence connect-

ing a(v) wtth a comple[e simplex whereas all other sequences not being a

loop connect two complete simplices. The product-ray algorithm follows

tlie Eirst sequence by starting from a(v). More precisely, the product-

ray algorithm follows a piecewise linear path of points from v to an

approximate solution x~ by alternattng linear programming pivot steps in

system (2.5) and corresponding replacement steps in the triangulation.

When [he algorithm generates in A2(T) a T-complete facet in

AZ(T~,{(i,h)}) fur some (i,h) E T, then the (i,h)-th unit vector column

is reintroduced in system (2.5). On the other hand if the (j,k)-th unit

vector col.umn in (2.5) is elíminated by a linear programming pivot step,

then the current a is (T U{(j,k)})-complete and the algorithm continues

in A2(T U{(j,k)}) as described above when a is not complete. If the

approximate solution x~ is not accurate enough the algorithm can be re-

s[arted in x~ with a smaller grid size.
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3. The exponent-ray algorithm on the product space of unit simplices

In this section we present the generalization of the algorithm
of Doup, van der Laan and Talman [2] on Sn, although the underlyinR pro-
jections again differ slightly. To describe the appropriate subdivision
of S in regions we need the notion of a sign vector and some furtl~er
notation. For s being a aign vector in ~n, i.e. sjh E{-1, D, 1} for

all (j,h) E I, we define the subsets I~(s), I~(s) and I~(s) of I(j) by
f o
Ij(s) -{(j,h) E I(j)Isjh ~ fl}, Ij(s) -{(j,h) E I(j)Isjh ~ 0}, Ij(s} -
{(j,h) E I(j)Isjh -- 1} and accordingly I}(s), Io(s) and I-(s) as their
respective union over all j E IN. Let the sets Jt(s), Jo(s) and J-(s) be

given bY .Tt(s) -{j E INII~(s) ~ A}, Jo(s) -{j E INII~(s) -~1,
I~(s) ~ fJ} and J-(s) ~{j E INII~(s) -(~, I~(s) 3 Q}.
Furthermore, we define the set f2 of so-called allowed sign vectors as

S~ -{s E II~}nls i s a sign vector such that I~(s) ~(1 or I~(s) ~~1 for

all j E IN while for at least one k E IN, Ik(s) ~~ and
Ik(s) ~ Ó}.

With z(j) ~ 0 the number of elements in Ij(s), a permutation of these
elements is denoted by Yj(s), i.e. yj(s) -((j,ki),...,(j,kz(j))),
j E IN, while Y( s) denotes the vector of permutations (Y 1(s)~ "~~yN(s)},
For each y(s), s E SI, and all j E IN we now define the index sets Z}(s)~

J
7.~(s) and Z~(s) as follows. When j E J}(s) then Z~(s) - I~(s),
Z~(s) - I~(s) and Z~(s) 3~. For all j E Jo(s), Z~(s) -{(j,k~)},
Z~(s) - I~(s)`{(j,ki)} and Z~(s) - I~(s), while if j E J-(s) then

- I~(s) and Z3(s) - Z~(s) - ~. Furthermore, let Zj(s) - Z~(s) V
u Zj(s) and accordingly let Z(s), Z}(s), Zo(s)
of the corresponding

A3(s,Y(s)),

sets over
and Z-(s) be the

all j E IN. Now we can define sets
s E ly~ Eorming a subdivision of S.
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Definition 3.1 Let s be some sign vector in S2 and y(s) a permutation

vector as defined above. The set A3(s,y(s)) is given by

AJ(s,Y(s))~{x C slx - v f a(Z}(s))q3(Z~(s)) f

E a(i,h)q3(í,h) -~ E a(Z-(s))q3(Z-(s))
(i,h) E Zo(s) j E Jo(s) J J

with Ota(j,kz(j))c...ca(j,ki)ca(Z}(s))cl, j E J}(s), and

Oca(Zj(s))Ga(j,kZ(j))G...ca(j,kZ)ca(7}(s))G1, j E Jo(s)}, (3.1)

where the vectors q3(Z}(s)), q3(j,ki), ( j,ki) E Zo(s), q3(Zj(s)) for

j E Jo(s), are given by

q3(Z}(s)) - P(Zt(s)) - v

and

q3(j,ki) - P(Z}(s) U {(j,kl),....(j.ki)}) -

P(Z}(s) U {(j.k~),....(j.ki-1)})

q3(Zj(s)) - P(Z}(s) u z~(s) U z~(s)) - p(z}(s) ~ z~(s)).

Here p(.) is again the projection of v as defined in section 2.

3
The following lemma describes when the rank of the matrix Q(s,y(s))

containing the columns q3(Z}(s)), q3(j,ki) for ( j,ki) in Zo(s), and

q3(7,j(s)) for j in Jo(s), has maximal rank, i .e. when r(Q3(s,y(s)))-t,
N

where t- I f E z(j).

Lemma 3.2 The ma[rix Q3(s,y(s)) described above has rank less than t,
N

t- 1 t E z(j), í ff for all j E J}(s) holds that vjk - 0 for all (j,k)
j-1

~ Zj(s).
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The dimension of A3(s,y(s)) i s t iff r(Q3(s,y(s))) -[. Observe
that the rank of the matrix 3Q(s,y(s)) is independent of y(s). The set
T3 will deno[e the set of sign vectors s for which the dimension of
A3(s,y(s)) equals t. In the sequel we consider only these areas. T'Ile
boundary of A3(s,y(s)), s E 73, consists of a number of (t-I)-dimensio-
nal subsets with one of the inequalities in (3.1) set to an equality,
i.e. either a(Z}(s)) 3 1 or, for some j E J{(s), a(Z}(s)) - a(j,ki),
a(j.ki-1) ' a(J.ki) with i E{2,....z(j)} or a(j.ky(j)) - 0, or,
for some j E Jo(s), a(Z}(s)) - a(j,k2), a(j,ki-1) - a(j,ki) with i E
{3,....z(~)}. a(j,kZ(J)) - a(Zj(s)). or a(Z~(s)) - 0.

Let A3(s), s E t3, be the union of A3(s,y(s)) over all permuta-
tion vectors y(s) oE Io(s), then S is subdivided ínto t-dimensional

3 3areas A(s) with s E r. For the case N~2, ni~2, n2sl and [he case N-3,
nlan2~n3~1 some reKions are ilLustrated in figure 3.1.a and J.l.b rc~ti-
pectively.

,1,G,0,1)T

P((1,1),(1,3),(2,1))-`

p((1,1),(1,-'),(1,3),.(2,1)yy ~ --~---:~-~-(o,l,o,~,~),

),(1,2),(2,i))

Ftgure 3.1.a Illustra[ion of A3(s), s~(f1,0,0,f1,-1); which is subdí-
vided i n[o A3(s,((l,2),(1,3))) and A3(s,((1,3),(1,2))); dim A3(s)

2
3 F. z(j) f 1~ 3

j-1



21

(~,~,U,~~n~~)~

I

~' n3 (s, ((2,2)

. ~k ~~ ~
~ x--~- -,- -

~
~~ I 3 1 3 3 1)T

~ - (4'4'4'4'4'4

Figure 3.1.b Illu~tration of A3(s), s-(-1,f1,0,-1,O,f1): The dimension

of A3(s) equals L z( j) -1- 1- 3
j-1

l,et S be triangulated by the V-triangulatton with grid size m 1,

where m is yome positive i nteger, and with projection vectors (2.1),

then each region A3(s), s E T3, is triangulated by this triangulation in

t-simplices. In fact, each subset A3(s,y(s)) i s triangulated by the set

G;(s,y(s)) of t-simplices defined as follows.

Definition 3.3 Let s E T3 and y(s) be a permutation vector of Io(s). The

set (;3(s,y(s)) is the collection of t-simplices Q(yl,n(s)) with verti-

ces yl ~„~~ ytt 1 such that

(i) y~ - v t a(Z}(s))m-lq3(Z}(s)) f E a(i,h)m lq3(i,h) f
(t,h) E Zo(s)

F, a('L-(s))m 1q3(Z-Cs)).
j E Jo(s) J j
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for integers a(Zt(s)), a(i,h), (i,h) E Zo(s), and a(7.~(s)), j E
Jo(s), such that Oca(j,kZ(j))c...ca(j,kl)ca(Z}(s))cm-1 for all j E

.1}(s) and Oca(Zj(s)ca(j,kz(1))C...ca(j,kz)ca(Z}(s))cm-1 it j F

.lo(s)

(ii) n(s) -(nl,...,n[) is a permutation of the t elements consisting
of Zf(s), the (t-1) - ~Jo(s)I elements of Zo(s), and the jJo(s)~
elements Z~(s), j E Jo(s), such that the following holds: if

a(j,ki) - a(Zt(s)) or a(j,ki) 3 a(j,ki-1) for some i in

{2,...,z(j)} and j E J}(s), this implies p~ p' with np -(j,kl)
tand np, - Z(s), or np ~(j,ki) and np, -(j,ki-1) respectively;

if for some j E Jo(s), a(j,k2) - a(Z}(s)) or a(j,ki) - a(j,k1-1)

for some i in {3,...,z(j)} or a(Zj(s)) - a(j,k~ ), thts implies
z( j)

p~ p' with np s(j,k2) and np, ~ Z}(s), np -(j,ki) and ~rp, -

(j,ki-1) or np ~ Zj(s) and np, -(j,kZ(i)) respectively

(iii) yitl - yi t m lq3(ni) ,1-1,...,t.

Now the union G3(s) of G3(s,y(s)) over all y(s) triangulates

A3(s), whereas G3 ~ v 3 G3(s) triangulates S according to the V-
s E T

triangulation with grid size m 1. Since this algoríthm also moves from
one simplex in G3 to an adjacent one, we describe in table 2 how ,7 -
o(yl,n(s)) can be obtained from a(yl,n(s)) when a and o are two t-sim-
plices in G3(s,y(s)) having a common facet opposi[e vertex yp of a,
1 c p c tfl. In this table e(Zt(s)), e(i,h) for (i,h) E Zo(s), and
e(Zj(s)) for j E Jo(s), are given by ejk(Z}(s)) - 1 if (j,k) E Z}(s)

and zero otherwise, ejk(i,h) - 1 if (j,k) -(i,h) and zero otherwise
while eih(Zj(s)) - 1 if (i,h) E Z~(s) and zero otherwise. Further, ttie
(Nfn)-vector a is deEined by ajk ~ a(Z}(s)) if (j,k) E Z}(s), ajk -
a(j~k) for (j,k) E z~(s)~ ajk - a(Z3(s)) if (j.k) E Z-(s), and aik - 0

]
for all (j,k) ~ Zj(s), js1,2,...,N.



23

-1
Y

ylfm lq3(nl)

yl

yl-m-íq3(nt)

(n2,...,nt,ni)

(rtl, ..,n Z ,n ,n 1,...,nt)
P- P P-

(nt'nl"' 'nt-1)

Table 2. p is the index of the vertex to be replaced.

a

We will now consider the case in which a facet of a t-simplex in

G3(s,Y(s)) lies in hd A3(s,y(s)).

L~~mma 3.4 l.et o(yl,n(sl) he a t-stmpícx in G3(s,y(s)) and r the facc~t

„f,positc~ vertex yf~ fur some p, I e p c ttl. Then T lies in the boundary

nf Ai(s,y(s)) íff one of the followíng cases holds:

a) p-1 . nl-Z}(s) and a(Z}(s)) - m-1

h) 1!p~ttl : l.

2~ i c z(j), and

j E Jt(s), and

j r Jo(s) and

4. ,r~l-(j,ki-l), np-(j,ki) for certain

p-1 i-1 p
1 ~ i c z(j), and a(n ~l) a a(np)

t3. rt~i-Z ( s), npa(j,k2) Lor certaín

a(n~l) - a(rtp)

f
n~l-Z ( s), np-(j,ki) for certaín
a(n~l) - a(nP)

2. n -(j,kJ ), n-(j,ki) for certain j E J}(s) and i,

5. n~1-(j.kZ(j)) if

c) p- tf 1: 1.

2.

a(n~l) -

z( j) ~ 1

j E Jo(s) and i,

a( n )

or

np-Zj(s), and a(n~l) - a(np)

nt-(j.kZ(j))

nt-Z~(s) Eor

P
n~í~Z}(s) if z( 1)-1,

for certain j E Jo(s)

for certain j E J}(s) and a(nt) - 0

certain j E Jo(s) and a(nt) ~ 0.
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The lemma follows immediately from the defínitions of G3(s,y(s)) and

A3(s,y(s)). In lemma 3.5 we consider more carefuily the cases indicated

in the foregoing lemma and it appears that a facet in bd A3(s,y(s))
either lies in bd S or is a face[ of exactly one t-simplex in G3(s,y(s))
with y(s) differíng from y(s) or is a(t-1)-simplex ín A3(s,y(s)) for
some s with IIo(s) I' Ilo(s) I- 1.

Lemma 3.5 In case a of lemma 3.4 i lies in S(Z(s)), i.e, r lies in the
set {x E Slxjk - 0 for all (j,k) E I~(s), j E J}(s)}. For the cases bl -
b5 of lemma 3.4 we have

bl T~ a(yl,n(s)) is a(t-1)-simplex in G3(s,y(s)), where sj~kj - 1,
- 1

sih - sih if (i.h) ~ (j.ki), Yj(s) - ((j,kZ)....,(J,kz(J))).

Yh(s) - Yh(s) if h~ j, and n(s) - (nl,...,n~2.Z}(s),n~l,...,,rt)

b2 r is a facet of the t-simplex o(yl,n(s)) in G3(s,y(s)), where

- Yj(s) - ((j,ki),...,(j,ki-2).(j.ki).(j,ki-1)'...,(j.kz(J))).
Yh(s) - Yh(s) if h~ j, and n(s) - (nl,...,np-2,np,np-l,nptl,..
.,~t)

1 - 3 whereb3 T is a facet of the t-simplex a(y ,n(s)) in G(s,y(s)),
- Yj(s) -((j.k2).(j.ki),...,(J.kZ(j))), Yh(s) - Yh(s) if h~.l, and

rt(s) - (nl,...,n~l.(j,ki),n~l,....nt)

b4 this case has already been described in b2

b5 T is the (t-1)-simplex o(yl,n(s)) in G3(s,y(s)), where sj~kj -
- z( j)

-l, sih - sih if (i,h) t(j,kz(j)), Yj(s) -((j,ki),...,

(j.kz(j)-1)). Yh(s) - Yh(s) if h~ j. n(s) -(al,...,n .Z-(s),
F'2 j

n~l,...,rtt) if z(.7) ~ 1, and n(s) a (nl,...,n~2,Z}(s) rr~l, .,

.,nt) if z(j) ~ l.

Finally for ttie cases cl and c2 of lemma 3.4 tiolds
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cl r is the ( t-1)-simplex o(yl,n(s)) in G3(s,y(s)), where sj~kj -

c2

z( j)
-1. sih - sih if (i,h) ~ (j.k2(j)), Yj(s) - ((j ,kl),...,
(j,kZ(j)-1)), Yh(s) - Ylr(s) if h;` j, and a(s) ~(nl,...,nt-1)

r is the (t-1)-simplex a(yl,n(s)) in G3(s,y(s)), where sj kj - 1,
' 1

sih - sih if (i,h) ~ (J,ki), Yj(s) - ((j.k2)....,(j.kZ(j))),

yh(s) - Yh(s) if h t j, and n(s) - ( nl,...'nt-1).

The definition of the areas A3(s,y(s)), s E r3, implies that

some sets are represented by more than one sign vector. These cases are

descríbed ín the Eollowing lemma, whose proof is a direct result of the

defínition of the A3(s,y(s))'s.

Lemma 3.6 Let sl be a sign vector in r3 with permutation vector y(sl),

If Ij(s1) - I(j) for some j E Ip, then A3(sl,y(sl)) - A3(s2,y(s2)),

where s~k - 1 for all (j,k) E I(j), sh - sh if h s j, and y(s2) - y(sl).

If Ij(sl)~{(j,h)} for some j E Jo(sl), then A3(sl,y(sl)) - A3(s2,y(s2)),

where s? kj - 1, s2h - 0, siR - si~ if (i,R.) ~{(j,h), (j.ki)}, Yj(s2) ~
J. , j

((j.k~),...,(j.kz(i)),(j,h)), and yh(s2) ~ Yh(sl) if h t j.

Now we ln[roduce the concept of an s-complete simplex, where

s E 12. This notion is comparable with the concept of a T-complete sim-

plex in case of the sum- and the product-ray algorithms.

Definition 3.7 For s E SZ a sim lex o 1 gfl, g- p (y ,...,y ) , g-t-l,t, where
t- l f ~[o(s)I , is s-complete if the system of linear eyuations

grl ~ (z(Y1)) - ~ uJ sj (e(j,k)) a (~) (3.2)
i-1 1 1 (j,k) Io(s) k k 0 1

has a nonnegative solution ai, i-1,...,gf1, and u~k, ( j,k) ~ Io(s). A
~ ~solution of (3.2) i s denoted by (a ,u ).

Also for this algorithm we need a nondegeneracy assumption to
guarantee convergency.
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Nondegeneracy assumption. For g-t-1 the system ( 3.2) has a unique so]-u-

tion ( 7~~,p~) with ai ~ 0, 1-1,...,t, and u~k ~ 0, (j,k) ~ Io(s). For
~ ~

g-t at most one variable of ai, i- 1,...,tf1, and pjk, (j,k) ~ Io(s), is

equal to zero.

Observe that if for all x in an s-comple[e g-simplex, o(yl~~~.~ygfl)~

g- t-1 or t, xjk - 1 for some ( j,k) ~ Io(s), then according to the con-
n .t 1

dition that ~E xjhzjh(x) - 0, we have zjk(x) - 0 so that ujk - p, To
h-1

~ ~
obtain a nondegenerate solution (a ,~ ) in this case we perturb zjk(:t)

slightly as follows. For all vectors y in S having one or more compcr

nents equal to one we define zik(y) a-F a if both yjk - 1 and z~(y) ~ n,
and zjk(y) 3-a if yjk ~ l and zjt~(y) posítive for at least une (j,h) F

I(j), where a is some small positive number. Without loss of y;enerality

we assume that v does not solve the NLCP on S.

For varying s E T3 the exponent-ray algorithm will generate a
sequence of adjacent t-simplices with s-complete common facets in A3(s).
The algorithm stops whenever it reaches a complete simplex as defined
below. In lemma 3.9 it is shown ttiat such a simplex yields an approxima-
te solution to the NLCP. Let z be the piecewise linear approximation of

z with respect to the underlying triangulation. For z holds that z(x) -
tf 1 t~-1
E~.z(yi) if X~ E~iyi is a poínt in the t-simplex o(yl~.~~~ytfl)~

1-1 1 izl

nefinition 3.8 An s-complete ( t-1)-simplex o(yl, ,,,yt) for arhitrary

sígn vector s wtth 1 C t C rtFl fs complete if for each j E IN

and either

or

if xjk - 0

for all (j,h) E I(j) for which xjh ~ C

for all (j,h) E I(j) for which X h~ p~J

where X - ~t ~~yi~
i-1 i



Notice that s does not necessarily lie in T3. If a(t-1)-simplex
~

is complete and x - Lí-1 aiy , then according to (3.2)

z~k(x) C 0 if xjk - 0

and for each j E IN either zjh(x) G 0 for all

xji~ ~ 0 or z~h(x) ~ 0 for all

that x~ ~(x) is in general not

IN.

(j,h) E I(j) for which

(j,h) E I(j) for which x~h ~ 0. Observe

equal to zero although x~zj(x) - 0, j E

l.emma J.9 Let e~ 0 he such that max Izi1t(x) - zjh(y)I ~ e for all
( .1. t~ ) t- I

x.iucl y(n the same símplex o of the V-trlanRulation of S, and let

o~(yl,...,yt) be a complete simplex with solution (a~,u~). Then x-
t
g aiyl lies in a~ and satisEies z.h(x) E(-e,te) if (j,h) E Io(s),

i-1 J
zjh(x) ~ E for a11 (j,h) E I-(s), and Izjh(x) - zjh(x)~ ~ E for all

(j,h) E It(s) where E} x, z. (x) ~ e.
(j.R) E Ij(s) JR Jk

Next we describe when a simplex in A3(s) is complete. Let

Vj(x) - {(j,h) E I(j)Ixjh - 0} and V~(x) - I(j)`Vj(x), j E IN and

- min{ II~(s) I, I Ij(s) ~1 Vj(v) I}Furthermore, for j E IN let cj(s)

c(s) - E } c.(s).
j -J (s) ~

Theorem 3.10 Let o(yl,n(s)), s E T3, be an

G3(s,y(s)). Then a is complete iEf at

s-complete

x E S.

and

t-simplex in
~ ~a solution (a ,u ) for some (j,k)

not in I~(s), j E J}(s), ujk - 0, c(s) - 1 and

or I~(s) iV~(v) -{(j,k)}. A facet of o is

Z}(s) and a(7.}(s)) - m-l.

eíther I}(s) a {(j,k){

complete
j

iff
al 3 G' xl -
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Proof. We first prove that I}(s) n V,(x) ~ Q, j E IN, for all x in
J J

a(yl,n(s)) with x unequal to v. Since a líes in C3(s,y(s)) we have F~~r

all (j,k) E I~(s)

yjk - vjk f a(Z}(s))m lq~k(Z}(s)) f E o a(j,h)m-lqjk(j,h)~
(j,n) E Ij(s)

Suppose that a(Zt(s)) 3 0. Then according to definition 3.3 a(j,h) - 0

for all (j ,h) E Io(s), j E J}(s) V Jo(s). Hence, the vertex yl is equal
J

to v and n must be equal to Z}(s). Since for (j,k) E I~(s),i-2,...,tf1,
li-1

y~k~vjk t(~lq~k(np))Im-(1 - m)vjk ~- m pjk(Z}(s) U{ n2,...,ni-1 })

yjk ~ 0. Consequently, xjk ~ 0 for all x s yl - v. Whenwe obtain that i

a(Z}(s)) ~ 0 tt follows immediately that y~k ~ 0 for all i31,...,tf1, so

that xjk ~ 0 for all x i n a and ( j,k) E I~(s). On the other hand for all

j E- Jt(s) we have that for x in a, Ij(s) n V~(x) - Ii(s) ~~ V~(v),

because Zj(s) - Q1 and xjk 3(1-a(Z}(s)))vjk, 0 ~ a(Z}(s)) ~ 1, for a11

(j,k) E Ij(s). Therefore, if a is an s-complete t-simplex with c(s) -
~1, ujk - 0 for some ( j,k) 4É I~(s) and eíther I~(s) 3{(j,k)} or

Ij(s) n V~(v) - {(j,k)}, where j E J}(s), then a is also an s-complete
simplex. For s holds that sjk - 0, sih - sih for all (i,h) ~(j,k)
whereas I~(s) ~1 Vj(x) - p and either I~(s) n Vj(x) - QI or I~(s) n V~(x)

t -z~ for al] x in a and j E J ( s). Hence, a is a complete simplex accor-
ding to definition 3.8. The reverse implícation is now strai8htforkard
[o derive.

~When al - 0, nl - Z}(s) and a(Z}(s)) z m-1, then according to lemma 3.5,
the facet T of a opposite vertex yl lies i n Sjk - {x E Slxjk - C},

(j,k) E Ij(s) and j E J}(s). Consequently, Ij(s) ~ V~(x) - Q~ for all x
in T and j E J}(s), so that T is compiete. The reverse implication fol-
lows along the same lines. [~
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We remark that if z(v) c 0 then v solves the nonlinear complementarity

prohlem. If not z(v) c 0, then the 0-dímensional simplex a(v) is an so-

complete facet of the 1-dtmensional simplex o(v,(Z}(so))) in A3(so),

where so - sgn z(v). Recall that s~k - tl if vjk - 1 and zj(v) c 0 and

that s~k --1 if vjk - 1 and zjh(v) ~ 0 for at least one index

(j,h) E I(j) unequal to (j,k). From the nondegeneracy assumption it fol-

lows that there is no other sign vector s in r3 for which o(v) is an s-

complete facet of a 1-simplex a(v,n(s)) tn A3(s). For given s E t3, the

s-complete t-simplices in A3(s) now form sequences of adjacent t-simpli-

ces with common s-complete facets. A sequence which is not a loop has

two end simplices. An end simplex is either an s-complete t-simplex o in

G3(s,y(s)) with a solution (a~,u~) such that p~k s 0 for some (j,k) in

I}(s) u I-(s) or is an s-complete t-simplex with an s-complete facet

t in the boundary of A3(s). In the latter case the facet T is either,

according to theorem 3.1Q, a complete (t-1)-simplex or is, according to

lemma 3.5, an s-complete (t-1)-simplex in A3(s) for some s t s. This

simplex in A3(s) is again an end simplex of a sequence of adjacent
3 -(t-t)-simplices in A(s) with common s-complete facets, where s differs

from s in only one component whích is 0 in s. In the former case the

s-complete t-simplex a is complete iff the conditions of theorem 3.1Q

hold. The case in which a is not complete is described in the next two
~

lemmas. Lemma 3.11 describes the case when ujk - 0 for some (j,k) in
~

I}(s) and lemma 3.12 the case when ujk - p for some (j,k) in I-(s).

~ ~
I,emma 3.11 f[ ujk -O for svme (j,k) in Ij(s) and a is not compl.ete then

the s-complete t-simplex o(yl,n(s)) is eíther 1) a facet of an s-com-

plete (tfl)-simplex o in G3(s) with sjk - 0 or 2) an s-complete t-sim-

plex a in G3(s), wíth sjk - 0 and sjkj --1. More precisely, the fol-
z(j)

lowing possibilities can occur.

l.i) ~I~(s)~ - 1 and Ij(s) ~~J : a(yl,n(s)) is a facet of the (ttl)-

simplex o(yl,n(s)) in G3(s,y(s)), where sjk - 0, sih

(j,k), Yj(s) - ((j,k).(j.ki),....(j,kZ(j))). Yh(s) ~
h ~ j, and n(s) - (nl,....nt,Zj(s))

- sih'(i'h) ~
y (s) for all
h
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ii) lí}(s)I ~ l: a(yl,n(s)) is a facet of the (tfl)-simplex
.1

a(yl,n(s)) in G3(s,Y(s)), where sjk - 0, sih - sih,(i,h) s(j,k),

Yj(s) -((j.k).(j~ki)~....(j.ki(j))). Yh(s) - Yh(s) for all h~ j~

and a(s) - (nl,...,ap-1,Z}(s).(j.k).a~l,....nt)

2. II~(s)I - 1 and Ij(s) -~: a(yl,n(s)) is also the t-simpl.ex

a(Yl,n(s)) in G3(s,y(s)), where sjk - 0, sjk j --1, sih - sihz( j)
for all other ( i,h), Yj(s) -(( j,k),(j,ki),...,(j,kZ(j)-1)), Yh(s)
- Yh(s) for all h~ j, and n(s) -(n1,...,n~1.Zj(s).~rtp}1,...,nt)

where np - (j,kz(j)).

In the case 2 described ín lemma 3.11 the t-simplex a is also an

s-complete simplex in the area A3(s,y(s)) which is equal to A3(s,Y(s))

(see lemma 3.6). We illustrate this case in figure 3.2 where N-2 and
n1-n2-1. In case 1 of lemma 3.11 a is an s-complete facet of the unique-
ly determined (ttl)-símplex a(yl,n(s)) in A3(s).
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Iv-y

Figure 3.2 The starting point v lies ín the interior of SI x S1. The

grid size of the triangulation is ~. Concerning the sign pattern of z we

have that sgn z(y3) - sgn z(yl) -(-l,fl,-l,tl)Tand sgn z(y2) -
T T - T

(tl,-1,-l,fl). Further sgn z(a) -(O,fl,-l,fl), sgn z(b) - ( 0,0,-l,fl),

sgn z(c) - (- 1,0,-l,fl); sgn z(d) -(0,-1,-l,tl)T aad sgn z(e) ~
T i(f1,0,-l,fl). The algorithm follows the heavily drawn line x- Ei~iyr

and goes from A3((-l,fl,-l,tl)) via A3((O,tl,-l,fl~) into

A3((-1,0,-I,fl)T).

~
Lemma 3.12 If ujk - 0 for some (j,k) in I~(s) and a i s not complete then
the s-complete t-simplex o(yl,n(s)) is either 1) a f.acet of an s-com-
plete ( ttl)-simplex o in G3(s) with sjk - 0 or 2) an s-complete t-sim-
plex in G3(s) with sjk - 0 and Sjkj - 1, More precisely, the following

1
possíhilities can occur.
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l.í) lIj(s)I ~ 1, Ij(s) ~~ and I~(s) ~ lb : o(yl,n(s)) is a facet of

the (tfl)-simplex a(yl,n(s)) in G3(s,Y(s)), where sjk - 0, sili -

sih. (i,h) ~ (j,k). Yj(s) ~ ((j,ki)....,(j,kZ(j)).(j,k)), Yh(s) -

Yh(s) Eor all h s j, and n(s) -(,rl,...,n~l,(j,k),Zj(s),...,Rt)

ii) II~(s)~ ~ 1, I~(s) - 0 and I~(s) -~: a(yl,n(s)) í s a facet of

the (t-tl)-simplex a(yl,n(s)) i n G3(s,Y(s)), where sjk - G' sih -
sih, (i,h) ~(j,k), Yj(s) L((j.k)). Yh(s) - Yh(s) for all h~ l.

and n(s) - (nl,....n~l,(j.k),Zj(s),...,nt)

iii) ~Ij(s)I ~ 1 and I~(s) ~~: a(yl,n(s)) is a facet of the (ttl)-

simplex a(yl,n(s)) in G3(s,Y(s)), where sjk - 0. sih - sih'
(i.h) ~ (j,k), Yj(s) - ((j.ki)....,(j,kZ(j)),(.].k)). Yh(s) -

Yh(s) for all h~ j, and n(s) -(nl,...,,rt,(j,k))

2. IIj(s)I - 1 and Ij(s) -~: a(yl,n(s)) is also the t-simplex

a(Yl,n(s)) in G3(s,Y(s)), where sjk - 0, sjkj - 1, sih - sih for
1

all other (i,h), Yj(s) ~ ((J.k2)....,(j,kZ(j)),(j.k)), Yh(s) -

yh(s) for all h~ j, and n(s) -(nl,...,np-1,(j'k),np.F,l,...,nt)
where np s Z~(s).

The case 3.12.2 is comparable with case 2 of lemma 3.11. r)bserve
that each simplex defined in the two lemmas indeed exísts since a[s not
complete. So, the end aimplex of each sequence of adjacent s-complete t-
simplices in A3(s) with s-complete common facets and not beíng a loop
can be linked with a sequence in another area A3(s) unless the end sim-

plex is complete or equal to o(v). The latter sequence can be a sequence
of adjacent s-complete (t-1)-símplices with common s-complete facets in

A3(S)~ where for some (j,k) E I, s ~ fl and s. - 0, while s - sjk Jk RP RP
for all (R,p) s(j,k). Another possibility is that an end simplex in
A3(s) is an s-complete facet of a(tfl)-simplex a in A3(s), with
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sjk - 0, sjk - tl, s~p - s~p for

then an end simplex of a path

in A3(s) with common s-complete

of adjacent
facets. The

s-complete (tfl)-simplices
last possibilíty concerns

all (q,,p) ~(j,k). The símplex a is

the case in which an s-complete end simplex a in A3(s) is also an
s-complete t-simplex i n A3(s) for some s E 13 ( see lemma 3.11.2 and
3.12.2). The simplex a is then also an end simplex of a sequence of
s-complete adjacent t-simplices in A3(s). In this way all paths can be
linked. As a result there exists a path of adjacent s-comple[e simplices
in reglons A3(sl, s E T3, connecting o(v) and a comple[e slmplex. The
nconher uf simpl[ceti alony, this path is finite because the total ncunber
of tilmpltces in S is finite. 'fhr expcinent-ray alqorlthm generates this
sequence oE simpli.ces starting witli o(v) by following a piecewíse linear

path from v to an approximate solution x~` induced by system (3.2). The

successive steps of the algorithm result from linear programming pivo-

ting steps i n sys[em ( 3.2) combined with corresponding replacement steps

ín the triangulation. A decrease in dimension of the current simplex is
followed by introducing a unit vector column in system ( 3.2). On the
other hand the dimension i s increased when such a column is eliminated

by a linear programming pivoting step. We remark that the p.l. path fol-
lowed hy the algorlthm might have more than one linear piece ín a sim-
plex (se~e lemma 3.11 and 3.17, case 2). ' i'his is caused by the fact thxt
- ~-x.z.(x) is i n general unequal to zero, j E IN. A further interpre[atton

J J
of the algorithm i s presented in section 4. Here we conclude this sec-

tion with a presentation of the formal steps of the algorithm.

Step 0. [Initialization] Set sjk ~ sgn zjk(v) for all (j,k) E I. If sjk
~ 0 for all (j,k) E I then the algorithm stops with the solution
v. otherwise set t-1, y1-v, ~r(s) -(Z}(s)), a~ a(yl,n(s)),
yj(s) - 0 for all j E IN, p- 2, ajk - 0 for all (j,k) E I,
~jk - ~zjk(v)~ for all (j,k) E i, al - 1, cj(s) - min

{~I~(s)~ , ~Ij(s) ~ V~(v) ~} for all j E IN.

Step l. Calculate z(yp) and perform an l.p. pivot step by brínging
(z~yp),l)Tin the linear system
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tEl ~ (z(Y1)) - E uj sj (e(j,k)) - (~) .
1-1 i 1 (j.k) ~ Io(s) k k 0 1
i~p

If u,k becomes zero for some (j,k) ~ Io(s) then go to step 3.
J

Else a is eliminated for exactly one p t p and the facet
1 p p-1 ptl Yt-~1) ís s-complete.T(Y ,...,Y .Y ....,

Step 2. If p- 1, nl z Z}(s) and a(Z}(s)) - m-1 then 1 is complete and
the algorithm stops.

In the case 1 ~ p ~ tfl and if

i) n~l - Z}(s), np s(j,kl) for some j F J}(s), and a(R~1) -

a(n ), then s, y(s) and a(yl,a(s)) are adapted according to
P

lemma 3.5, case bl; set t- t-1 and (i,h) -(j,ki), adapt
c,(s) and go to step 4

J

it) n ~(j,kJ ), n a(j,kJ) for some j E J}(s), l~icz(j),p-I i-l p i
and a(np-1) a a(np), then y(s) and a(Yl,n(s))are .idapte~i
according to lemma 3.5, case b2; return to step 1 wíth p

the index of the new vertex of a

iii) np-1 - Z}(s), np -(j,k2) for certain j E Jo(s) and a(n~l)
- a(n ), then y(s) and a(yl,n(s)) are adapted according to

P
lemma 3.5, case b3; return to step 1 with p the index of

the new vertex of a

iv) n~l ~(j,ki-1), np -(j,ki) for certain j E Jo(s),
2~icz(j), and a(n~l) - a(np), then y(s) and o(yl,n(s)) are
adapted according to case b4 of lemma 3.5; return to step 1
with p the index of the new vertex of o

v) n~l -(j.kZ(j)) if z(j) ~ 1 or np-1 - Z}(s) if z(j) - l,

np - Z~(s) and a(n~l) ~ a(n ) for certaín j E.Io(s), then
P

s, y(s) and o(yl,n(s)) are adapted accordtnR to lemma 3.5,

case b5; set t-t-1, (i,h) z(j,kZ(j))~ and adapt cj(s); Qo
to step 4.
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In the case p- tfl and iF

i) nt -(j,kZ(j)) for certain j E,ï}(s) and a(nt) L 0, then s,
1y(s) and a(y ,n(s)) are adapted according to lemma 3.5,

case cl; set t-t-1, (i,h) -(j,kZ(j)), and adapt cj(s); go
to step 4

ti) nt - Z.(s) for some j E Jo(s) and a(nt) z 0, then s, y(s)
J

and o(yl,n(s)) are adapted accorcíinR to lemma 3.5, case c2;
set t-t-1, ( i,h) ~(j,ki), and adapt cj(s); go to step 4.

In all other cases o(yl,n(s)) and a are adapted according to
table 2 and return to step 1 with p the index of the new vertex
of a.

Step 3. [Increase dimension]
If c(s) - 1 and either I~(s) - {(j,k)} or both j E,1}(s) and

Ij(s) ~~ V~(v) -{(j,k)}, then o is complete and the algoríthm
stops.
If a is not complete, ( j,k) E Ii(s), and if IIi(s)I- 1 and

Ij(s) - Q1, then s, y(s) and a(yl,n(s)) are adapted according to
lemma 3.11, case 2. Further, set (i,h) z(j,kZ(j)), adapt cj(s)
and go to step 4.
If o is not complete, ( j,k) E Ij(s) andlIj(s)I- 1 and

ii(s) -~J, then s, y(s) and a(yl,n(s)) are adapted according to
temma 3.12, case 2. Further, set (i,h) - (j ,ki), adapt cj(s) and
f;o [u step 4.

In all other cases adapt s, y(s) and a(yl,a(s)) according to

lemma 3.I1, case l, iF (j,k) E I~(s) and according to lemma

3.12, case 1, if (j,k) E I-(s). Further, set t-t~-1, adapt cj(s)
J

and return to step 1 with p the i ndex of the new vertex of o,



36

Step 4. Perform an l.p. pivot step by bringing -sih(e(i,h),0)Tin the

system

tEl ~ (z(Yi)) -
i-1 1 1

E uj s~ (e(j.k)) - (~).
(j,k) ~ Io(s) k k 0 1
(j,k) s (i,h)

If ujk, (j,k) ~ Io(s) and (j,k) ~(i,h), becomes zero then

return to step 3. If ~ becomes zero then go to step 2.
P
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4. The paths followed by the algorithms

In the foregoing the sequences of simplices of varying dimension

generated by three simplicial algoríthms were described. The sum-ray

algorítlim generates a path of adjacent T-complete simplices in areas

A1(T) for varying T in T1. In case of the product-ray algorithm a se-

yuence of adjacent T-complete simplices ís generated in areas AZ(T) for

varyíng T in T2. FinaLly, the exponent-ray algorithm generates a se-

quence of adjacent s-complete simplices in areas A3(s), s in T3. All the

algorithms stop within a finite number of s[eps with a so-called com-

plete simplex from which an approximatíng solutíon to the NLCP can be

obtained. Notice that the defini[ion of completeness is different for

each algorithm.

In this section we explain what happens along the paths of the

algorithms in terms of the píecewise línear approximation z of z with

respect to the underlying V-triangulation. From this it will be imme-

diately clear that these simplicial paths approximately follow the paths

of the corresponding processes described in van den Elzen, van der Laan

and Talman [3j. By taking the grid size of the triangulation small

enough the algorithms can follow the paths of the processes as close as

we want.

Let us first consider the sum-ray algorithm. For a better in-
sight we rewrite the sets A1(T), T E rl, as

A1(T) -{x E S~xjk ~ bjvjk if (j,k) E T,

x. - b v if (j,k) ~E T, Ocb,cl,j E I},~k ,j jk ~ N

where v ís the arbttraríly chosen starting point.
Regarding the definition of T-completeness we define for each

T~ rl the set C1(T) by

C1(T) -{x E Slz ( x) - max z (x) if (j,k) E T}.
jk (i,h) E I ih
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We denote the set A1(T) n C1(T) by Bí(T), while B1 is the union of the

sets B1(T) over all T in T1.

In [3j it is shown that the set B1 - ~~ (A1(T) n C1(T)) withT E- r 1

C1('f) s {x C- S (x) - max zíh(x) if (j,k) i- 'f~
(í,h) E I

consists of a disjoint union of piecewise smooth paths and loops. The
path in B1 connecting v and a solution x~ is the path followecl by tlie
sum-process. In the same way we can show that B1 consists of a disjoint
union of piecewise linear paths and loops with one path, pl, connecting
v and an approximate solution. We can show that this path is in fact

followed by the sum-ray algorithm. More precisely, let o(yl,...,yK}1) be
a T-complete g-simplex, gzt-l,t, in Ai(T) for some T in Tt with solution

gtl
(a,u,6). Then the point x- E aiyi lies in Q and is an elem~nt of

ial
B1(T). Moreover, the path pl coincldes with the piecewise línear path of

points generated by the sum-ray algortthm. Because z converges to z if

the grid size of the triangulation goes to zero, the piecewise li.near

path generated by the sum-ray algorithm can follow the piecewise smootl~
path of the sum-process arbitrary close by taking the grid size small
enough.

When vj - ej(j,k) where (j,k) is the index for which zjk(v) -
max zih(v), then v solves the NLCP on S and P1 -{v}. If v is not

(i,h) E I
a solution, the path pl leaves v by increasing the (j,k)-th component of

v for which the z-value is maximal, and by decreasing proportionally the

other components of vj in order to keep the surn of the components equal
to one. Thís procedure is continued until a point x is reached for

which zRp(x)-zjk(x) for some (R.,p) ~(j,k). Then the path P1 continues
with points x ín A1({(j,k),(R,p)}) while keepíng both zRp(x) and zjk(x)
maximal, by increasing the (R,p)-th component of X and decreasing the
other components of xR if R is unequal to j or by relatively increasing
Xep away Erom the xjh's, h~ k, if q is equal to j.
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In general the path P1 consists of points x for whích there is
a T in T1 such that for all j E IN the components xjk of xj with
(j,k) ~ Ti are relatively (to v) equal to each other and relatively

smaller than the components xjh of xj with (j,h) E Tj, for which the

z-value is maximal. As soon as for some index (q„ p) not in T, zRp(x)

becpmes equal to max zih(x), the (R,p)-th component of xR is rela-
(i,h) E I

tively increased away from the x's with (R,h) ~ T, while z(x) ís
Rh k Rp

kept equal to the maximutn of z. In this way a piecewise linear path in

Bt(T u{(R,p)}) is followed. If, on the other hand, for some (i,h) E T,

xih becomes relatively equal to xik, (i,k) ~ Ti, then xih is not further

decreased but is kept relatively equal to xik, (i,k) ~ Ti, while
zih(x)

is decreased away from the maximutn of z. So, pl continues in

A1(T`{(i,h)}). When xjk - 0 for all (j,k) ~ Tj and some j E IN, the

path P1 stops with an approximate solution to the NLCP.

This completes the description of the sum-ray algorithm in terms

of an adjustment process wíth respect to the p.l. approximation z of z.

Observe that this interpretation of the sum-ray algorithm with the V-

triangulation is more natural than in case of the Q-triangulation as

used in [8] where the increase of the (j,k)-th component of x is compen-

sated by the same decrease of an arbitrary other component of xj instead

of a proportional decrease of all other components of xj.

Along the same lines we can describe the p.l. path of points

generated by the product-ray algorithm on S as a path followed by an

adjustment procedure with respect to z. To do so, let us rewrite the

sets AZ(T), T in r2, by

AZ(T) -{x E Slxjk ~ bvjk if (j,k) E T,

xjk - bvjk if (j,k) ~ T, where 0 ~ b t 1}.

Furthermore we define the sets CZ(T), T in t2, by

CZ(T) -{x E Slzjk(x) - max zjh(x), (j,k) E Tj, j E IN}.
( j,h) E I( j)
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Again one can show that the set BZ being the union of the sets
B2(T) - AZ(T) r1CZ(T) over all T in T2, consists of a disjoint union of
piecewise linear paths and loops. Exactly one path, P2, connects the
point v and an approximate solution. This path is the path generated by
the product-ray algorithm. Moreover, P2 approximates the piecewise
smooth path followed by the product-process on S. The latter path is the
path i n the set B2 - U (AZ(T) n C2(T)) which connects v and a soltr
tion point, where T E t2

C2(T) -{x E Slz.k(x) 3 max z h(x), (j,k) E T., j E I}.
~ ( i,h) E I(j) ~ ~ N

In the case that v is the vertex e(T) of S such that bo[h Tj -

{(j,k~)} and z,kj(v) - max z h(v) for all j E IN, the set P2
~ 0 (j,h) E I(j) j 2consists of the point v and v solves the NLCP. Otherwise the path p

leaves v by increasing for all j the (j,k~)-th component of v for which
the zj-value is maximai, and by decreasing proportionally the o[her com-
ponents of v in order to keep the path in S. This procedure ís continuecl
until a point x i s reached for which zjk(x) - zjkj(x) for some (j,k) ~f

0
T. Then the path P2 continues with points x in A2(T U{(j,k)}) by in-
creasing xjk relatively away from the xih's, (i,h) ~ T and keeping
zjk(x) e qual to z.kj(x).

~ 0
In general the

which there is a T in TZ
product-ray algorithm generates points x for
such that all components x.k of x with (j,k) ~

JT are, relatively to v, equal to each other but relatively smaller tha~
the components xih of x, (i,h) E T, for which zih(x)- max zig(x).

(í,g) E I(i)
Notice the difference with the description of the p.l. path P}, If for
some (j,p) not in T, zjp(x) becomes equal to the maxh zjh(x) then t}ie
(j,p)-th component of x is relatively increased away from the xih's
with (i,h) ~ T. Besídes zjp(x) is kept equal to max z(x) so

that p2 continues in g2(T U{(j,p)}). If,
íj,k) E I(.)) jk

however, for some (j,h) E T,
xjh becomes relatively equal to xig, (i,g) ~ T, then this component is
not further decreased but is kept relatively equal to these xig~s while
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zjh(x) is decreased away from the maximal zj-value. In this way the path

PZ continues ín BZ(T~{(j,h)}). When xjk - 0 for all (j,k) ~ T, the path
p2 stops with an approxima[e solution to the NLCP.

Ftnally we discuss how the piecewíse linear path followed by the

exponent-ray algorithm, can be ínterpreted as a path approximately gene-
rated by the exponent-process. Let T3 be the set of sign vectors defined

by

T3 -{s E Ilt~n~s is a sign vector such that I~(s) - Q or Ij(s) n V~ s~

for all j while for at least one k, Ik(s) ~ Q}.

Then for s E T3 we define the set A~(s) by

A~(s) -{x E SI xjk (lfaj)vjk if sjk~tl and vjk~0

x, -a, íf s~1 and v~0
~k ~ jk jk

bv, cx, C(1-Fa,)v if s z0 and v ~0 (4.1)
~k ~k ~ jk jk jk

Ocx ca if s-0 and v-0
jk j jk jk

x ~bv if s --1jk jk jk

where Ocbclclfaj for all j}.

Furthermore, let the set C3(s) be defined by

C3(s) - C1C({x E Slsgn z(x) - s}) , s E i3,

where CR.(W) denotes the closure of a set W.

'Phen the set g3 ~ U-3 (AO(s) n C3(s)) consists oE a disjoint
S E T

uni~~n of piecewise smooth loops and paths as shown in [3]. One path in

B3 connects the point v and a solution point. This path, P3, is the path
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which is generated by the exponent-process on S. To clarify its rela-
tionship wíth the piecewise linear path followed by the exponent-ray

algorithm on S, we first define areas C3(s), s E r3, by

C3(s) - CR({x E S~sgn z(x) - s}) , s E T3.

It can easíly be shown that the set B3 - Us(A3(s) n C3(s)), where the
union is over all s E 73, consists of a disjoint union of piecewise
linear loops and paths. One path, p3, connects the point v and an ap-
proximate solution. From the definition of s-completeness we ohtain tViat
this path is generated by the exponent-ray algorithm.

Notice that for each point x on the piecewise smooth path P3 the
condition xTZ,(x) - 0 for all j in IN holds whereas for a point x onJ J
P3, x~zj(x) is typically not equal to zero. This fact explains the
different sets of sign vectors for which the sets B3(s) - A3(s) n C3(s)
and B3(s) - A3(s) n C3(s) are defined.

0

In general we can say that the path of the exponent-process can
be followed arbitrarily close by P3 by taking the grid size of the tri-
angulation small enough. In fact, each area A~(s), where I}(s) -~ for
one or more indices E I, is subdivided b areas A3 ~ J ~ 3j N Y (s) with s E T
such that I~(s) C I(j)`Vj or Ij(s) u I~(s) - I(j) for those j

while si - si otherwise. Areas A3(s) and AÓ(s) related to other sign
vectors coincide. Furthermore hy decreasing the mesh, Z approaches z so
that the set C3(s), s E r3, approximates the set C3(s), s E r3, with s
and s related as above. Consequently, by takíng the mesh of the trian-
gulation of S small enough, the set B3(s) is arbitrarily close to B3(s)
if s E r3 and I}(s) ~~ for all j. Moreover, if s E T3 and I}(s) -~
for at least one j, then B3(s) is approximated by the union of g3(s')
over all sign vectors s' in T3 such that s~ - sj if I~(s) ~ Q and

I~(s') C I(j)`Vj or I~(s') U I~ís') - I(j) if I~(s) - Q.
Therefore the p.l. path P3 l.eading from v to an approximate solution can
be similarly interpreted as the piecewise smooth path P3 of the exp~-
nent-process.
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The piecewise linear path p3 can be interpreted as Eollows. The

components vjk of v for whích zjk(v) is negative are initially decreased

witii the same rate whereas for each j the components of vj corresponding

to positive z-values are ini[íally increased. The rate with which the

positive vjk's are increased is equal to the absolute amount with which

the vjk's equal to zero are Increased. If zj(v) ~ 0 then vj is initially

not adapted, whereas vjk is decreased if vjk - 1 and zj(v) ~f 0. Observe

that we assume that zjk(v) s 0 for all (j,k) E I since zjk(x) is slight-

ly perturbed if xjk - 1. The prucedure is continued until a point x in 5

is reached for which zih(x) is zero for some (i,h) E I. If zih(x) was

negative then the algorithm proceeds by increasing the (i,h)-th compo-

nent relati-vely away from the x~p's for which zRp(x) ~ 0 while zih(x) is

kept equal to zero. If zih(x)
was positive then xih is decreased rela-

ti.veLy away from the components of xi corresponding to positive z-values

while zih(x) is also kept equal to zero.

Tn general the p.l. path P3 generates points x in S such that ín

principle Lhe components xih of x for which zih(x) is negative are rela-

tively equal to each other, but relatively smaller than the other compo-

nents of x. Further, for all j the components xjk of xj for which zjk(x)

is positive are also relatively (absolutely) equal to each other but

relatively (absolutely) larger than the other components of xj. The

rate aj with which these components xjk for which vjk ~ 0 are larger

than vjk is equal to the value of these components xjk for which vjk is

zero.
As soon as a vector x is reached for which zjk(x) is 0 for some

index (j,k) for which Z, k(x) was negative then the algorithm continues
J

witVi points x whose ( j,k)-th component is increased relatively away from

the components xih of x for which zih(x) is still negative while keepíng

Zjk(x) equal to zero. When zjk(x) was positive then xjk is decreased

relatively away from the components xjh of xj for which zjh(x) is posi-

tive (tf any) while Z.k(x) is also kept equal to zero.
J

Ii on tl~e other hand at a point x on the path p3 the component

xjk for which zjk(x) - 0 hecomes relatively equal to the xih's for whtch
z. (x) is negative, then X is not further decreased. The algorithm
ih jk

continues with vectors x whose (j ,k)-th component is kept relatively
equal to the xih's for which Zih(x) is negative while yjk(x) i s decrea-
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sed away irum zero. Símllarly, 1E for sorne j the component z, forlk
which zjk(x) - 0 hecomes relat'ively (absolu[ely) equal to the x~h~s feir
which zjh(x) is positive, then xjk í s not further i ncreased. The a1Ko-

rithm proceeds with vectors x for which xjk is kep[ relatively equa] tu
the xjh's whose corresponding z-value is positive while zjk(x) is in-
creased away from zero. This interpretation only holds when for eacli j
there i s an index ( j,h) for which zjh(x) ~ 0 and an index (j,k) for

which zjk(x) ~ 0 and xjk ~ 0, i.e. when sgn z(x) E T3 n T3 ~ Otherwise
the interpretation of the path differs slightly.

As soon as a vector x i s generated such that for each j, x.k - 0
J

implies zjk(x) t 0 and either ijh(x) ~ 0 for all (j,h) for which xjh ~ 0

or z.h(x) G 0 for all these ( j,h), the path P3 terminates and x is an
J

approximate solution to the NLCP.
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5. Computational results

The algorithms presented in this paper have been applied to the

noncooperative N-person game and an international economy. For a des-

cription of the underlying functions z: S-~ RN}n we refer the reader

to Doup and Talman [1].

In both applications we s[art the algorithms in the barycentre

of S. The grid size for the first application is m1~ 1 and for the

second applicatíon m 1-}. When a complete simplex is found the grid is

reEined with a factor of two. In the first applica[ion we restart the

algorithm in the approximate solution. However, if this solution lies

close to a boundary face of S we project it on that boundary f.ace. In

the second application we restart the algorithm in the approximate solu-

tion. The grid refinement is stopped when the accuracy of the approxi-

mate solution is sufficient. The accuracy is given by max~k zjk(xv)

where xv is the approximate solution in round v,v - 1,2,... In the first

application the algorithms are stopped when we obtain an accuracy of

lÓ8 and in the second application if an accuracy of 10-~ is obtained.

Throughout this section we will use the following nota[ions; FE: accumu-

Lated nwnber of functton evaluations, LP: accumulated number oE linear

programming steps and v: the number of rounds to obtain the required

accuracy.

The data of the three games we discuss can be found in [1].

Game 1. Three players with each player having two strategies.

The solution of this game is x~` -(1~5,4~5; 3~7,4~7; 2~3,1~3). The re-

sults for game 1 are given in table 1.

Algorithm

sum-ray

product-ray
exponent-ray

FE

54
33
59

LP

51
35
82

v

7
4
7

Table 1. The results for game 1.
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Game 2. Three players with each player having three strategies.

The solution of this game is x~ a(3~7,4~7,0; 0,1,0; 0,2~3,1~1).
The results for game 2 are gíven in table 2.

Algorithm

sum-ray

prod uc t-ray

exponent-ray

FE

21
15
21

LP

18
14
23

v

Table 2. The results for game 2.

Game 3. Four players with each player having two strategies

The solution of this game is x~` -(1~5,4~5; 1,0; 1,0; 2~3,1~3).
The results for game 3 are given in table 3.

Algorithm

s iuu-ra y
product-ray

exponent-ray

FE

18
18
41

LP

14
16
56

v

Tab1e 3. The results for game 3.

3
2
8

The second application concerns the international economy des-
cribed in van der Laan [4]. The computational results presented ín table
4 concern the same examples as described in [4] and [1]. F,ach countrv

has two non-common goods, the number of common goods varies between 2
and 6, whereas the number of countries varies between 2 and 5.
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nwnber of n~unher of sum-ray alg. product-ray alg. exponent-ray alg.

com~non goods countríes FE LP FE LP EE LP

2 2 60 53 54 47 60 53
3 125 117 85 78 81 74
4 178 170 97 90 116 109
5 225 217 128 121 148 142

3 2 97 90 56 49 60 52
3 127 119 87 80 91 84
4 182 174 95 88 123 116
5 261 253 109 102 151 144

4 2 113 105 67 60 68 60
3 l32 124 107 100 104 97
4 212 204 118 lll 133 126
5 309 301 145 138 163 155

5 2 134 126 79 72 76 68
3 157 149 97 90 120 112
4 257 249 145 138 167 161
5 354 346 182 175 170 162

6 2 166 158 89 82 95 87
3 176 168 147 139 115 107
4 346 338 195 188 188 183
5 458 450 221 214 212 206

Table 4. The results Eor the international economy.
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The computational results show that both the exponent-ray and

the product-ray algorithm are significantly betCer than the siun-rav a;-
gortthm in case oE the international trade economies whereas the pro-

duct-ray algorithm is superior to the other two methods in case of. a
noncooperative game. The latter could be due to the specific properttes

of the underlyíng function z in case of games. The equilibrium positions

of a player are deterroined by the strategies of the other players. This

could cause a lot of steps in the exponent-ray algorlthm when one or
more players are already in equilibrium. This feature doesn't hold fur
an international economy, in which an equilibrium position of a certaín
country is determined by all prices simultaneously. A second Eeature
concerns the accuracy of an approximate solution found by the algorithms
for a given grid size. As discussed in [1] such an accuracy is in gene-
ral much better for the product-ray algorithm than for the sum-ray algo-
rithm. In [2] it is shown that the exponent-ray algoritlun on Sn yields a
worse accuracy than for the (n-íl)-ray algorithm on Sn. Lemma 3.9 shows
that ttie latter ís also true on S.

More tests and researcVi could clarify ttie diEferenc results Eor
the two applications given above.
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