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Simplicial algorithms for solving the nonlinear complementarity problem

on the simplotope

by

T.M. Doup, A.H. van den Elzen and A.J.J. Talman

Abstract

Interesting problems like the search for a Nash equilibrium vec-—
tor in a noncooperative game or a price equilibrium vector in an inter-
national trade model can be formulated as a nonlinear complementarity
problem on the simplotope. In this paper we present three variable di-
mension simplicial algorithms for solving this problem. All these algo—
rithms can start anywhere and find an approximate solution by generating
a sequence of simplices of varying dimension. The algorithms presented
here differ from each other in the number of rays along which the star-
ting point can be left. First we present the already known sum- and pro-
duct-ray algorithm in case the simplotope is subdivided by the so-called
V-triangulation. We remark that the presentation of the sum-ray algo—
rithm applied to that triangulation is new. The main part of the paper
deals with a new algorithm on the simplotope, the so-called exponent-ray
algorithm. Again the underlying triangulation is the V-triangulation.
Furthermore, the interpretation of the three algorithms as adjustment
processes is discussed. This interpretation further explains the diffe-
rence between the three algorithms. The paper is concluded with compu-
tational results. These results show that for problems on the simplotope
the sum-ray algorithm is inferior to the exponent-ray algorithm and the

product-ray algorithm.

Keywords: triangulation, simplicial algorithm, equilibrium, complementa—
rity
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le« Introduction

The simplotope S, being the product space of N unit simplices,
is defined by

where, for j=1,e..,N,

nj nj+1 nj+l
S = {xj S H& [ kflxjk = 1}

is the nj—dimensional unit simplex. An element x in S can be denoted by

T ¢
(%) s%Yswessky) €5 with xg = (x )yesd forall €1y=

l,.-u,x Al
| JUJ

N
{1,...,N}. Let n be equal to I n,. The nonlinear complementarity pro-
i=1
blem (NLCP) on S consists of finding a vector x* in S such that
n,+1

z(x*) < 0, where z = (zI,...,zgjr:S > RN+n with z,:S + R 3 for all
j € Iy The function z is continuous and xgzj(x) = 0 for all j € Iy and
for all x & Ss

Some interesting problems can be stated in such a form. First we
mention the problem of finding a Nash equilibrium in a noncooperative N-
person game. In this context a vector x € S 1s interpreted as a strategy
vector in the strategy space S and a solution to the NLCP gives a Nash
equilibrium strategy vector of the game. Another example concerns the
search for equilibrium prices in an international trade model with do-
mestic goods, traded within only one country, and internationally traded
common goods. The formulation of such a model as an NLCP on S is shown
in van der Laan [4]. Again the set of solutions to that NLCP on S in-
duces the set of equilibrium prices in the economy. A special case of
the NLCP on S is the case when N=1, The NLCP on one unit simplex can be
used to compute equilibrium prices in so-called Walrasian economies. The
unit simplex is then interpreted as the price space of the economy.

Both for the NLCP on S and the NLCP on S" so-called variable
dimension simplicial restart algorithms have been developed to approxi-

mate a solution. These algorithms generate in a simplicial subdivision



of S (or SM), starting from an arbitrary grid point, a sequence of ad-
jacent simplices of varying dimension which terminates with a simplex
that approximates a solution. Improvements of the approximate solution
are obtalned by decreasing the mesh of the underlying triangulation and

restarting the algorithm in the just found approximation.

For solving the NLCP on ST there are the algorithms of van der
Laan, Talman and Van der Heyden [8] (see also [5]), Doup and Talman [1],
and Doup, van der Laan and Talman [2]. These algorithms differ from each
other in the number and the direction of the rays along which the star-
ting point can be left. In the algorithm on S® of [8] there are n+l
rays, one to each facet of SM. The algorithm in [1] possesses n+l rays
pointing to each vertex of S™ while the so-called exponent~-ray algorithm
in [2] has 20tl-2 rays, one to each face of the unit simplex.

In van der Laan and Talman [7] several convergent ad justment
processes for solving the NLCP on the unit simplex were described. Each
of these processes is related to one of the algorithms mentioned above
in the sense that the path generated by each process can be followed
arbitrary close with the corresponding algorithm by taking the mesh of
the triangulation small enough. In [7] it is shown that these processes
have an attractive economic interpretation when applied to the problem

of finding equilibrium prices in a pure exchange economy.

The algorithms on S" of both van der Laan and Talman [5] and
Doup and Talman [1] were generalized for application on the simplotope.

The algorithm in [5] on ST was generalized to a simplicial variable di-

N
mension algorithm on S with ¥ (nj+1) rays to leave the arbitrary star-

J=1

ting point. This so-called sum-ray algorithm on S was introduced in [6]

and was adapted in [8] for a more general applicability. The algorithm

N
in [1] was generalized to the product-ray algorithm on S with 1 (nj+1)

J=1
rays. The names of the algorithms are derived from the respective number

of rays along which one can leave the starting point. The adjustment
processes induced by the sum— and product-ray algorithm on S were des-
cribed in van den Elzen, van der Laan and Talman [3]e In that paper also

a third process which can be considered as the generalization of the



exponent-process on S", was given. This exponent-process on S pos-
N o[ ) |

sesses [ (2 J -2) rays to leave an arbitrarily chosen (interior) ini-
i=1

tial point. As argued in [3], the latter process has a very attractive

interpretation as a price- or strategy-adjustment process when applied
to find equilibria in an economy and a noncooperative N-person game res—

pectively.

In this paper we describe a new simplicial variable dimension
restart algorithm on S which can start anywhere and terminates within a
finite number of iterations with an approximate solution of the NLCP on
S. Moreover, the sequence of adjacent simplices of varying dimension
generated by the algorithm follows approximately the path of points of
the exponent-process on S. Therefore we call this algorithm the expo-
nent-ray algorithme. The so-called V-triangulation of S developed in [1]
underlying the product-ray algorithm on S will also underly the new
algorithm having an exponential number of rays. Furthermore, we will
adapt the sum-ray algorithm on S to the V-triangulation. This latter al-
gorithm follows approximately the path of the sum—process on S as des-
cribed in [3]. In [6] and [8] the sum-ray algorithm has only been des-
cribed for the well-known Q-triangulation of S since the V-triangulation
is of a more recent date., As argued in [1] and [2] the V-triangulation
of 8™ and S is much more natural than the Q-triangulation especially
when the algorithm is interpreted as following the path of a correspon-

ding adjustment process (see also [3]).

The paper is organized as follows. In section 2 both the sum-ray
and the product-ray algorithm on S are described. For the first algo—
rithm the V-triangulation will also be the underlying simplicial subdi-
vision. The new exponent-ray algorithm on S is presented in section 3.
Section 4 explains how the algorithms can be interpreted as path follo-
wing discrete procedures of the processes given in [3]. Special atten
tion will be paid to how the variables are adapted during the algo-
rithms. Computational results are presented in section 5. The examples

used concern both international economies and noncooperative games,



2. The sum— and the product-ray algorithm on the simplotope

Let S again be as defined in the previous section. For j € 1_ =

N
{1,404,N},the index set I(j) denotes the set {(j,1),(j,2),...,(j,nj+1)}
N N
and T = U I(j)e The number n equals I n_. In the algorithms the set
i=1 el

S is subdivided by the V-triangulation originally developed in [l]. This
triangulation is completely determined by the starting point (of the
algorithm) and its projection on each of the faces of S. Let v be the
(arbitrarily chosen) starting point in S. For a subset K of the index

set I we denote the number b3 by Sj(K), for all j € Iy.

vjh
(J;h) €K D IH)
Then the (N+n)-vector p(K) in S is defined by

Ei—sj<x)>/(sjcx)+[x§|) , (j,h) € K°

o o (]
Pp(O = v A+RGDI/ (5, GO+ RS , (3,h) € KK

_0 ’ (j’h) ﬁK b
if SJ(K) < 1 and by (2.1)
[17¢ |5 |+ ;<) . (3,h) €x°
- o A\ o
Pyp(® = -vjh/(|Kj|+sj(K)) » (3,h) € K\K
0 » (3,h) £K,

1f $5(K) = 1. Here K; = {Gm € R LD |vy =0} and ’K§| is the car-
dinality of K?. If KN I(j) = P we define py(K) = v,
p(P) = v. We call p(K) the (relative) projection of v on the boundary
set S(K) = [x € s[xjh = 0 for all (j,h) ¥ K}. Although the V-triangula-
tion is completely determined by v and all p(K)'s, K C I, the descrip-

« In particular,

tion of its simplices depends on the specific algorithm used.

N
We will first describe the sum— or I (nj+l)—ray algorithm. As
=1
mentioned in section 1, this algorithm was already described in [6] for



i,
the case in which each § J, i & IN’ is triangulated by the well-known Q-

triangulation. Here this algorithm is adapted to the recently developed
and more natural V-triangulation of S (see [1]).

lLLet T be a subset of 1 such that for each j € IN the set Tj =
T N I(j) is a proper subset of I(j). Furthermore, t denotes the number
of elements in T and t(3) = [T;|, j=1,...,N.

Definition 2.1 Let Yj(Ti) = ((j,k?),...,(j,kg(j))) be a permutation of

the t(j) elements of the proper subset Tj of I(3), I ELys and let the

permutation vector y(T) be given by
y(T) = (Yl(Tl),---,YN(TN))-

Then the set Al(y(T)) is defined by

1 N t(3) a1 3
A(y(T)) = {xeSlx=v+ T I ali,k)a (J,k) with
Pel St , (2.2)
0 < u(j,kg(j)) Coses a(j,kf) < 1l; J & IN},

where the (N+n)-vectors ql(j,kg), 1=1;5 swe 80D JE IN' are given by

PG, e Gk D=p (1D e (kDD ey
aCivk)) =

lo

s h#Je

Further AI(T) = U Al(y(T)), where the union 1is over all permutation
¥CT)
vectors yY(T) of T. Observe that Al(®) 1is equal to {v}.

The dimension of the set AI(T) is equal to t if and only if for

each permutation vector y(T) of T, the rank of the (N+n)xt-matrix
i1 -

Ql(Y(T)) with ( ¢ t(h)+i)-th column equal to ql(j,kg), 1=1, s ey (T,
h=1

i€ Iy, 18 maximal and therefore equal to t.

Lemma 2.2 The rank of the matrix Ql(y(T)) Is less than t if and only if

for some j EIN,th = 0 for all (j,h) ¢ T4 holds. We allow Tj to be equal
to I(j). Moreover, the rank of Ql(y(T)) is independent of the permuta-

tion vector y(T) of T.



In the sequel we only consider sets Al(T) and Al(y(T)) of dimen-
sion t = |T|. The set of subsets T of I for which this holds is denoted
by rl. We remark that f € rl. The boundary of Al(y(T)), denoted by
bd Al(y(T)), consists of (t-1)-dimensional subsets which are obtained bv
setting exactly one of the inequalities in (2.2) to an equality, 1i.e.

for some j € Iy either a(j,kg(j

2 < 1<t(d), or a(j,k)) = 1. If a(3,k)) = a(3,k)_)) for some j € 1 and

some i, 2 < i < t(j), the corresponding boundary set of Al(y(T)) is also

)) = 0 or q(j,kj) = a(j,kg_l) for some i,

a boundary set of another area AI(;(T)). The boundary set belonging to

alj,k t( )) = 0 equals A (y(r\{(j k )})) wheteas the boundary set
corresponding to a(j, kj) =1 is equal to SJ(T) N A (y(T)) with si(m) =
[x € S|x = 0 for a11 h, (j h) €T }. Now it 1is straightforward to
derive that the boundary of A (T) is equal to

N

bd Al(T) = ( u alan\fce,m ) v v sdm a2 alm.
(i,h) eT j=1

This description of bd Al(T) will be of use when explaining the algo-
rithm.

Next we describe how each t-dimensional set AI(T), T & rl, is
triangulated into t-dimensional simplices or t-simplices and how all
these triangulations form the V-triangulation of S. The number m ! is

the grid size of the triangulation with m some positive integer.

Definition 2.3 Let T be an element of Tl. The set Gl(y(T)) is the set of

t-simplices a(yl,n(T)) with vertices yl,...,yt+1 such that

1 S S St TP j
(1) y =v+ 1% b a(j,kh)m q (j,k;’) for integers a(j,k’), such
. h h
j=1 h=1
that 3 B _ -
at 0 < a(j,kt(J))<...<a(j,kl) < m—1, j=1,eee,N
(ii) n(T) = (nl,...,nt) is a permutation of the t elements of T such

that for all i=2,...,t(j):p>p' 1if a(j,kf) = a(j,kf 1) where ;, =
= p

(3,k) and 5, = (3,k])

310 3 € Iy



(i) ¢ = yi+m_lq1(wi), i=1,4..,t, where ql(j,kg), (j,kg) €T, are

defined as in definition 2.1.

The set Cl(y(T)) is a triangulation of Al(y(T)) whereas the
union GI(T) of GI(Y(T)) over all permutation vectors of T triangulates

Al(T). The set gl = U 1 GI(T) yilelds the V-triangulation of S with
grid size m—l. The :;:1;n of a triangulation implies that each (t-1)-
face of a t-simplex, called a facet, 1in GI(Y(T)) is either a facet of
exactly one other t-simplex of Gl(y(T)) or lies in bd Al(y(T)). A t-sim-
plex has t+1 facets one opposite to each vertex., Two different simplices
are adjacent if they share a common facet or if one of them is a facet
of the other. Since the algorithm moves from one simplex to an adjacent
one we will first describe how the representation of the latter one can
be obtained from the representation of the first simplex if they share a
common facet. So, let o(yl,n(T)) and g = c(§l,;(T)) be elements of
Gl(y(T)) with common facet t opposite, say vertex yp of o, 1<pst+l,

then g can be obtained from g as given in table 1 where e(j,k) is the
J=1

(y (ni+1)+k)—ch unit vector in IRVMD k=1,...,nj+1 and j=1, ese,No Fur—

i=1 -1

ther, the vector a is the (N+n)-vector with ( I (n1+l)+k)—th element ajk
i=1

equal to a(j,k) if (j,k) € T and zero otherwise. When going from the t-
simplex o(yl,w(T)) to g we say that the vertex yP has to be replaced.

y 7(T) a
p=1 y]+m—lql(n ) Cr. sowmw i Wy 5T, ) ate(n )
)| 2" L il | 1
1<p<t+1 | yl (nl,...,wp_z,np,wp_l,...,nt) a
p=t+1 yl—m—lql(w ) (T oM. 5 0easT ) a~e(m )
f: e 1 *Tt-1 t

Table 1 p is the index of the vertex of 0(y1’ﬂ(T)) to be replaced.

In lemma 2.4. we describe the cases in which a facet lies in the bounda-

ry of Al(y(T)).



Lemma 2.4 Let o(y!,n(T)) be in Gl(y(T)) and let t be the facet of ¢ op-
posite vertex yp, 1<p<t+l. Then 1 lies in the boundary of Al(y(T)) iff
one of the following cases holds:

a) p=1 : nl=(j,kf) for some j € Iy and a(J,kf)=m'l

b) 1<p<t+l : "p=(j’k2)3"p-l-(jak£—l) for certain j € Iy and 1<i<t(j),
and a(jyki)'a(j)ki_ l)
c)  p=t+l : "tz(j’kg(j)) for some j € Iy and a(j,kg(j))=0-

The lemma follows immediately from the definitions of Cl(y(T))
and Al(y(T)). If a facet t in bd Al(y(T)) does not lie in bd AI(T),
then 1 is a facet of exactly one other t-simplex g in Gl(T) but o lies
in an area Al(;(T)) different from Al(y(T)). If ¢ lies in bd Al(T), then
either 1t lies in SJ(T) N AI(T) for some j € Iy or T is a (t-1)-simplex
in GI(T\{(i,h)}) for some (i,h) € T. These three different cases are

described in the following lemma.

Lemma 2.5 Let o(yl,n(T)) be in Gl(y(T)) with a facet r in bd Al(y(T)).
If t is the facet opposite vertex yl, then t is a (t-1)-simplex in si(m
where j as given in lemma 2.4.a. When 1 lies opposite the vertex yP,

1<p<t+1, then 1 is a facet of the t-simplex o(yl,;(T)) in Gl(;(T)) with

= h| R, 3 b ] = »
YJ(T_i) = ((j’kl)’...’(j’ki:Z)’(j’ki),(j,ki—l)’.‘.’(j’kt(j)))’Yh(Th) =
yh(Th) for all h # j, and #(T) = (ﬂl,...,np_z,ﬂp,np_l,...,wt
and 1 as in lemma 2.4.,b. In the case that t lies opposite vertex y
is the (t-1)-simplex o(yl,n(T)) in G(y(T)) with T S (CRSAOLS
Ty = i fied J Ty =

YjSTj) = ((J’kl)’°")(j’kt(j)_l))) Yh(Th) = Yh(Th) for all h*j’ and
m(T) = ("1"‘°’"t—1)’ with j as in lemma 2.4.c.

), where j

t+1
s T

In the foregoing we described the subdivision of S in t-dimen-
sional subsets Al(T), T € rl, and the way in which each such subset is
subdivided by the V-triangulation with grid size m~! in t-dimensional
simplices. Moreover the steps of moving from one simplex to an adjacent
one were given. Now we are ready to describe the sum-ray algorithm with

underlying V-triangulation in order to solve the NLCP on S. For varying



T dn rl and starting with T=@, the algorithm generates a sequence of ad-

jacent t-simplices in Al(T) having so-called T-complete facets in commone.

Definition 2.6 For g=t-1,t, where t=|T| and T ¢ T, a g-simplex

o(yl,...,yg+1) is T-complete 1if the system of linear equations
g+l i
AN s s B pow (5~ a8 = (D (2.3)
i=1 (3,k) £ T

with O the (N+n)-zero vector and e the (N+n)-vector of ones, has a solu-

tion x* > 0, i=1, ees,g+l, >0, (1,k) & T, and 3*. A solution of

*
i M5k

* Kk %
(2.3) is denoted by (A ,u ,B )e

We need a nondegeneracy assumption on this system to guarantee

convergence of the algorithm.

Nondegeneracy assumption. For g=t-1 the system (2.3) has a unique solu-
*
tion (X ,u ,B ) with X > 0, i= 1,...,t, and u jk > 0, (1,k) & T, while

for g=t at most one varlable of (x ) ) is cqual to zero.

The algorithm terminates as soon as a complete simplex is found.
This notion is defined in definition 2.7 and we show in lemma 2.8 that
such a simplex yields an approximate solution to the NLCP on S. Lemma

2.9 states when a simplex in some area Al(T), P E Tl, is complete.

Definition 2.7 For T C I, a T-complete (t-1)-simplex o(yl,...,yt) is

complete if there is an index j € Iy such that for all x in o, Xjk = 0

1f (3,k) & Tje We allow Ty to be equal to I(j).

]
Lemma 2.8 Let € > 0 be such that max

|z,
(i;h) € 1L
and y in a simplex o of the V-triangulation of S and let c be a comple-

p(0-z (y)| < € for all x

te (t-1)-simplex, for some T C I, with a solution (A*,u*,B*) of (2.3)

such that A > 0,1 = 1,ee0,t, and u* > 0,(i,k) € T. Then x
&g *

LAy 1ies i1 & and f° € (- ¢,+e). Furthermore, |, (x )-8 ] EE
i=1
if (i,h) € T and zih(x ) < 3 + ¢ if (i,h) £ T.
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Lemma 2.9 The O-simplex o(v) is complete iff for some (j,k) € T both vik

= 1 and o(v) is {(j,k)}—complete. A T-complete facet 1t of a T-complete

! in

t-simplex a(yl,n(T)) in Al(T) is complete iff ¢ lies opposite y
bd Al(T). If o(yl,n(T)) is a (T V {(j,k)})—complete simplex in A‘(T) for
some (j,k) € T then ¢ is complete iff Vih = 0 for all (j.h) & Tj (U]

{(3, 0}

Assuming nondegeneracy, the T-complete t—simplices o(yl,n(T))
in Al(y(T)) for given T € rl form sequences of adjacent t-simplices
having T-complete common facets. Each sequence not being a loop has two
end simplices. When an end simplex is not complete it is either a (T U
{(j,k)})—complete t-simplex or a t-simplex having a T-complete facet 7
in bd Al(y(T)). The first case 1s described in lemma 2,10, while the

latter case was treated in lemma 2.5.

Lemma 2.10 Let o(yl,n(T)) be a (T U {(j,k)})-complete t-simplex in
Al(y(T)) for some (j,k) € Te If ¢ is not complete then ¢ is a (T U
{(3,k)})-complete facet of exactly one (t+l)-simplex

E(yl,n(r U {(3,x])) in cl('r U {(j,k)}). More precisely, o is the (t+l)-

simplex o(y!,n(T U {(1,0])) in ¢l (y(T U [(3,0})) with v,(T, U {(30D

= (L) ee e (Ghk 590,103,100, and w1 U {(3,00D) = (rppeeeum (1i00).

Combining the foregoing we see that a sequence of adjacent t-
simplices in Al(T) having T-complete common facets is either a loop or a
path with two end simplices. Each end simplex which is not complete or
equal to o(v) can be connected with an end simplex of either a sequence
of (t-1)-simplices in AI(T\{(i,h)}) for some (i,h) € T or a sequence of
(t+1)-simplices in AI(TU {(i,k)}) for some (j,k) & T. Connecting the
sequences in this way we can form sequences of adjacent T-complete t-
simplices with T-complete common facets in areas A[(T), T € Tl, where t
varies between 0 and n. Among these sequences there is one connecting v
and a complete simplex, while all the other sequences not being a loop
connect two complete simplices. The first sequence is generated by the
sum—ray algorithm. Because the total number of simplices in S is finite,
the number of simplices in the sequence is also finite. The solutions to

(2.3) for the simplices in this sequence determine a piecewise linear
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path of points in S from v to x*, with x* as described in lemma 2.8.
This path is in fact followed by the sum-ray algorithm by performing
alternating linear programming pivot steps in system (2.3) and replace-
ment steps according to table 1 and lemma 2.5. If, for some T, in Al(T)
a T-complete facet T in Al(T\{(i,h)}) is generated then (e.Ei,h),Ojr is
reintroduced in the system (2.3) with respect to 1. On the other hand,
when a T-complete t-simplex ¢ in AL(T) is also (T U {(j,k)})—complete
for some (j,k) € T while ¢ is not complete, a linear programming pivot
step in the system (2.3) with respect to o is made with (zzyt+2),l)f
where yt*t2 {s the new vertex of the unique (t+1)-simplex o in

AI(T U {(j,k)}) having o as facet (see lemma 2.10). In section 4 it is
shown that this piecewise linear path approximately follows the sum-pro-—
cess described in van den Elzen, van der Laan and Talman [3]. We con-
clude the treatment of the sum-ray algorithm with a presentation of the

steps cf the algorithm.

Step 0. Let (j,kf) be the unique index for which z j(v) = max
jkl (i,h) € X
Zih(v)' If v . =1 then g(v) is complete and the algorithm stops, else
jk
1

set T = {(5,kD)}, =1, ylav, 1D = (30, 0 = oyl m), 2,

=0 for all (i,h) € I

iuih=

ain z j(v)—zih(v) for all (f,h) # (j,kf),

ik
B =12z _(v) and A, =1.
s52) 1
ik

3 T D I3
Step 1. Calculate z(yp). Perform a pivot step by bringing (z(yp),l) in

the linear system

t+1 i

ATt Loy (0 -8 = .
i=1 (Hexd

i#p

[t uik becomes zero for some (j,k) £ T then go to step 3. Else ) Is

eliminated for exactly one p# 5 and the facet -[(yl,...,yp'l yp+l’

.,yt+1) is T-complete.

Step 2. If p=1, B = (j,k{) and a(j,kg) = m—1, then [ is a complete sim-

plex and the algorithm stops.
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If 1<p<{t+1, and if for some i>2, By ™ (i,k j ), L = (3, k])
and a(J, = 1 = .2 Fs kj), then q(y ,m(T)) and y(T) are adapted accordxng
to lemma 2.5; return to step 1 with p equal to pe

If p=t+1, LI (j,kj( )) and a(j, k ) = 0, then the dimension

t(3)
is ?ecreased; set t=t-1, T = T\{(j,kg(j) }, (1,h) = (3j, kt(j)
o(y ,n(T)) and y(T) are adapted according to lemma 2.5; go to step 4.

) while

In all other cases o(yl,n(T)) is adapted according to table 1;

return to step 1 with p equal to the index of the new vertex of ¢.

Step 3. If vjh = 0 for all h, (j,h) €& Tj U {(j,k)}, then ¢ is a complete
simplex and the algorithm stopse In all other cases the dimension is
increased, o(yl,n(T)) and y(T) are adapted according to lemma 2.10, set
t=t+1 and T = T U [(j,k)}, and return to step 1 with p the index of the

new vertex of oe.

=
Step 4. Perform a pivot step by bringing (e{i,h),o) in the linear system

t+1 i
z(y ) e(j,k)y _ ey _ (0
121 xi( 1 I £4.5 ﬁg 3 “jk( 0 ) 8(0) = (1)'
(3,k) # (1,h)

If for some (j,k) ¢ T, (J,k) # (i,h), becomes zero, go to step 3.

u
jk
Otherwise return to step 2 with p the index of the vertex whose corres-
ponding variable Ap is eliminated.
N
We now continue with the product-ray or I (n,+l)-ray algorithm
J=1
on S. This algorithm was already described in Doup and Talman [l]. We

remark that the projections used in this paper sligthly differ from the
ones which underly the V-triangulation in [1].

Let T be a proper subset of I containing for each j € Iy at
least one element of I(j) and let T® be a subset of T containing exactly
one element, say (j,kg), of each I(j). By Tl we denote the complementary
part of TO in T. For j=1,...,N, let T; -1l n 1(j) consist of tl(j) ele-

ments and let YJ(T;) be some permutation of the elements of Tl. The vec-
j

tor Y(Tl) denotes the permutation vector Y(Tl) = (Yl(Ti),_,,,YN(T;)).
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Definition 2.11 Let T be a subset of I for which |Tj| % I, 3 € Lo and

let T® and Y(Tl) be as given above. Then the set AZ(TO,Y(TI)) is equal

to

AZ(TO,Y(TI)) = {x € S|x=v + qu(To) + E a(i’h)qz(i’h)’ with
(i,h) e T
(2.4)
0<m(j,kj1 )<...<a(j,k‘lj)<3<1, je IN},

£7¢3)
where the (N+n)-vector q2(T9) is given by q2(T°) = e(T°)-v, with e(T°)
the vertex of S for which ejh(To) =1 1if h = kg,
wise. The (N+n)-vectors qz(j,ki), (j,ki) € T;, j € IN’ are equal to

= IN’ and zero other-

3

LD, b=

IR NRE R I NI N NN E N
oo -
qh(Jrki) o

L . hetds

Also here we have to investigate when the rank of the matrix
=1

QZ(TO.Y(TI)) with first column qz(To) and (1 + ¥ tl(h) + 1)-th column
5 h=1
q}(j,kf), 1=1,,,,,tl(j), je 1, 1s maximal, i.e. when
2,.0 1 N Lz =
r(Q°(T ,y(T'))) =t =1+ 1 t (j). Observe that t = |[T| - N + 1.
j=1

Lemma 2.12 The rank of the matrix QZ(TO,Y(TI)) is not equal to t iff
ij=0 for all (j,k) ¢ T, where we allow Tj to be equal to I(j) for any
j € Iy

Clearly, the dimension of AZ(TO,Y(TI)) is independent of TO and
y(Tl) and equal to t iff r(Qz(To,y(Tl))) = t, In the sequel we only con—
sider the t-dimensional regions A2(T°,Y(T1)). The (t—1)-dimensional sub-—
sets forming the boundary of AZ(To,y(Tl)) are obtalined by setting exact-
ly one inequality in (2.4) to an equality. The union of the
Az(To,y(Tl))'s over all sets T° and permutation vectors y(Tl) is denoted
by A2(T). The dimension of A2(T) is equal to t if r(Qz(To,Y(Tl))) S

for any T° and Tl. The set of subsets T of I for which the dimension of

2

A2(T) equals t is denoted by 1, Now let S be triangulated by the V-

triangulation with grid size m‘l, where m is some positive integer.
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Definition 2.13 The set Gz(To,y(Tl)) is the set of t-simplices

o(yl,n(T)) with vertices yl,...,yt+1 such that
(1) yl = v + bm-lqz(To) + % a(i,h)m—lqz(i,h) for integers b
(i,h) € T
and a(i,h), (1,h) € T!, such that for all j € Ty, 0 < a(j,k’, )

i (1)
€ sew & a(j,ki) < b ml

(1i) =(T) = (nl,...,wt) is a permutation of the t elements consisting

of T° and the t-1 elements of T! such that for all j € IN and

i=l,.oo,tl(j) 1£ a(j,kf) = a(j,kg-l), "p = (j’ki) and "p' =

(j,ki_l) then p > p'. In the case i=1 we have a(j,kg) = b and

o
ﬂp, =T

(2833 ¥ L = 5t 4 m_lqz(ni), T O

The set GZ(To,y(Tl)) is the triangulation of AZ(TO,Y(TI))
induced by the V-triangulation of S. The triangulation of AZ(T) is the
union of the Gz(To,y(Tl))'s over all T® and T! and will be denoted by
GZ(T). The relation between two adjacent t-simplices in the same set
Gz(TO,Y(Tl)) is again as given in table 1 where now ajp = a(j, k) 1f
(i,k) € T!, aje = b for all (j,k) € 1%, and aj = 0 otherwise. Observe
also that m might be equal to the set T°, The remainder of this section
is a revies from Doup and Talman [1] and only gives the main results.
For a further insight and interpretation of the replacement steps and

the steps of the algorithm we refer the reader to [1].

Lemma 2.14 Let g(y!,»(T)) be a t-simplex in ¢2(T°,y(T')) and t the facet

opposite vertex yp, 1 < p< t+l. Then t lies in the boundary of

AZ(TO,Y(TI)) iff one of the following cases holds:

a) p =1 B ™ and b = m-1;



. =T | TN ,
b 1 € p< &1 3 np = (J,ki), ™ = (J,ki_l) for certain j € Iy and

p-1
2 ¢ 1 < ti(4) while a(§,kd) = a¢j, k] ), or v, = 1°
s34 s T p—l >
“p = (j,kf) and a(j,kf) = b for some j € Iy;
c) p= t+l : Te = (j,kj1 ) and a(j,kJ1 ) = 0 for some j € Iye
t (3) t ¢

In case a) 71 is a (t-1)-simplex in bd S. More precisely, 1 lies
in S(T), where S(T) is given by S(T) = {x € S|xjk = 0 for all (j,k) ¢
T}. In case b) with i > 1, 1t is a facet of the t-simplex

a(y', 7)) 1n ¢ (1%,7(1")) with T(T) = (3, eens (3], (LK),

1
|

""’"t)' If 1 = 1 then 1t is a facet of

e i) j - Iy
G Da iy DeeesCokdy 000 Fy(T) = (T 18 b # 3, and
p-2°"p’ " p-1""p+l
the t-simplex o(y',7(M) 1n ¢2(T°,y(Th) with T = {(3,kD]},

o _ .0 3 S, (T P 5 0 =1 _ .1 .
Ty =Ty iEh# 3, T, = (Tj\{(J,kl)}) u {(J,ko)}, T, = T, if b ¥ 3,

=l sme ud i 5 50 % [ 1 ;
Yj(Tj) = ((J,ko),(j,kz),---,(J,ktl(j))), YR (T = v (T) 1f h# 5,

To,(j,ké)’"

w(T) = (mseee,m

d 7(T) = i - . is th
an "(T) (Wl) ,"p_zs p‘l—l' n‘"t) n case C) T s e

(t-1)-simplex o(yl,n(T\{(j,kjl )})) in the subset AZ(TO,Y(TI)) of
£7(1)
2 j =1 T =1 1
AT(T\{(3,k YD) with T, = T\{(j,k e T =T AF hiE 9,
2E)) i ey ¢ ¢
= 253 =1, 1
¥4y = §<J,kl),...,<J,ktl(j)_l>), Yo (Tp) = v, (T,) 1f b # 3, and
n(T\{(j,le M = (rseeem e

t (3

For varying T, the product-ray algorithm generates in AZ(T) a

sequence of adjacent t-simplices with T-complete common facets.

Definition 2.15 For g = t-1,t, where t = |T|-N+1, T C I, a g-simplex

o(yl'...’yg+l) is T-complete if the system of linear equations
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g+l 5 N -
ENGR D u, Gy - 1 eI - D (2.5)
i=1 (3,k) ¢ T =17

where e(j) denotes the (N+n)-vector with Eih(j) = 1 for all (i,h) € T(5)

= *
and eih(j) = 0 otherwise, has a solution Ai > 0, i=1,e00e,8t+1, >0

*
U-k
* J
for all (j,k) € T, and Bj for all j € Iy A solution of (2.5) is denoted
* % *
by (A tu ,B ).

Nondegeneracy assumption. For g=t-1 the system (2.5) has a unique solu-

* * k * * <
tion (A ,y ,R ) with Ay >0, i=1,...,¢, and Mk > 0 foF all (3,k) ¢ T,

* %
whereas for g=t at most one variable of (X ,p ) 1is equal to zero.

Definition 2.16 A T-complete (t-1)-simplex c(yl,...,yt) is complete if

for each x € 0 we have xjk = 0 for all (j,k) & T.

The next lemma gives an estimate of the accuracy of an approxi-

mate solution obtained from a complete simplex.

Lemma 2.17 Let ¢ > O be such that max |zjk(x)—z,k(y)| < e for
(3,0 € 1 .
all x and y in a simplex of the V-triangulation of S and let

®_ . 1 t * k%
o0 (Y ,eee,y ) be a complete simplex with solution (A ,u ,B8 ). Then

* tox g * & - *
x = I A,y lles in ¢ , B; € (-e,+te) for all j € Iy, lz. (x') - B.] <&
j=1 h jk j
S * % *
h d £ = B
when xjk > 0, an zjk(x ) < Bj + e i xjk 0

Lemma 2.18 The O-dimensional simplex o(v) is complete iff for some

T € 12, o(v) is TO-complete and v is equal to the vertex e(T°) of S.

A T-complete facet 1 of a T-complete t-simplex o(yl,n(T)) in
AZ(TO,y(Tl)) is complete iff ¢ lies opposite the vertex y1 of ¢ in the
subset S(T) N AZ(TO,Y(Tl)) of bd S. If c(yl,w(T)) is a (T Y {(j,k)})-
complete t-simplex in A2(T) for some (j,k) @ T, then ¢ is complete iff
vip = 0 for all (i,h) ¢ TU {(j,k}.
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2, the T-complete t-simplices c(yl,n(T))

Again, for given T € 1
in AZ(T) form sequences of adjacent simplices with common T-complete
facets. An end simplex of a sequence not being a loop is either a
(r v {Cj,k)]})-complete t-simplex or a t-simplex with a T-complete facet
in bd A2(T). In the latter case this facet is either a complete (t-1)-
simplex or o(v) or an end simplex of a sequence of adjacent (T\{(i,h)})-
complete (t-1)-simplices in AZ(T\{(i,h)}) for some (i,h) € T. In the
first case o is either complete or o is a (T U {(j,k)})-complete facet

of the uniquely determined (t+l)-simplex o = o(yl,n(T U {(j,k)})) S

6%(1°,y(T1) 1n A%(T U {(3,0]), where T, = T U {(3,10}, Ty = T, 1f
b3, 15T = (e, () 0,300, ¥ (T = () 1f

(D)
h # j and n(T U [(3,K)}) = (wl,...,nt,(j,k)). Moreover, g ls an end
simplex of a sequence of adjacent (T U {(j,k)})—complete (t+1)-simplices
in AZ(T L;{(j,k)}). Linking of the sequences of adjacent T-complete

t-simplices in AZ(T) over all T in 12

yields one sequence connect—
ing o(v) with a complete simplex whereas all other sequences not being a
loop connect two complete simplices. The product-ray algorithm follows
the first sequence by starting from o(v). More precisely, the product-
ray algorithm follows a piecewise linear path of points from v to an
approximate solution x* by alternating linear programming pivot steps in
system (2.5) and corresponding replacement steps in the triangulation.
When the algorithm generates in A2(T) a T-complete facet in

A2(T\{(i,h)}) for some (i,h) €T, then the (i,h)-th unit vector column
is reintroduced in system (2.5). On the other hand if the (j,k)-th unit
vector column in (2.5) is eliminated by a linear programming pivot step,
then the current o is (T U {(j,k)})—complete and the algorithm continues
in A2(T U {(j,k)}) as described above when g is not complete. If the
approximate solution x* is not accurate enough the algorithm can be re-

started in x* with a smaller grid size.
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3. The exponent-ray algorithm on the product space of unit simplices

In this section we present the generalization of the algorithm
of Doup, van der Laan and Talman [2] on S®, although the underlying pro-
jections again differ slightly. To describe the appropriate subdivision
of S in regions we need the notion of a sign vector and some further

notation. For s being a sign vector in RYD, 1.e, sﬁle {-1, 0, 1} for

g(s) and I}(s) of I(j) by

+ y -
1,(s) = {(3,n) € I(j)lsjh = +1}, 13(3) = {(j,h) € I(J)Isjh = 0}, L,(s) =

all (j,h) € I, we define the subsets I;(s), I

{(3,h) € I(j)[sjh = -1} and accordingly I+(s), I1°(s) and 1°(s) as their
respective union over all j € Iye Let the sets J+(s), J%(s) and J (s) be
given by J¥(s) = {j € % II (s) # o} I%s) = {j e 1, lI (s) =9,

i (S) # ¢} and J7(s) = {J G |I (s) = @, Ij(S) = 0}

Furthermore, we define the set Q of so-called allowed sign vectors as

3(5) # p for

all j € Iy while for at least one k € In» I;(s) # P and

= {s € ®*?|s is a sign vector such that I;(S) # P or I

I;(S) # ﬂ}-

With z(j) > 0 the number of elements in Io(s), a permutation of these
elements 1is denoted by yj(s), i.e. Y (s) = ((3, kj),...,(j kz( ))),

j € Iy» while y(s) denotes the vector of permutations (Yl(s)”"’YN(S))’
For each y(s), s € Q, and all j € IN we now define the index sets z (s)

Zj(s) and Zj(s) as follows. When j € J'(s) then Zj(s) = Ij(s),

]

o
Zj(S)
ZO(S)
Z.(s) j j
Z_.(s8) U Z}(s) and accordingly let Z(s), z'(s), Z9(s) and Z7(s) be the

ion of the corresponding sets over all j e IN. Now we can define sets

I?(s) and z;(s) = fp. For all j € J%%s), z;(s) - {(j,kf)L

1‘,’(s)\{(j,kj)} and 23(s) = I (s), while 1f j € J7(s) then

(s) and z%s) = Z}(s) = fp. Furthermore, let Zj(s) = Zg(s) U

u

w 5. o:_...+

A" (s,y(8)), s €q, forming a subdivision of S.
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Definition 3.1 Let s be some sign vector in Q and y(s) a permutation

vector as defined above. The set A3(s,y(s)) is given by

Az(s,y(s))={x I S]x = v + a(Z+(s))q3(Z+(s)) +

Do ol + ot a(Z () (2 ()
(1,h) € z°(s) j € 3°%s)

with  0<aCi, k) )¢umecals kDea(z ()61, 5 € 37(s), and

0<a(23(3))<a(j,k‘i(j))<...<a(j,kj)<a(z+(s))<l, je Jo(s)}, (3el)
Wheve the vestars 9 (2 (5)) q3(j,kf), (j,ki) e 2°(s), q3(Zg(s)) for
j € J9s), are given by

Sty = pztis)) - v
PGy = pte) U (k)b -
p(z (s) U {(5,k)),eees(5K_DD
and
@ () = p(z'(s) U 2{(s) U Z[(o)) - p(z' () U Z5()).

Here p(.) is again the projection of v as defined in section 2.

The following lemma describes when the rank of the matrix Q3(s,y(s))
containing the columns q3(Z+(s)), q3(j,ki) for (j,ki) in Zo(s), and

q3(Z;(s)) for j in J°(s), has maximal rank, i.e. when r(QB(s,y(s)))=t,
N
where t = 1 + I z(j).

J=1
Lemma 3.2 The matrix Q3(s,y(s)) described above has rank less than t,
t = 1<%

j
& Zj(s)-

z(j), 1ff for all j € Jt(s) holds that Vi = 0 for all (j,k)

[ A

1
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The dimension of A3(s,y(s)) is t 1ff r(Q3(s,Y(s))) = t. Observe
that the rank of the matrix Qa(s,y(s)) is independent of y(s). The set
13 will denote the set of sign vectors s for which the dimension of
A3(s,y(s)) equals t. In the sequel we consider only these areas. The
boundary of A3(s,y(s)), 8 € 13, consists of a number of (t-1)-dimensio-
nal subsets with one of the inequalities in (3.1) set to an equality,
i.e. either a(2+(s)) =1 or, for some j € J+(s), u(Z+(s)) = a(j,kf),
a3, k) = a(3,k) with 1 € {2,00,2(D} or a(3,kd(,)) = 0, or,
for some j € J%(s), a(Z'(s)) = a(3,kd), a(j,kf_l) = a(4,k}) with 1 €
[3,000,2(D}, a(j,kg(j)) = a(Zy(s)), or a(Z (=) = 0.

Let A3(s), s € 13, be the union of A3(s,y(s)) over all permuta-
tion vectors y(s) of Io(s), then S 1is subdivided into t-dimensional
areas Az(s) with s € 13. For the case N=2, n;=2, ny=1 and the case N=3,

n1=ny=n3=] some regions are illustrated in figure 3.1.a and 3.1.b res-

pectively.

p((1,1),(1,2),(1,3),(2,1)

—_— —

= - T
Pl 1) €2, 1)) ‘ (0,1,0,1,0)

p((1,1),(1,2),(2,1))

Figure 3.1.a Illustration of A3(5), s=(+1,0,0,+1,—1)t which 1is subdi-

vided into A3(s,((1,2),(1,3))) and A3(s,((1,3),(1,2))); dim A3(s)
5]

= 5 z(j)+1=23
j=1
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(0,1,0,1,0,1)"

' 7
| B 3
" / K (s, ((2,2),(3:1)))
| N | [—
® / L 4
| \
N
| VAN
7
//-_ — - oty
v
7 _d 3183 T
- v = PRRERN
P4
>~
(1,0,1,0,1,0)" ©,1,1,0,1,007 A% (s,((3,1),(2,2)))

Figure 3.1.b Illugtration of A3(s), s = (—1,+1,0,—l,0,+1)t The dimension
of A3(s) equals ¥ z(j) +1=3
j=i

Let S be triangulated by the V-triangulation with grid size m‘l,
where m is some positive integer, and with projection vectors (2.1),
then each region A3(s), s € 13, is triangulated by this triangulation in
t-simplices. In fact, each subset A3(s,y(s)) is triangulated by the set

Gi(s,y(s)) of t-simplices defined as follows.

Definition 3.3 Let s € 13 and y(s) be a permutation vector of Io(s). The

set 03(S,Y(s)) is the collection of t-simplices c(yl’ﬂ(s)) with verti-

ces yl,...,yt‘+1 such that
() y' = v+ aE e PEt s + r ali, m Yot ) +
(i,h) € 2°%s)
= _13 -
T a(Zj(s))m q (Zj(S)),

je Jo(s)
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for integers a(z%(s)), a(i h), (i,h) € z°s), and a(Z (s)), j€

JO(s), such that O<a(j,k3 Jepy)<eercalss kj)<a(z (s))<m—1 for all j €

(S)<a(j,kj

+ -
J (8) and 0O<a(Z 2(1)

3 )<...<a(j,ké)<a(z (s))<m—-1 if j €
JO(s)

(11) n(s) = (ﬂl,...,ﬂt) is a permutation of the t elements consisting
of zZ*(s), the (t-1) - |J°(s)| elements of Z9(s), and the iJo(s)|
elements Z;(s), j € J°s), such that the following holds: if

i BN = o J J
a(J,kl) = a(Z (8)) o a(j,ki) = a(j’ki—l) for some i in
{2y0605203)} and § € J+(s), this implies p > p' with %= (j,kf)
+ | j ;
and L% = Z (s), or "p = (j’ki) and T = (j’ki—l) respectively;

if for some j € J°(s), a(j,kg) = a(z'(s)) or 8(J,kg) a(j, kd

i- 1
for some i in {3,...,2(j)} or a(ZS(s)) = a(j,kg(j)), this implies
p > p' with Ty = (j,kg) and ﬂp, = Z+(s), "p = (j,kg) and "p‘ =
) u = J
(j’ki—l) or "p Zj(s) and ﬂp' = (j,kz(j)) respectively
(141) yi+1 = yi £ m_1q3(ni) N L e

Now the union G3(s) of G3(s,y(s)) over all y(s) triangulates

A3(s), whereas G3 = U 3 G3(s) triangulates S according to the V-
triangulation with g;Z;E;ize m~l. Since this algorithm also moves from
one simplex in 63 to an adjacent one, we describe in table 2 how g =
c(§1,;(s)) can be obtained from c(yl,n(s)) when ¢ and ¢ are two t-sim-
plices in G3(s,y(s)) having a common facet opposite vertex yp of o,

1 < p< t+l. In this table e(z*(s)), e(i,h) for (i,h) € z%(s), and

e(Z}(s)) for j € J%(s), are given by ejk(Z+(s)) =1 if (§,K) € zH(s)

and zero otherwise, ejk(i,h) =1 1if (j,k) = (1,h) and zero otherwise
while eih(Z;(s)) =1 1f (i,h) € Z;(s) and zero otherwise., Further, the
(N+n)-vector a is defined by a = azt(s)) 1f (4,0 € z¥(9), ag -

o = = =
a(j,k) for (j,k) € Zj(S). 8y = a(Zj(s)) if (4,k) € z(s), and aj = 0
for all (j,k) ¢ Zj(S), du 1,2, 600 sNe



_1 - -

y m(s) a
p=1 gl g3 (n)) (n moam) ate(n,)

1 2 ¥8 Meuilip iy 1

1
t+ yee e, ’ ’ eee
1<p<e+1 y (nl "p—z ™ "p—l’ ,wt) a

p=t+1 yl—m—1q3(w ) (w_sm, yomes™ ) a-e(m, )

t £ . ) | t

Table 2. p is the index of the vertex to be replaced.

We will now consider the case in which a facet of a t-simplex in

& s yls)) Iles fu bd & ts.ole)de

Lemma 3.4 let q(yl,n(s)) be a t-simplex 1in 03(s,y(s)) and t the facet

opposite vertex yp for some p, | < p < t+l. Then t lles in the boundary

of Aq(s,y(s)) ift one of the following cases holds:

a) p=1
b) 1<p<t+l
c) p=t+1

2.

3.

Se
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"l=Z+(S) and a(Z+(s)) = m1

m

p-1
a("p—l) = a(np)

"p—l

1 <1< 2(j), and a("p—l) = a(np)

‘"p—l

a(np_l) = a(np)
"p—l
2 <1i< z(j), and a(wp_1
i ]
p-1 z( ]
wp=Z}(s), and a(w

=(j,k

p-1

) = a(wp)

=Z+(s), ﬂp=(j,k;) for certain j € J+(s), and

i) i +
=(J’ki—1)’ np=(j,ki) for certain j € J (s) and i,
s 3y tor e . ;0
=Z (s), wp-(j,k ) tor certain j € J (8) and
=(3,k)_)), np=(j,ki) for certaln j € J°(s) and 1,

) L€ 2(3) > 1 or wp_1=Z+(s) if z(i)=1,

) = a(np) for certain j € J°Cs)

(i kI for certain ; + o
L% (J’kz(j)) certain j € J'(s) and a("t) 0

"t=zg(s) for certain j € J3°(s) and 8("t) o | e
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The lemma follows immediately from the definitions of CB(s,y(s)) and

A3(s,y(s)). In lemma 3.5 we consider more carefully the cases indicated

in the foregoing lemma and it appears that a facet in bd A3(s,y(s))

either lies in bd S or is a facet of exactly one t-simplex in G3(s,;(s))

with y(s) differing from y(s) or is a (t-1)-simplex in Al(g,y(g)) for
some s with [1°(8) | = |1%(s)| - 1.

Lemma 3.5 In case a of lemma 3.4 1t lies in S(Z(s)),

ise. T lies in the

set {x € Slxjk = 0 for all (j,k) € I;(s), j € J+(s)}. For the cases bl

b5 of lemma 3.4 we have

b1

b5

T = u(y ,n(s)) is a (t-1)-simplex in G (s Y(s)), where s kJ =1,
1

Z 3 o Wb
Sin = Sin 1E (LD # (3D, v () ((j.kz),...,(a,kz(j))),
Yh(-s_) e Yh(s) if h # j) and "(g) = ("lvOO""p_zrz+(§)’“p+1)‘°'1"t)

T is a facet of the t—simplex o(y ,n(s)) in G (s,y(s)), where
Y (s) = ((3, kj),n.,(j k1 ) (j,k) (i, k 122000503, K ))),
(s) = yh(s) if h # j, and n7(s) = (wl,...,n

o,ﬂ't)

z(j
p-2""p" " p-1""pt1

y e e

T is a facet of the t-simplex o(yl,;(s)) in G3(s,;(s)), where

¥5(8) = ((3,K), (8K, e, (Fukd 900, Tp(8) = v (8) 1€ h 2 j, and

= X (nl,...,np_l,(j,kf),np+1,...,ﬂt)

this case has already been described in b2

T is the (t-1)-simplex o(yl,n(g)) in GB(E,Y(g)), where EJ k] =
Yzl 1)

=1, Sih a sih KE (i,h) # (j’ki(j))) Yj(;) = ((j,k:l]):t"¢
B 1yo))s W@ = () L 02 3, 13 = (rueensm_,,23(0),

preveam) 1F 2(3) > 1, and w(3) = (1 ,eee,m 255 .

p-2’
.,nt) 1f z(3) = 1.

P‘I"l,..

Finally for the cases cl and c2 of lemma 3.4 holds
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cl 1 is the (t-1)-simplex o(y',n(8)) in G(5,y(3)), where syd T
>z(9)

“1, By = 8y 1E (L) # (K000 vy = (KDL,

(Gl 5y 0 Yp(3) = v () 1 h# 5, and w(8) = (rp,eeesm )

Te-1
c2 t is the (t-1)-simplex o(y ,n(5)) in G>(5,y(5)), where s = L
2
1

th = Spp 1 (LD 2 (KD, v B = () een (3] 00,

wnl

Yh(é) = y,(s) if h # j, and n(s) = (myseeesme_)e

The definition of the areas A3(s,y(s)), s € 13, implies that
some sets are represented by more than one sign vector. These cases are
described in the following lemma, whose proof is a direct result of the

definition of the A3(s,y(s))'s.

Lemma 3.6 Let s1 be a sign vector in 13 with permutation vector Y(sl).

1f I;(sl) = I(j) for some j € Iy, then A3(81,Y(Sl)) = A3(SZ,Y(82)),
where s?k = 1 For all {3,&) € I(H), si - sé 1f h # 3, and y(s2) = y(s').

If I;(sl)={(j,h)} for some j € Jo(sl), then aA3(s!,y(sh)) = a3(s?,v(s?)),

2 1
12 = 812 1f (1;8) ¢ {(j)h)) (j)kf)}’ Yj(S2) -

),(3,1), and v, (s) = v, (s') if h # j.

where s 15 &,

v S
j,kg a jh

o o j
((J,kz),-..,(j,kz(j)

=0, s

Now we Iintroduce the concept of an s-complete simplex, where
s € Qe This notion is comparable with the concept of a T-complete sim—

plex in case of the sum—- and the product-ray algorithms.

Definition 3.7 For s €Q, a g-simplex c(yl,...,yg+l), g=t-1,t, where

t = 1 % |[0(3)| , is s-complete if the system of linear equations
g+l i Kk
X atl T IN Gob I (3.2)
i=1 (j,k) ¢ 1 (s)

*

3

*
has a nonnegative solution A,, i=1,.e.,g+1, and p K’ (1:%) ¢ 1%(s)s A

* %
solution of (3.2) is denoted by (A ,u ).

Also for this algorithm we need a nondegeneracy assumption to

guarantee convergencye.
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Nondegeneracy assumption. For g=t-1 the system (3.2) has a unique solu-

* *
i > 0, i=1,ess,t, and M3k

* *
g=t at most one variable of A,, i=1,.e.,t+1, and Mk (i, k) £ 1°9%s), is

tion (A%,u") with A >0, (j,k) ¢ 1°(s). For

equal to zero.

Observe that if for all x in an s—complete g-simplex, o(yl,...,yg+1),

g= t-lort, xg = 1 for some (j,k) & I°(s), then according to the con-

n.+1
dition that JZ X
h=1

* %
obtain a nondegenerate solution (A ,p ) in this case we perturb zjk(x)

jhzjh(x) = 0, we have zjk(x) = 0 so that ik = 0. To

slightly as follows. For all vectors y in S having one or more compo-
nents equal to one we define zjk(y) = + a Lf both yjk = 1 and zi(y) € 0,
and zjk(y) = —-q 1f ka = 1 and~zjh(y) positive for at least one\(i,h)‘

I(j), where a is some small positive number. Without loss of generality

we assume that v does not solve the NLCP on S.

For varying s € 13 the exponent-ray algorithm will generate a
sequence of adjacent t-simplices with s-complete common facets in Ad(s).
The algorithm stops whenever it reaches a complete simplex as defined
below. In lemma 3.9 it is shown that such a simplex yields an approxima-
te solution to the NLCP. Let z be the plecewise linear approximation of

z with respect to the underlying triangulation. For z holds that z(x) =

t+1 i _ t+1 i 1 +1
T x,2(y ) if x= g i,y 18 a point in the t-simplex g(y ,...,yt Vi
i=1 * fu) T

Definition 3.8 An s-complete (t-1)-simplex o(yl,...,yt) for arbitrary

sign vector s with 1 < t < mtl is complete if for each j € Iy

sjk <0 if xjk =0
and either
Sih <0 for all (j,h) € I(j) for which th >0
or
8.. %0 for all (j,h) € I(j) for which ¥ S0
jh jh y
* 1

- =
where =
X Zi=1 Aiy .
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Notice that s does not necessarily lie in 13. If a (t-1)-simplex

= *
is complete and x = ¢ | Aiyi, then according to (3.2)

t
s
ij(x) <0 1t x.. =0

and for each j € Iy either Ejh(}) < 0 for all (j,h) € I(j) for which
X,
il 3
that ;;;j(;) is in general not equal to zero although X'z

ol

. > 0or Ejh(}) > 0 for all (j,h) € I(j) for which x p > 0. Observe

(x) =0, j €
IN.

(%)

LLemma 3.9 Let € > 0 be such that max |z -z
(gmer N ib

x and y in the same simplex o of the V-triangulation of S, and let

(y)| < e for all

* * ok =
o (yl,...,yt) be a complete simplex with solution (A ,p ). Then x =
X*
i=1 o

zjh(;() < e for all (§,b) € I7(s), and [z, (%) - 2, ()| < e for all

; % =
y1 lies in ¢ and satisfies zjh(x) € (-g,+¢) 1f (3;h) € 1% s);

o s

(i,h) € 1t(s) where (x) < €.

by X. z.
(3,2) € r’;(s) 23k

Next we describe when a simplex in A3(s) is complete. Let

c
i 3
Furthermore, for j € Iy let cj(s) = min{llg(s)|, ]I;(s) a) V§(v)|} and

Vi(x) = {(3,h) € 1(I|xyy, = 0} and V(x) = I(H\V,(x), j € Iy and x € S.

c(s) = = e.(8)s
jertcs)

Theorem 3.10 Let o(yl,u(s)), s € 13, be an s-complete t—-simplex in
Gj(s,y(s)). Then ¢ is complete iff at a solution (X*,u*) for some (j,k)
not in 13(5)’ j€ J+(s), “;k = 0, c(s) = 1 and either I;(s) = {(5,K}

or 13(5) f\Vg(V) = {(3,k)}. A facet of 5 is complete iff A: =0, mn, =

1
zt(s) and a(zZt(s)) = m-1.
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Proof. We first prove that Ig(s) a Vj(x) =0, je IN’ for all x in

o(yl,ﬂ(s)) with x unequal to v, Since g lies in C3(s,y(s)) we have for

all (j,k) € I;(s)

+ =1 3 Lo =1 3
Vi =V, + a(Z (s))m q,,(Z (s)) + by a(j,h)m q,(j,h).
Je Tk Ik (3,0 € 15(e) jk

Suppose that a(Z%(s)) = 0. Then according to definition 3.3 a(j,h) = 0

o

A

to v and ™ must be equal to Z+(s). Since for (j,k) € I;(s),1=2,...,t+l,
i Y i-1

iKY 3k

for all (j,h) € T .(8), j € J+(S) U J°(s). Hence, the vertex y! is equal

3 1 1 +
¥ (pﬁlqjk(wp))/m=(1 2 Vik tm Py(Z (8) U { mypeeesm D
we obtain that y?k > 0. Consequently, xjk > 0 for all x # y1 = v, When

a(z*(s)) > 0 it follows immediately that y§k S 0 for all $=1,.ss,0F1, 80

that xjk > 0 for all x in o and (j,k) € I;(s). On the other hand for all

je J+(s) we have that for x in o, I;(s) N V?(x) = I

;<s) n v?(v>.

because Z}(s) = f and x i ™ (1—u(Z+(s)))vjk, 0 < a(Z+(s)) < 1, for all

J
(j,k) € I;(s). Therefore, 1if o is an s-complete t-simplex with c(s) =

1 = 0 for some (j,k) ¢ Ig(s) and elther Ig(s) = {(j,K)} or

*
’ ujk
Ig(s) n V?(v) = {(j,k)}, where j € J+(s), then ¢ is also an E—complete

simplex. For s holds that s 0, s for all (4,h) # «(j;k)

ik © ®ih T %in

whereas 1;(5) N vj(x) = f and either I;(E) n vg(x) = ) or I;(s) n V?(x)
= ¢ for all x in o and j EEJ+(§). Hence, o 1s a complete simplex accor-
ding to definition 3.8. The reverse implication is now straightforward
to derive.

* + ks
When X\, = 0, n. = Z (s) and a(Z (s)) = m—1, then according to lemma 3.5,

1 1
the facet 1 of o opposite vertex yl lies in S'k = {x = S[x.k =0},
J J

(1. ) € I}(s) and j € J+(s). Consequently, I;(s) N Vg(x) = @ for all x
in t and j € Jt(s), so that t is complete. The reverse implication fol-

lows along the same lines. 0
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We remark that if z(v) < O then v solves the nonlinear complementarity
problem. If not z(v) < 0, then the O-dimensional simplex o(v) is an s0-

complete facet of the 1-dimensional simplex o(v,(Z+(s°))) in A3(s°),

where s = sgn z(v). Recall that Sgk = +1 1if vjk = 1 and zj(v) < 0 and
o
that Sjk =-11if vjk = 1 and zjh(v) > 0 for at least one index

(j,h) € I(j) unequal to (j,k). From the nondegeneracy assumption it fol-
lows that there is no other sign vector s in r3 for which o(v) is an s-
complete facet of a l-simplex o(v,n(s)) in A3(s). For given s € 13, the
s—complete t-simplices in A3(s) now form sequences of adjacent t-simpli-
ces with common s-complete facets. A sequence which is not a loop has
two end simplices. An end simplex is either an s-complete t-simplex o in
G3(5»Y(S)) with a solution (X*,u*) such that ”fk = 0 for some (j,k) in
I+(s) ] 1-(5) or is an s-complete t-simplex wigh an s-complete facet

T in the boundary of A3(s). In the latter case the facet 1 is either,
according to theorem 3.10, a complete (t-1)-simplex or is, according to
lemma 3.5, an s-complete (t-1)-simplex 1in A3(§) for some s # s. This
simplex in AB(E) is again an end simplex of a sequence of adjacent
(t-1)-simplices in AB(E) with common g—complete facets, where s differs
from s in only one component which is 0 in s. In the former case the
s-complete t-simplex o is complete 1iff the conditions of theorem 3.10
hold. The case in which ¢ is not complete is described in the next two
lemmas. Lemma 3.11 describes the case when ujk = 0 for some (j,k) in

IT(s) and lemma 3.12 the case when ujk = 0 for some (j,k) in I (s).

*
Lemma 3,11 [If ujk = (0 for some (j,k) in Ij(e) and o 18 not complete then
the s-complete t-simplex a(y ,m(s)) 1s either 1) a facet of an s—com—

plete (t+l1)-simplex o in G (s) with s = 0 or 2) an s-complete t—sim-

- = = jk
plex ¢ in Ga(s), with s =0 and s = -1, More precisely, the fol-
Jk L

lowing possibilities can occur.

1.1) II;(s)l = 1 and I;(s) #4 s U(Yl,n(s)) is a facet of the (t+l)-

glmplex a0y’ ;1(8)) in G (5,7(8)), where Sy 70 3 (b)) +

ith = ®in’
(3,Kk), Yj(;) - ((j,k).(j,kf),.:.,(j,ki(j))), Yh(E) = y,(s) for all
h # js and ‘N(S) = ("l’...’"t’zj(s))
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ii) |12(3)| > 1 ¢ o(yl,n(s)) is a facet of the (t+1)-simplex

o(y',m(3) 1n 63(5,7(3)), where 5, = 0, 5, = 5y, (1,h) # (4,K),

Yj(-s-) = ((j)k))(j’k?))..°’(jtki(j)))) Yh(g) = Yh(s) for all h # i I

and 1(8) = (rpseeesm 278,00, 00,m 1 henesm)

2 |I;(S)| = 1 and I;(s) =@ : o(yl,n(S)) is also the t-simplex

o(y!,m(5)) 1n G>(5,Y(3)), where 5 j =-1,5

ik 4y ™ Bik

for all other (1,h), v,(3) = ((j,k),(j,kf),...,(j,kg(j)_l)), ¥, (5

(s),n

= 0, 8 = B

= y,(s) for all h # j, and n(s) = (wl,...,np_l,Zj

l,coo,'ﬂt)
= 3
where "p (j’kz(j))'

In the case 2 described in lemma 3.1l the t-simplex ¢ is also an
s-complete simplex in the area A3(§,Y(§)) which is equal to A3(s,y(s))
(see lemma 3.6). We 1llustrate this case in figure 3,2 where N=2 and
n;=ny=l. In case 1l of lemma 3.1l o is an s-complete facet of the unique-

ly determined (t+l)-simplex c(yl,n(g)) in A3(§).
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)
(v, 59,505 1) x,, =0 (0,1,0,1)"

B2 #1373

3 T
A3((0,+1,—l,+l)T) A ((=1,+1,=1,#1)" )

Figure 3.2 The starting point v lies in the interior of S1 x Sl. The

grid size of the triangulation is 4. Concerning the sign pattern of z we
have that sgn z(y3) = sgn z(yl) = (—1,+l,—l,+1)Tand sgn z(yz) =
(41,~1,~E,41)L Poeher spw (e = (040,047, eam S08) = (0.0.-1.41),
sgn 2(c) = (-1,0,-1,+1), sgn z(d) = (0,-1,-1,+1) and sgn z(e) =
(+1,0,-1 +1). The algorithm follows the heavily drawn line x = zixiy
and goes from A3(( 1,+41,-1 +1)) via A3((0 +1,-1 +l;) into
A3((-1,0,-1,+1)).

i

*
Lemma 3.12 If y, jk = 0 for some (j,k) in Ij(s) and o 1s not complete then
the s—complete t—simplex o(y ,m(s)) 1is either 1) a facet of an s-com—

plete (t+l)-simplex g in G (s) with Sjk = 0 or 2) an s-complete t-sim-

plex in c3(§) with gjk = 0 and ;.kj = 1, More precisely, the following
J

1

possibilities can occur.
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1a1) II;(S)I 5> 1, I;(s) = () and 13(8) + 0 : c(y‘,w(s)) is a facet of
the (t+1)-simplex G(Yl»u(g)) in G3(§,Y(§)), where gjk =0, gih S

Sy (LB # (1,00, (3 = (L), (k] 1), GL0), 1 (B =

v, (s) for all h # j, and n(s) = (nl,...,np_l,(j,k),Z;(g),..-,nt)

+
3

the (t+1)-simplex a(yl,n(E)) in G3(§,Y(§)), where gjk = 0, gih =

1) [1()] > 1, T{(s) = § and 1?(5) =0 : o(yl,n(s)) is a facet of
sihs (1,0) # (3,00, v (8) = ((3,10), v, (8) = y,(s) for all h # j,

and W(g) = ("1""’"p—l’(j’k)’zg(g)""’"t)

111) |I;(s)| > 1 and I;(s) +#0 : c(yl,n(s)) is a facet of the (t+l)-
simplex o(yl,w(g)) in G3(§,Y(§)), where gjk =0, gih = Sipo
- h| J =
(i)h) # (j)k)y Yj(s) = ((j’kl)’...’(j’kz(j))’(j’k))’ Yh(S) -

v,(s) for all h # j, and n(s) = (myseee,m,(3,K))

Zs IIS(S)I = 1 and I;(s) =0 : O(yl,ﬂ(s)) is also the t-simplex
1 - 3= = - - =
o(y ,m(s)) in G (s,y(s)), where sjk = 0, Sjkj = L Sih = Sin for

1
all other (1,h), YJ(S) &= ((j’kg)nOO':(jskg(j))’(jvk))) Yh(s) =
v, (s) for all h # j, and n(s) = (ﬂl,...,np_l,(j,k),wp+1,...,nt)

where = ZT S)e
™ J( )

The case 3.12.2 1is comparable with case 2 of lemma 3.11. Observe
that each simplex defined in the two lemmas indeed exists since o is not
complete. So, the end simplex of each sequence of adjacent s-complete t-
simplices in A3(s) with s—complete common facets and not being a loop
can be linked with a sequence in another area AB(E) unless the end sim-
plex is complete or equal to o(v). The latter sequence can be a sequence

of adjacent E-complete (t-1)-simplices with common s-complete facets in

A3(§), where for some (j,k) € I, g = %] and s,, = 0, while g =g

jk jk Lp Lp
for all (£,p) # (j,k). Another possibility is that an end simplex in

A3(s) is an s-complete facet of a (t+1)-simplex g in A3(§), with
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s = #1, s for all (g2,p) # (j,k). The simplex g is

LN ®ep ~ “1p s
then an end simplex of a path of adjacent s-complete (t+l)-simplices
in AS(E) with common s-complete facets. The last possibility concerns
the case in which an s-complete end simplex o in A3(s) is also an
E—complete t-simplex in A3(§) for some s € r3 (see lemma 3.11.2 and
3.12,2). The simplex o is then also an end simplex of a sequence of
s-complete adjacent t-simplices in A3(§). In this way all paths can be
linked. As a result there exists a path of adjacent s-complete simplices
in reglons A3(s), s € 13, connecting o(v) and a complete simplex. The
nunber of simplices along this path is finite because the total number
of stmplices in S is finite. The exponent-ray algor{thm generates this
sequence of simplices starting with o(v) by following a plecewise linear
path from v to an approximate solution x* induced by system (3.2). The
successive steps of the algorithm result from linear programming pivo-
ting steps in system (3.2) combined with corresponding replacement steps
in the triangulation. A decrease in dimension of the current simplex is
followed by introducing a unit vector column in system (3.2). On the
other hand the dimension is increased when such a column is eliminated
by a linear programming pivoting step. We remark that the p.l. path fol-
lowed by the algorithm might have more than one linear piece in a sim-
plex (see lemma 3.11 and 3.12, case 2). This {s caused by the fact that
;;Ej(;) is in general unequal to zero, j € Iye A further interpretation
of the algorithm is presented in section 4. Here we conclude this sec-

tion with a presentation of the formal steps of the algorithm.

Step 0. [Initialization] Set Sjk = sen zjk(v) for all (3;k)€ 1. If Sjk
< 0 for all (j,k) € I then the algorithm stops with the solution
ve Otherwise set t=1, yl=v, n(s) = (Z+(8)). o= U(YI,W(S))y
Yj(s) =@ for all j €Iy, p = 2, a5 = 0 for all (j,k) € T,

Mk = Izjk(v)| for all € j, k) € I, Al =1, cj(S) = min

{11;(5)| , 113(e) 0 V() | } for all 3 € Iy

Step l. Calculate z(yp) and perform an l.p. pivot step by bringing
swkep 5 o
(zfyp),l)Tin the linear system
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b | "
X b E > e L
- b1 (3.0 & 1°(s) “ 1
i#p

"3k gk

1f ”jk becomes zero for some (j,k) ¢ I°(s) then go to step 3.
Else A is eliminated for exactly onme p # p and the facet
p-1 yp+l t+1

t

T(yl,...,y s ) is s-complete.

£ p = 1, o= Z+(s) and a(Z+(s)) = m-1 then 1 is complete and
the algorithm stops.

In the case 1 < p < t+1 and if

i) = Z+(s), "p = (j,kf) for some j € J+(s), and a(r ) =

L . p-1
a(np), then s, y(s) and o(y ,n(s)) are adapted according to
lemma 3.5, case bl; set t = t-1 and (i,h) = (j,kf), adapt
cj(s) and go to step 4

L) w = (3K, 7w = (4,k) for some ) € J¥(s), IKi<z(),
and a("p—l) = a(np), then y(s) and o(y ,n(s))are adapted
according to lemma 3.5, case b2; return to step 1 with p
the index of the new vertex of o

111) = Z+(s), "p = (j,kg) for certain j € J°(s) and a(n )

™

p-1 1 p-l
= a(wp), then y(s) and o(y ,n(s)) are adapted according to
lemma 3.5, case b3; return to step 1 with B the index of

the new vertex of o

] _ ] ie 10
iv) "p—l (j’ki—l)’ "p = (j,ki) for certain j J (T),
2<i<z(j), and a(WP_l) = a(np), then y(s) and o(y ,n(s)) are
adapted according to case b4 of lemma 3.5; return to step 1
with E the index of the new vertex of o
V) ow o= 3,k ) 1F 23 > Lor a, = zt(s) 1£ 2(j) = 1
p-1 z(3) p-1 < :
=7 - for tai € J9(s), then
L Zj(s) and a(np_l) a(np) or certain j
s, y(s) and o(y ,n(s)) are adapted according to lemma 3.5,

case b5; set t=t-1, (i,h) = (j’ki and adapt cj(s); go

1
to step 4.
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In the case p = t+l and if

i) T = (j ) for certain j € J¥(s) and a(" ) = 0, then s,

t 3, z( )
y(s) and o(y ,m(s)) are adapted according to lemma 3.5,
case cl; set t=t-1, (i,h) = (j,kg(j)), and adapt cj(s);

to step 4

i1) r, = Z;(s) for some j € J°(s) and a("t) = 0, then s, y(s)

and o(yl,n(s)) are adapted according to lemma 3.5, case c2;

set t=t-1, (i,h) = (j,kJ), and adapt cs(s); go to step 4.
1 ]

In all other cases o(yl,n(s)) and a are adapted according to
table 2 and return to step 1 with B the index of the new vertex

of g.

[Increase dimension]

If c(s) = 1 and either i (s) [(3;,k)} o both j€ Jt(s) and

1. (s) ko (v) {(J,k)} then o 1s complete and the algorithm
stops.

If 0 is not complete, (j,k) € I;(s), and if ﬂ?(s)[= 1 and

IT(S) = f, then s, y(s) and o(yl,n(s)) are adapted according to

lemma 3.11, case 2. Further, set (i,h) = (j,kj

z(j))’ adapt cj(s)

and go to step 4.
If o is not complete, (j,k) € 1;(5) and |13(s)|= 1 and

I:(s) = f), then s, y(s) and c(yl,n(s)) are adapted according to

lemma 3.12, case 2. Further, set (i,h) = (j,kg), adapt c1(s) and

£0 to step 4.

In all other cases adapt s, y(s) and o(yl,n(s)) according to

lemma 3.11, case 1, if (j,k) € IS(S) and according to lemma
3.12, case 1, if (j,k) € [;(S)' Further, set t=t+1, adapt CJ(S)

and return to step 1 with E the index of the new vertex of 4,
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¥,
Step 4. Perform an l.p. pivot step by bringing —sih(e(i,h),o) in the

system
t+1 i
5 AT h L s (S = .
=1 b1 (L &P IEE 0 3
(3,10 # (1,h)

If ujk, (j,k) & 19(s) and (j,k) # (i,h), becomes zero then

return to step 3. If Ap becomes zero then go to step 2.
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4, The paths followed by the algorithms

In the foregoing the sequences of simplices of varying dimension
generated by three simplicial algorithms were described. The sum-ray
algorithm generates a path of adjacent T-complete simplices in areas
Al(1) for varying T in rl. In case of the product-ray algorithm a se-
quence of adjacent T-complete simplices is generated in areas A2(T) for
varying T in 12. Finally, the exponent-ray algorithm generates a se-—
quence of adjacent s—complete simplices in areas A3(s), s in 13. All the
algorithms stop within a finite number of steps with a so-called com-
plete simplex from which an approximating solution to the NLCP can be
obtained. Notice that the definition of completeness 1is different for
each algorithm,.

In this section we explain what happens along the paths of the
algorithms in terms of the piecewise linear approximation z of z with
respect to the underlying V-triangulation. From this it will be imme-
diately clear that these simplicial paths approximately follow the paths
of the corresponding processes described in van den Elzen, van der Laan
and Talman [3]. By taking the grid size of the triangulation small
enough the algorithms can follow the paths of the processes as close as

we wante

Let us first consider the sum-ray algorithm. For a better in-
sight we rewrite the sets Al(T), T &€ rl, as

Al(T) =[x € s|xjk 3 buw. T £5.K) € 1,

3 ik

=b if k (=
xjk jvjk (3:k) & T O<bj<l,j IN},
where v is the arbitrarily chosen starting point.

Regarding the definition of T-completeness we define for each

T € rl the set EI(T) by

El(T) =[x € S|;jk(x) = max z, .

(i,h) €I

(x) if (§,k) € T}.
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1

We denote the set AI(T) N EI(T) by ﬁl(T), while B' is the union of the

sets EI(T) over all T in rl.

In [3] it is shown that the set Bl = U 1 (AI(T) n Cl(T)) with
T € %
1
c(r) = {x € sz, (x) = max 1z, (x) 1f (J,k) ¢ T}
ke (i,h) e 1 —

consists of a disjoint union of piecewise smooth paths and loops. The
path in B! connecting v and a solution x* is the path followed by the
sum—-process. In the same way we can show that El consists of a disjoint
union of piecewise linear paths and loops with one path, Pl, connecting
v and an approximate solution. We can show that this path is in fact
followed by the sum-ray algorithme. More precisely, let o(yl,---,yg+1) be

a T-complete g-simplex, g=t-1,t, in Al(T) for some T in 11 with solution
_oetl
(A,u,B)e Then the point x = % Aiy lies in ¢ and is an element of
i=1

EI(T). Moreover, the path 51 colincides with the piecewise linear path of
points generated by the sum—ray algorithm. Because z converges to z if
the grid size of the triangulation goes to zero, the piecewise linear
path generated by the sum-ray algorithm can follow the pilecewise smooth
path of the sum—process arbitrary close by taking the grid size small

enoughe.

When 7y - ej(j,k) where (j,k) is the index for which zjk(v) =

max z_ (v), then v solves the NLCP on S and P o {v}. If v is not
ih .
(i,h) € 1 -3
a solution, the path P~ leaves v by increasing the (j,k)-th component of

v for which the z-value is maximal, and by decreasing proportionally the
other components of v, in order to keep the sum of the components equal
to one. This procedure 1s continued until a point x 1s reached for
which z (x) zjk(x) for some (2,p) # (j,k). Then the path P1 continues
with points x in A ({(j k),(2,p)}) while keeping both z (x) and z (x)

maximal, by increasing the (2,p)-th component of x and decreaqing the
other components of ;l if ¢ 1is unequal to j or by relatively increasing

;lp away from the Ijh's’ h # k, if g 1s equal to j.
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In general the path 51 consists of points x for which there is
1 :
a T in 1" such that for all j € Iy the components xjk of xj with
(j,k) ¢ Tj are relatively (to v) equal to each other and relatively

smaller than the components x

jh of xj with (j,h) € Tj’ for which the
z-value is maximal. As soon as for some index (g,p) not in T, Elp(x)
becomes equal to max z (x), the (2,p)-th component of x  is rela-
(i, k)& 3 8 k

tively increased away from the xzh's with (g,h) ¢ Tl’ while Elp(x) 1s
kept equal to the maximum of z, In this way a plecewise linear path in
EI(T U {(2,p)}) is followed. If, on the other hand, for some (i,h) € T,
becomes relatively equal to Xie (i,k) ¢ Ti’ then Xih is not further
i ikil(i’k) ¢ Ti' while zih(x)
is decreased away from the maximum of z, So, P  continues in
A'(T\[(1,)])« When xj = O for all (j,k) £ Tj and some j € Iy, the
path Fl stops with an approximate solution to the NLCP.

X
ih
decreased but is kept relatively equal to x

This completes the description of the sum-ray algorithm in terms
of an adjustment process with respect to the p.l. approximation z of z.
Observe that this interpretation of the sum-ray algorithm with the V-
triangulation is more natural than in case of the Q-triangulation as
used in [8] where the increase of the (j,k)-th component of x is compen—
sated by the same decrease of an arbitrary other component of X instead

of a proportional decrease of all other components of Xje

Along the same lines we can describe the p.l. path of points
generated by the product-ray algorithm on S as a path followed by an
ad justment procedure with respect to z. To do so, let us rewrite the

sets AZ(T), T in 12, by

a2ty = [x € S|y > bvy, 1 (L E T,

jk

xjk = bvjk 1f (j,k) ¢ T, where 0 < b < 1},

Furthermore we define the sets EZ(T), T in TZ’ by

¢(m) = {x € 5|z, (x) = max 7

2. (x), (€T
(b e 1y P

e je IN}.
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Again one can show that the set ﬁz being the union of the sets
EZ(T) = A2(T) N EZ(T) over all T in 12, consists of a disjoint union of
piecewise linear paths and loops. Exactly one path, FZ, connects the
point v and an approximate solution. This path is the path generated by
the product-ray algorithm. Moreover, ?2 approximates the piecewise

smooth path followed by the product-process on S. The latter path is the

path in the set B2 = V] (AZ(T) F1C2(T)) which connects v and a solu-
2
(=
tion point, where = ¥
2 :
E(T) = {x € S[zjk(x) = max zjh(x), (i, € Tj’ je IN}.

(j,h) € 1(3)

In the case that v is the vertex e(T) of S such that both Tj =

h(v) for all j € Io» the set 52

2

(3D} and 230 = max 2
0 (3,h) € 1(3) _
consists of the point v and v solves the NLCP. Otherwise the path P

leaves v by increasing for all j the (j,kg)—th component of v for which
the zj-value is maximal, and by decreasing proportionally the other com-
ponents of v in order to keep the path in S. This procedure is continued

until a point x is reached for which z (x) = Ejkj(;) for some (j,k) ¢
0

jk

T. Then the path 52 continues with points x in AZ(T U {(3,k)}) by in-
creasing Xk relatively away from the Xip'S> (i,h) ¢ T and keeping
Ejk(x) equal to ;jkg(x).

In general the product-ray algorithm generates points x for
which there is a T in 12 such that all components xjk of x with (j,k) ¢
T are, relatively to v, equal to each other but relatively smaller than

of x, (i,h) € T, for which z, (x)= max z, (x).

1
(1,8) € T(z)y B
Notice the difference with the description of the p.l. path 51. If for

the components x

ih ih

some (j,p) not in T, ;jp(x) becomes equal to the maxy Ejh(x) then the
(j,p)-th component of x is relatively increased away from the xih's

with (i,h) £ T. Besides Ej (x) 1s kept equal to max z N
el N (3,k) € 1(3) 3
that p“ continues in §J (T LJ{(j,p)}). 1f, however, for some (j,h) e T,

(x) so

Xjh becomes relatively equal to Xjgs (i,8) ¢ T, then this component is

not further decreased but is kept relatively equal to these xig's while
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Ejh(x) is decreased away from the maximal Zj—value. In this way the path

=2

P° continues in BZ(T\{(j,h)}). When ;jk = 0 for all (j,k) & T, the path

52 stops with an approximate solution to the NLCP.

Finally we discuss how the piecewise linear path followed by the
exponent-ray algorithm, can be interpreted as a path approximately gene—
rated by the exponent-process. Let ;3 be the set of sign vectors defined

by

;3 = {s € H§+“|s is a sign vector such that I;(s) = fp or I](s) N V; 0
for all j while for at least one k, I:(s) # ﬂ}.
Then for s € ;3 we define the set Ag(s) by
Ag(s) = {xe s| xjk=(1+uj)vjk if sjk=+1 and vjk>0
xjk=aj 1E sjk=+1 and vjk=0
bvjk<xjk<(1+uj)vjk if sjk=0 and vjk>0 (4.1)
0<xjk<aj 1. sjk=0 and vjk=0
xjkﬂbvjk 1.£ sjk=—l -
where 0<b<1<l+aj for all j}.
Furthermore, let the set Cj(s) be defined by
C3(s) = CQ({x € Slsgn z(x) = s}) o 8G ;3,
where CL(W) denotes the closure of a set W.
Then the set 33 = U _3 (AS(S) N C3(s)) consists of a disjoint
SE 1

union of piecewise smooth loops and paths as shown in [3]. One path in

B3 connects the point v and a solution point. This path, p3, 1s the path
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which is generated by the exponent-process on S. To clarify its rela-
tionship with the piecewise linear path followed by the exponent-ray

algorithm on S, we first define areas 63(5), 8E 13, by

Ea(s) = ce({x € S|sgn z2(x) = sl 5 &€ 13.

¥ = US(A3(s) N 63(5)), where the

It can easily be shown that the set B
union is over all s € 13, consists of a disjoint union of piecewise
linear loops and paths. One path, 53, connects the point v and an ap-—
proximate solution. From the definition of s—completeness we obtain that

this path is generated by the exponent-ray algorithm.

Notice that for each point x on the piecewise smooth path P3 the
condition x .z (x) 0 for all j in Iy holds whereas for a point X on
53, ;;;j(x) is typically not equal to =zero. This fact explains the
different sets of sign vectors for which the sets B (s) = A (s) N C (s)
and B (s) = A (s)n C (S) are defined,

In general we can say that the path of the exponent-process can
be followed arbitrarily close by 53 by taking the grid size of the tri-
angulation small enough, In fact, each area A (s), where IJ(s) p for
one or more indices j € Iy, 1s subdivided by areas A (s) with s € 13

such that I;(s) C I(j)\v, or Ij(s) U Ij(s) = I(j) for those j

while s; =8

vectors coincide. Furthermore by decreasing the mesh, z approaches z so

J
otherwise. Areas A3(s) and Ag(s) related to other sign

that the set 63(3), s € 13, approximates the set C3(s), s € ;3, with s
and s related as above. Consequently, by taking the mesh of the trian-
gulation of S small enough, the set ﬁa(s) is arbitrarily close to BB(s)
3 and T" (s) )

for at least one j, then B3(s) is approximated by the union of B (s')

if 8 € ;3 and I+(s) # p for all j. Moreover, if s € ¢

over all sign vectors s' in 13 such that s' = sj i Ij(s) # p and

|

¥ b " = 07 i% = ’ + o
Ij(S ) W a I(J)\Vj or Ij(s VRY Ij(s Y = TCH) 1E Ij(s) [

Therefore the p.l. path ?3 leading from v to an approximate solution can
be similarly interpreted as the plecewise smooth path p3 of the expo-

nent-process.
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The pilecewise linear path F3 can be interpreted as follows. The
components Vik of v for which zjk(v) is negative are initially decreased
with the same rate whereas for each j the components of V5 corresponding
to positive z-values are initially increased. The rate with which the
positive vjk's are increased is equal to the absolute amount with which

J
not adapted, whereas v, is decreased if Vik = 1 and zj(v) £ 0. Observe

the ij's equal to zero are increased. If zj(v) < 0 then v; is initially
J

that we assume that zjk(v) # 0 for all (j,k) € T since zjk(x) is slight-
ly perturbed if Bip = l. The procedure is continued until a point x in S
is reached for which Zih(x) is zero for some (i,h) €1I. If zih(x) was
negative then the algorithm proceeds by increasing the (i,h)-th compo-
nent relatively away from the xlp's for which Elp(x) < 0 while Eih(x) is
kept equal to zero. If zih(x) was positive then Xih is decreased rela-
tively away from the components of Xy corresponding to positive z-values
while Eih(x) is also kept equal to zero.

In general the p.l. path 53 generates points x in S such that in
principle the components x;) of x for which Eih(x) is negative are rela-
tively equal to each other, but relatively smaller than the other compo-
nents of x. Further, for all j the components X ik of X3 for which ;jk(x)
is positive are also relatively (absolutely) equal to each other but
relatively (absolutely) larger than the other components of Xye The
rate aj with which these components Xk for which Vik > 0 are larger
than ij is equal to the value of these components X3k for which Vik is
ZEeroe.

As soon as a vector x is reached for which ;jk(g) is 0 for some
index (j,k) for which zjk(x) was negative then the algorithm continues
with points x whose (j,k)-th component is increased relatively away from
the components xjp of x for which Eih(x) is still negative while keeping
ij(x) equal to zero. When zjk(x) was positive then xjk is decreased

relatively away from the components x of x: for which ;jh(x) is posi-

jh d
tive (if any) while Ejk(x) is also kept equal to zero.

If on the other hand at a point x on the path 53 the component

= = . ) "
jk for which zjk(x) 0 becomes relatively equal to the Xin'S for which

x,
E.‘(;) is negative, then % " is not further decreased. The algorithm
in

continues with vectors x whose (j,k)-th component is kept relatively

equal to the xyp's for which ;ih(x) is negative while zjk(X) is decrea-
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sed away from zero. Similarly, 1if for some j the component ;“( for
which ij(;) = 0 becomes relatively (absolutely) equal to the ;1"5 for
1

which Ejh(;) is positive, then x is not further increased. The algo-

rithm proceeds with vectors x fogkwhich xjk is kept relatively equal to
the xjh's whose corresponding z-value is positive while zjk(x) is in-
creased away from zero. This interpretation only holds when for each j
there is an index (j,h) for which Ejh(x) > 0 and an index (j,k) for
which z . (x) < 0 and xy ,
the interpretation of the path differs slightly.

>0, t.es when sgn z(x)€ t° N ;3. Otherwise

As soon as a vector x is generated such that for each j, ;jk =0

(x) < 0 and either Ejh(R) > 0 for all (j,h) for which x,, > 0

implies z jh

jk
or Ejh(;) < 0 for all these (j,h), the path 53 terminates and x is an

approximate solution to the NLCP.
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S5« Computational results

The algorithms presented in this paper have been applied to the
noncooperative N-person game and an international economy. For a des-
cription of the underlying functions z : S » RN+n we refer the reader
to Doup and Talman [1].

In both applications we start the algorithms in the barycentre
of S. The grid size for the first application 1is m~! = 1 and for the
second application ml = 4. When a complete simplex is found the grid is
refined with a factor of two. In the first application we restart the
algorithm in the approximate solution. However, if this solution lies
close to a boundary face of S we project it on that boundary face. In
the second application we restart the algorithm in the approximate solu-
tion. The grid refinement is stopped when the accuracy of the approxi-
mate solution is sufficient. The accuracy is given by maxjk zjk(xv)
where xv is the approximate solution in round y,v = 1,2,... In the first
application the algorithms are stopped when we obtain an accuracy of
1078 and in the second application if an accuracy of 10~7 is obtained.
Throughout this section we will use the following notations; FE: accumu-
lated number of function evaluations, LP: accumulated number of linear
programming steps and v: the number of rounds to obtain the required

accuracye.
The data of the three games we discuss can be found in [1].
Game l. Three players with each player having two strategies.

The solution of this game is x* = (1/5,4/5; 3/7,4/7; 2/3,1/3). The re—

sults for game 1 are given in table 1.

Algorithm FE P v
sum-ray 54 51 7
product-ray 33 35 4
exponent-ray 59 82 7

Table l. The results for game 1.
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Game 2. Three players with each player having three strategies.

The solution of this game is x* = €3/ 7,81 70% 0,105 0,2/341/3)e

The results for game 2 are given in table 2.

Algorithm FE LP v
sum—ray 21 18 3
product-ray 15 14 1
exponent-ray 21 23 2

Table 2. The results for game 2.
Game 3., Four players with each player having two strategies

The solution of this game is x* = (1/5,4/5; 1,0; 1,05 2/3,1/3).

The results for game 3 are given in table 3.

Algorithm FE LP v

sum—ray 18 14 3
product-ray 18 16

exponent—ray 41 56 8

Table 3. The results for game 3.

The second application concerns the international economy des-
cribed in van der Laan [4]. The computational results presented in table
4 concern the same examples as described in [4] and [1]. Each countrv
has two non-common goods, the number of common goods varies between 2

and 6, whereas the number of countries varies between 2 and S.
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number of number of | sum-ray alg.|product-ray alg.|exponent-ray alge.

common goods |countries FE LP FE LP FE LP
2 2 60 53 54 47 60 53
3 125 117 85 78 81 74

4 178 170 97 90 116 109

5 225 217 128 121 148 142

3 2 97 90 56 49 60 52
3 127 119 87 80 91 84

4 182 174 95 88 123 116

5 261 253 109 102 151 144

4 2 113 105 67 60 68 60
3 132 124 107 100 104 97

4 212 204 118 111 133 126

5 309 301 145 138 163 155

5 2 134 126 79 72 76 68
3 157 149 97 90 120 112

4 257 249 145 138 167 161

5 354 346 182 175 170 162

6 2 166 158 89 82 95 87
3 176 168 147 139 115 107

4 346 338 195 188 188 183

5 458 450 221 214 212 206

Table 4. The results for the international economy.
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The computational results show that both the exponent-ray and
the product-ray algorithm are significantly better than the sum-ray al-
gorithm in case of the international trade economies whereas the pro-
duct-ray algorithm is superior to the other two methods in case of a
noncooperative game. The latter could be due to the specific properties
of the underlying function z in case of games. The equilibrium positions
of a player are determined by the strategies of the other players. This
could cause a lot of steps in the exponent-ray algorithm when one or
more players are already in equilibrium. This feature doesn't hold for
an international economy, in which an equilibrium position of a certain
country 1is determined by all prices simultaneously. A second feature
concerns the accuracy of an approximate solution found by the algorithms
for a given grid size. As discussed in [1] such an accuracy is in gene-
ral much better for the product-ray algorithm than for the sum-ray algo-
rithm. In [2] it is shown that the exponent-ray algorithm on S® yields a
worse accuracy than for the (m+l)-ray algorithm on S®. Lemma 3.9 shows
that the latter is also true on S.

More tests and research could clarify the different results for

the two applications given above.
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