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Abstract

Bayesian equilibria are characterized by means of consistency and one-person

rationality in combination with non-emptiness or converse consistency. Moreover,

strong and coalition-proof Bayesian equilibria of extended Bayesian games are intro-

duced and it is seen that these notions can be characterized by means of consistency,

one-person rationality, a version of Pareto optimality and a modi�cation of converse

consistency. It is shown that, in case of the strong Bayesian equilibrium correspon-

dence, converse consistency can be replaced by non-emptiness. As examples we treat

Bayesian potential games and Bayesian congestion games.
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1 Introduction

In Peleg & Tijs [1992] axiomatic characterizations are given for the Nash equilibrium cor-

respondence on closed families of strategic games using consistency, converse consistency

and one-person rationality. Also some re�nements of the Nash correspondence are char-

acterized and an indication is given that some of the results can be extended to Bayesian

games.

In a subsequent paper Peleg, Potters & Tijs [1993] study the question under which condi-

tions converse consistency can be replaced by the non-emptiness property. In this connec-

tion see also Norde, Potters, Reijnierse & Vermeulen [1993].

The purpose of this paper is to make a systematic study of axiomatizations for solutions

of extended Bayesian games. Bayesian games were introduced by Harsanyi [1967], and

extended Bayesian games by Einy & Peleg [1991]. In section 2 we give the necessary def-

initions. In section 3 it is shown that the Section 4 introduces strong and coalition-proof

Bayesian equilibria and both concepts are axiomatized by consistency, one-person rational-

ity and modi�cations of Par There is also a discussion on the de�nition of strong Bayesian

equilibria and it is shown that, in order to characterize strong Bayesian equilibria, converse

consis Finally, a modi�cation of the strong Bayesian equilibrium correspondence is given.

Section 5 extends the notion of potential game of Monderer & Shapley [1992] to Bayesian

games and considers the existence of pure Bayesian equilibria. Also a congestion situation

in the spirit of Rosenthal [1973] is considered, which gives rise to a Bayesian potential

game.

2 Extended Bayesian games

In this section we formally describe the class of extended Bayesian games. This gener-

alized form of ordinary Bayesian games enables us to de�ne reduced Bayesian games.

2.1 De�nition (Einy & Peleg [1991])

An extended Bayesian game (EBG) is a system

G = hN; (Ai)i2N ; (Ti)i2N+; (pi)i2N ; (ui)i2Ni

where

(i) N is the (�nite) set of players,
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(ii) N+ is a �nite set with N+ � N and N+ nN is the set of outside players,

(iii) for every i 2 N;Ai is the set of actions of player i,

(iv) for every i 2 N+; Ti is the �nite set of possible types of player i,

(v) for every i 2 N; pi is a probability distribution on T :=
Q

k2N+ Tk which represents

the prior of player i,

(vi) for every i 2 N;ui : A� T ! IR is the utility-function of player i, where

A :=
Q

k2N Ak.

Note that, in case N+ = N , we have an ordinary Bayesian game. If N+ 6= N then, intu-

itively, one may consider the outside players as those players who have already chosen their

strategies (in a larger Bayesian game). So an extended Bayesian game can be considered

as a reduction of an ordinary Bayesian game.

From now on, if we mention an arbitrary Bayesian game G without further speci�cation,

we assume that G is the game hN; (Ai)i2N ; (Ti)i2N+; (pi)i2N ; (ui)i2Ni. Sometimes we will

refer to NG as the player set belonging to the game G, to avoid confusion.

Let G be an EBG, and i 2 N .

A strategy of player i is a function xi : Ti ! Ai. By Xi we denote the set of strategies of

player i. If S � N;S 6= ;, then XS :=
Q

k2S Xk and X := XN .

Let � be a set of EBG's. A solution on � is a function � that assigns to each game

G 2 � a subset �(G) of the space X of strategy pro�les.

2.2 De�nition

Let G be an EBG and S � N;S 6= ;; x 2 X.

The reduced Bayesian game of G with respect to S and x is given by

GS;x = hS; (Ai)i2S; (Ti)i2N+; (pi)i2S ; (u
x
i )i2Si

where, for every i 2 S; aS 2 AS and t 2 T

uxi (aS ; t) := ui(((xk(tk))k2NnS; aS); t):

(Note that AS =
Q

k2S Ak; aS = (ak)k2S etc.)
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A class � of EBG's is closed if for every G 2 � and for every S � N;S 6= ; and

x 2 X it holds that GS;x 2 �: It is easy to see that the class of all EBG's is closed.

Now we consider an example of a Bayesian game.

2.3 Example

Let a two-person Bayesian game be given by G = hf1;2g; A1; A2; T1; T2; p1; p2; u1; u2i

whereA1 = fT;Bg; A2 = fL;Rg; T1 = f�; �g; T2 = f
; �g and p1(�; 
) = p1(�; �) =

p1(�; 
) = p1(�; �) = 1

4
; p2(�; 
) = p2(�; �) = 1

2
and p2(�; �) = p2(�; 
) = 0: The

payo�-functions are denoted in table 1.


 �

�

L R

T 0; 0 1; 2

B 2; 1 0; 0

L R

T 1; 0 1; 0

B 1; 0 1; 0

�
T 1; 0 1; 0

B 0; 1 0; 1

T 1; 1 3; 2

B 3; 4 2; 2

table 1.

So if player 1 is of type � and player 2 is of type 
, they play the upper left game.

We denote a strategy of a player by a pair of actions. So

X1 = fTT; TB;BT;BBg; X2 = fLL;LR;RL;RRg;

where for example TB is the strategy of player 1 in which he plays T if he is of type � and

B if he is of type �.

Now this Bayesian game is an example of a so-called Bayesian potential game (for the def-

inition we refer to section 5), which means that for every pair of types the corresponding

bimatrix game is an ordinary potential game, where a corresponding potential is described

by:
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 �

�

L R

T 0 2

B 2 1

L R

T 0 0

B 0 0

�
T 0 0

B �1 �1

T 0 1

B 2 0

table 2.

We denote the given (potential) function by q, so for example,

q((T;R); (�; 
)) = 2; q((B;L); (�; 
)) = �1:

If just one player deviates, then the di�erence in the payo� for that player is indicated by

the di�erence in the potential function. For example

u1((T;L); (�; 
))�u1((B;L); (�; 
)) = q((T;L); (�; 
))�q((B;L); (�; 
)) = 0�(�1) = 1:

We will elaborate on potential games in section 5.

2.4 Remark

In the de�nition of extended Bayesian games, pi is a probability distribution on T , for

every i 2 N . In the following de�nition we use, for every i 2 N and ti 2 Ti, the related

probability distribution pi(:jti) on T
�i :=

Q
k 6=i Tk, de�ned by

pi(t
�ijti) :=

pi(t)P
s�i2T�i pi(ti; s

�i)

for every t�i 2 T�i. Note that t = (ti; t
�i).

Of course this de�nition is meaningful only in the case that
P

s�i pi(ti; s
�i) 6= 0, for every

ti 2 Ti, which means that every player puts positive probability on the occurence of each

of his types. In the sequel we shall assume that this is indeed the case.

2.5 De�nition

Let G be an EBG and x 2 X.

x is a Bayesian equilibrium (BE) of G if for all i 2 N; ti 2 Ti and ai 2 Ai:

X
t�i

pi(t
�ijti)ui((xj(tj))j2N ; t) �

X
t�i

pi(t
�ijti)ui((xj(tj))j2Nnfig; ai; t):
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We denote BE (G) := fx 2 X j x is a BE of Gg.

To shorten notation we de�ne

Ui(xjti) :=
X
t�i

pi(t
�ijti)ui((xj(tj))j2N ; t)

for every x 2 X; ti 2 Ti. Then, for every x 2 X :

x 2 BE (G) i� for all i 2 N; ti 2 Ti; yi 2 Xi : Ui(xjti) � Ui(x
�i; yijti):

In section 5 we show that each Bayesian potential game with consistent priors has at least

one Bayesian equilibrium.

In example 2.3, the strategy tuple (TB;RL) is a Bayesian equilibrium, but the players do

not have consistent priors.

3 Axiomatizations of the Bayesian equilibrium correspondence

In this section we give two di�erent characterizations of the Bayesian equilibrium corre-

spondence. The �rst one is based on consistency and converse consistency (cf. Peleg &

Tijs [1992]), the second one on consistency and non-emptiness and uses in its proof the

ancestor property (cf. Peleg, Potters & Tijs [1993]).

3.1 De�nition

Let � be a closed set of EBG's and � a solution on �.

(i) � satis�es one-person rationality (OPR) on � if

�(G) = fxi 2 Xi j Ui(xijti) � Ui(yijti) for every ti 2 Ti and yi 2 Xig

for every one-player Bayesian game G = hfig; Ai; (Tj)j2fig+; pi; uii in �.

(ii) � satis�es consistency (CONS) on � if for every game G 2 �, for every coalition

S �
6=
N;S 6= ; and for every x 2 �(G) it holds that xS 2 �(GS;x).

De�ning ~�(G) := fx 2 X j for every S �
6=
N;S 6= ; : xS 2 �(GS;x)g, we have that

� satis�es CONS i� �(G) � ~�(G) for every G 2 �.

We will show that the Bayesian equilibrium solution satis�es OPR and CONS. However,
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OPR and CONS do not axiomatize BE. In section 4 we will see that the strong Bayesian

equilibrium solution (SBE ) also satis�es OPR and CONS. To characterize BE we use the

following property.

3.2 De�nition

We say that a solution � satis�es converse consistency (COCONS) on a closed set � of

EBG's if

~�(G) � �(G) for every G 2 � with jN j � 2:

For a detailed discussion of consistency and converse consistency we refer to Peleg & Tijs

[1992].

3.3 Lemma

Let � be a closed set of EBG's.

Then BE satis�es OPR, CONS and COCONS on �.

Proof.

(i) By de�nition BE satis�es OPR.

(ii) Let G 2 �; jN j � 2 and x 2 BE (G).

Let S �
6=
N; i 2 S and ti 2 Ti. Then for every yi 2 Xi:

Ux
i (xSjti) = Ui(xjti) � Ui(x

�i; yijti)

= Ux
i (xSnfig; yijti)

where Ux
i (xS jti) :=

P
t�i pi(t

�ijti)u
x
i ((xj(tj))j2S; t).

Hence xS 2 BE (GS;x), so BE (G) � ~BE (G).

(iii) Let G 2 �; jN j � 2 and x 2 X be such that xS 2 BE (GS;x) for all S �
6=
N;S 6= ;.

Take i 2 N and ti 2 Ti. Then xi 2 BE (Gfig;x) so for every yi 2 Xi:

Ux
i (xijti) � Ux

i (yijti) hence

Ui(xjti) � Ui(x
�i; yijti):

So x 2 BE (G) and ~BE (G) � BE (G). 2

In fact, OPR, CONS and COCONS characterize BE, as the next theorem shows.

3.4 Theorem

Let � be a solution on a closed set � of EBG's.
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Then � satis�es OPR, CONS and COCONS i� �(G) = BE (G) for every G 2 �.

Proof.

We give a proof of the 'only if'-part by induction on the number of players.

Suppose � satis�es OPR, CONS and COCONS.

� Let G be a one person game in �. Then �(G) = BE (G) by OPR of � and BE.

� Let k 2 f2; 3; 4; :::g be such that, for every G 2 � with less than k players, we have

that BE (G) = �(G), and let G be a k-person game in �. Then we have

�(G) � ~�(G) = gBE (G) � BE (G)

(CONS of �) (ind.hyp.) (COCONS of BE)

and

BE (G) � gBE (G) = ~�(G) � �(G).

(CONS of BE) (ind.hyp.) (COCONS of �)

So �(G) = BE (G). 2

For the second characterization we introduce, for every set � of EBG's and every solution

� on �, a directed graph Graph(�; �). The vertices of this graph are pairs (G;x) where

G 2 � and x 2 �(G). There is an edge from (G;x) to (H; y) if NH
�
6=
NG;H = GNH ;x

and y = xNH . In this case we call (G;x) an ancestor of (H; y).

3.5 De�nition

Let � be a closed class of EBG's and � a solution on �.

The graph Graph(�; �) satis�es the ancestor property (AP) if for every vertex (H; y) there

is a G 2 � such that �(G) 6= ; and (G;x) is an ancestor of (H;y) for every x 2 �(G).

3.6 De�nition

(i) � satis�es non-emptiness (NEM) on � if �(G) 6= ; for every G 2 �.

(ii) � is minimal w.r.t. NEM, OPR and CONS if � satis�es these properties and for

every solution �� with �� � � on � which satis�es NEM, OPR and CONS, we have

that �� = �.

These de�nitions are due to Peleg, Potters & Tijs [1993].
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3.7 Lemma

For every closed class � of EBG's and every solution � on � satisfying NEM , OPR and

CONS :

if Graph(�; �) satis�es AP, then � is minimal w.r.t. NEM, OPR and CONS.

Proof. By straightforwardly extending the proof of Theorem 1 of Peleg, Potters & Tijs

[1993]. 2

This lemma has an interesting application if we take � = BE and � = �BE ( the class of

all EBG's which have at least one BE ). We already know (see the proof of Theorem 3.4)

that a solution �� which satis�es OPR and CONS on �BE is contained in BE. If �� also

satis�es NEM and if we can prove that Graph(�BE ;BE ) has the ancestor property, then

�� = BE , so BE is characterized on �BE by NEM, OPR and CONS.

3.8 Theorem

Let � be a solution on �BE .

Then � satis�es NEM, OPR and CONS i� �(G) = BE (G) for every G 2 �BE .

Proof.

We prove the 'only if'-part.

By lemma 3.7, it su�ces to prove that Graph(�BE ;BE ) satis�es AP.

Let G 2 �BE and x 2 BE (G). We construct a game H 2 �BE with NH
�
6=
NG such that

H has exactly one Bayesian equilibrium y with the property that yNG = x and HNG;y = G.

De�ne H := hNG [ f0g; (A?
i )i2NG[f0g; (T

?
i )i2N+

G
[f0g; (p

?
i )i2NG[f0g; (u

?
i )i2NG[f0gi, where

� A?
0 := f�;�g; A?

i := Ai (i 2 NG);

� T ?
0 := ft0g; T ?

i := Ti (i 2 N+
G );

� for every i 2 NG:

p?i (t; t0) := pi(t) for every t 2 T

and:
p?0(s; t0) := 1 for a �xed s 2 T

p?0(t; t0) := 0 for every t 2 T n fsg,

� for every a 2 A and every i 2 NG; t 2 T :

u?i ((a; �); (t; t0)) := ui(a; t)

u?i ((a; �); (t; t0)) := �1 if ai 6= xi(ti)

u?i ((a; �); (t; t0)) := 1 if ai = xi(ti)
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and:
u?
0
((a; �); (t; t0)) := 2 if a = (x1(t1); :::; xn(tn))

u?0((a; �); (t; t0)) := �1 if a 6= (x1(t1); :::; xn(tn))

u?0((a; �); (t; t0)) := 0 .

Since player 0 has only one type, we can identify a strategy of player 0 with an action.

Claim: (x; �) is the unique BE in H.

Proof of the claim:

Let (y; �) 2 X �A?
0 and y 6= x. Choose i 2 NG; ti 2 Ti such that yi(ti) 6= xi(ti). Then

U?
i ((y;�)jti) =

X
t�i2T�i

p?i (t
�i; t0jti)u

?
i (((yj(tj))j2NG

; �); (t; t0))

=
X

t�i2T�i

p?i (t
�i; t0jti) � �1 <

X
t�i2T�i

p?i (t
�i; t0jti)

=
X

t�i2T�i

p?i (t
�i; t0jti)u

?
i (((yj(tj))j2NGnfig; xi(ti); �); (t; t0)) = U?

i ((y
�i; xi; �)jti) :

So player i can pro�tably deviate , which shows that (y; �) 62 BE (H).

Also (x; �) 62 BE (H), because

U ?
0 ((x; �)jt0) =

X
t2T

p?0(tjt0)u
?
0(((xi(ti))i2NG

; �); (t; t0))

<
X
t2T

p?0(tjt0)u
?
0(((xi(ti))i2NG

; �); (t; t0)) = U?
0 ((x;�)jt0) :

Now let (y; �) 2 X �A?
0 and y 6= x. Then

U?
0 ((y;�)jt0) =

X
t2T

p?0(tjt0)u
?
0(((yi(ti))i2NG

; �); (t; t0))

=
X
t2T

p?0(tjt0) � �1 <
X
t2T

p?0(tjt0) � 0

=
X
t2T

p?0(tjt0)u
?
0(((yi(ti))i2NG

; �); (t; t0)) = U ?
0 ((y; �)jt0) :

So player 0 can pro�tably deviate, which shows that (y; �) 62 BE (H).

Clearly (x;�) 2 BE (H), which �nishes the proof. 2

4 Strong and coalition proof Bayesian equilibria

In this section we de�ne and characterize strong Bayesian equilibria and coalition-proof
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Bayesian equilibria which are generalizations of strong Nash equilibria (see Aumann [1959])

and coalition-proof Nash equilibria (see Bernheim, Peleg & Whinston [1987]) for games in

strategic form. We also discuss the de�nitions and provide some modi�cations.

4.1 De�nition

Let G be an EBG and x 2 BE (G).

x is a strong Bayesian equilibrium (SBE) if there is no coalition S � N;S 6= ;, which

has an improvement upon x, which means that there is no yS 2 XS such that, for all

i 2 S; ti 2 Ti:

Ui(xjti) < Ui(xNnS; ySjti) :

By SBE (G) we denote the set of strong Bayesian equilibria of G.

This de�nition is due to Ichiishi & Idzik [1992]. Ichiishi and Idzik investigate Bayesian

societies, which are more general than Bayesian games and allow binding agreements.

However, their de�nition, when applied to Bayesian games, is essentially the same as our

de�nition 4.1.

We explicitly de�ne SBE as a re�nement of BE. In order to get SBE (G) as a subset

of BE (G), it is not su�cient to de�ne SBE(G) as the set of all strategy combinations

which cannot be improved upon, as the next example shows.

4.2 Example

Let N = f1; 2g; A1 = fTg; A2 = fL;Rg; jT1j = 1; T2 = f�; �g and the payo�-

functions u1 and u2 as denoted in table 3. Note that u1 = u2. The priors are arbitrary.

� �

L R

T 0 1

L R

T 2 0

table 3.

The strategy (T;LL) is no BE, because U2(T;LLj�) < U2(T;RLj�). However, (T;LL)

cannot be improved upon: if there would be an improvement it can only be (T;RL), but

in that case only type � of player 2 pro�ts, while type � gets the same amount.

Two questions may be raised with respect to the validity of the de�nition of SBE.
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(i) Let x 2 X and let yS be an improvement of a coalition S upon x. Can S choose to

play yS without changing the beliefs of its members ? Would the beliefs change then the

payo�s to the types of the players in S would also change. Therefore, some members of S

might no longer prefer (yS; xNnS) to x after yS is chosen.

The answer is simple. Because all the members of S know x and yS and all the types of

all members of S prefer (yS ; xNnS) to x, S can choose to play yS without a change in the

beliefs. In order to be completely precise we supply the following simple model for choice

(by the members of S) between xS and yS .

Let G? = hS; (A?
i )i2S; (Ti)i2N+; (pi)i2S ; (u

?
i )i2Si be the following EBG: A?

i = fyS ; xSg for

all i 2 S and u?i : A
? � T ! IR for all i 2 S be given by

u?i ((a
?
j )j2S; t) =

8<
:
Ui(xNnS; ySjti) if a?j = yS for all j 2 S

Ui(xjti) otherwise:

We shall say that yS is chosen by S if each i 2 S plays in G? the strategy y?i , where

y?i (ti) := yS for every ti 2 Ti. As the reader may easily verify y?S is dominant in G? and the

posterior probability attributed by a player i 2 S to an n-tuple t of types does not change

when yS is chosen by S (in th (ii) The second question is more subtle.

When will S indeed choose yS over xS ? The obvious answer is that yS will be chosen by S

because it is an improvement upon x. However, we shall show, by means of two examples,

that this is true only if the players are short-sighted. This kind of criticism of the SBE

is not directly stemming from the incomplete information environment, it applies already

to SNE for games with complete information. Indeed, our two examples are games with

complete information.

4.3 Example

We consider the following (numerical) version of the prisoner's dilemma.

L R

T 2; 2 0; 3

B 3; 0 1; 1

table 4.

This game has no strong Nash equilibrium. The unique Nash equilibrium (B;R) can be

improved upon by (T;L). However, (T;L) is not an NE and therefore it cannot be imple-

mented. In this sense the rejection of (B;R) in favor of (T;L) is short-sighted.

The reader might think that players who want to implement improvements that are also

NE 's, are not short-sighted. The following example shows that this is not necessarily true.
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4.4 Example

Consider the following 3-person game with complete information.

L R

T 0; 0;0 0; 0; 0

B 0; 0;0 0; 0; 0

L R

T 2; 2;�1 �1;�1;�1

B �1;�1;�1 1; 1; 1

M1 M2

table 5.

Here x = (T;L;M1) is not an SNE because y = (B;R;M2) is an improvement. Now y is

a strict NE which is Pareto optimal. However, from the point of view of player 3, playing

y is short-sighted behaviour. Indeed, if players 1 and 2 know that 3 will play M2, then they

will play (T;L).

The basic assumption underlying the de�nitions is the following.

During the interim phase of a Bayesian game (i.e. when the players know their types but

have not yet implemented their strategies) transmission of information between the players

is not allowed.

Thus, in our model the players may communicate in order to coordinate the choice of

strategies, but they are not allowed to reveal any part of private information to each other.

Under these conditions SBE 's may be the only stable points of G if the players are su�-

ciently short-sighted. As discussed, the above assumption does not eliminate short-sighted

behaviour.

The foregoing assumption is common in applications of BG's to economics. Transmis-

sion of information or signaling is usually done by the actual use of strategies (or local

strategies in extensive form games).

As an illustration we consider the following simple game.

4.5 Example

Let N = N+ = f1; 2g; A1 = fT;Bg; A2 = fL;Rg; T1 = f�g; T2 = f
; �g; p1(�; 
) =

0:1; p1(�; �) = 0:9; p2(�; 
) = p2(�; �) = 0:5 and u1 and u2 be given by the following

matrices.
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�

L R

T �1;2 �1; 3

B 1;�1 1; 1

L R

T 2; 5 2;�5

B �1;�1 �1;�1

table 6.

Let x = (B;LR). Then y = (T;RL) is an improvement upon x by N . However, if

player 2 is of type 
 and his type is somehow revealed to player 1 (before y is imple-

mented), then y is no longer an improvement upon x for N . By the foregoing assumption

player 2 is not allowed to tell his type to player 1 and vice versa. By the foregoing discussion

y can be implemented without revelation of information.

4.6 De�nition

A solution � on a set � of EBG's satis�es weak Pareto-optimality (WPO) if, for all G 2 �,

no strategy combination in �(G) can be impr

The next lemma shows that SBE satis�es OPR ,WPO and (on closed sets) CONS.

4.7 Lemma

Let � be a closed set of EBG's.

Then SBE satis�es OPR , WPO and CONS on �.

Proof.

(i) Let G = hfig; Ai; (Tj)j2fig+ ; pi; uii be a one-person game in �. To prove OPR it suf-

�ces to show that SBE (G) = BE (G), because BE satis�es OPR.

Let xi 2 BE (G). Then for every ti 2 Ti; yi 2 Xi:

Ui(xijti) � Ui(yijti)

so fig does not have an improvement upon xi, hence xi 2 SBE (G).

(ii) Let G 2 �; x 2 SBE (G). Then in particular, the coalition N has no improvement

upon x. This means that SBE satis�es WPO .

(iii) Let G 2 �; x 2 SBE (G) and S � N;S 6= ;. We prove that xS 2 SBE (GS;x).

We know that xS 2 BE (GS;x) because x 2 BE (G) and BE satis�es CONS .

Suppose R � S is a coalition which has an improvement yR upon xS in GS;x. Then yR is

also an improvement upon x in G, which contradicts the fact that x 2 SBE (G). Hence

there is no coalition which has an improvement upon x. So SBE satis�es CONS. 2
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Since, in general, the sets of Bayesian equilibria and strong Bayesian equilibria do not

coincide, we know that SBE will not satisfy COCONS . However, we can formulate a

weaker version of converse consistency that is satis�ed by SBE.

4.8 De�nition

Let � be a solution on a closed set of EBG's.

Then � satis�es COCONS-S if for every G 2 � with jN j � 2 and every x 2 X:

if x 2 ~�(G) and x cannot be improved upon by N , then x 2 �(G):

Recall that ~�(G) = fx 2 X j for every S �
6=
N;S 6= ; : xS 2 �(GS;x)g.

4.9 Lemma

Let � be a closed set of EBG's.

Then SBE satis�es COCONS-S on �.

Proof.

Let G 2 �, jN j � 2 and x 2 gSBE (G) such that x cannot be improved upon by N . Then

in particular x 2 gBE (G) and consequently x 2 BE (G) since BE satis�es COCONS .

Suppose S �
6=
N is a coalition which has an improvement yS upon x. Then yS is also an

improvement upon xS in GS;x, which contradicts the fact that x 2 gSBE (G). Because x

cannot be improved by N either, there 2

4.10 Theorem

Let � be a closed set of EBG's.

There is a unique solution on � that satis�es OPR , WPO , CONS and COCONS-S , and

it is SBE.

Proof.

From the previous lemmas we know that SBE satis�esOPR ,WPO ,CONS and COCONS-

S. Now let � be a solution on � that satis�es the foregoing four axioms. We prove by

induction on the number of players that �(G) = SBE (G) for every G 2 �.

� If G is a one-person game, then by OPR, �(G) = SBE (G).

� Now assume k 2 f2; 3; ::g and that �(G) = SBE (G) for every G 2 � with less

than k players. Let G 2 � be a k-person game and let x 2 �(G). By CONS of �,
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x 2 ~�(G) and by induction, x 2 gSBE (G). Hence, by WPO of � and COCONS-

S of SBE, x 2 SBE (G). Thus �(G) � SBE (G). Similarly, we can prove that

SBE (G) � �(G).
2

Now we provide a characterization of SBE using non-emptiness in the spirit of the an-

cestor property of de�nition 3.5. Let �SBE denote the set of EBG's which have at least

one SBE.

4.11 Theorem

Let � be a solution on �SBE .

Then � satis�es NEM , OPR , CONS and WPO i� � = SBE .

Proof.

We know that a solution which satis�es OPR , CONS and WPO , is a re�nement of SBE

(see the proof of theorem 4.10). We are left to prove that Graph(�SBE ;SBE ) has the

ancestor property.

If G 2 �SBE and x 2 SBE (G), we can consider the same H as in the proof of theorem

3.8. It immediately follows that the unique Bayesian equilibrium (x;�) is also a SBE. 2

Now we shall de�ne coalition-proof Bayesian equilibria.

4.12 De�nition

Let G be an EBG.

(i) Let x 2 BE (G) and S � N;S 6= ;.

We de�ne an internally consistent improvement (ICI) of S upon x in G by induction

on jSj.

� If S = fig, then yi 2 Xi is an ICI of S upon x if it is an improvement (see

de�nition 4.1).

� If jSj > 1, then yS 2 XS is an ICI of S upon x if yS is an improvement upon

x and no coalition T �
6=
S; T 6= ; has an ICI upon (yS ; xNnS).

(ii) Let x 2 BE (G).

x is a coalition-proof Bayesian equilibrium (CPBE) if no coalition has an ICI

upon x.
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For 2-person games we have the following characterization.

4.13 Lemma

Let G be a 2-person EBG.

Then, for every x 2 X: x 2 CPBE (G) i� x 2 BE (G) and the grand coalition N has no

improvement y upon x, such that y 2 BE (G).

Proof.

Let x 2 CPBE (G). By de�nition x 2 BE (G). Therefore f1g and f2g have no improve-

ments upon x. Suppose N has an improvement y 2 BE (G) upon x. Th For the converse

case, it su�ces to note that if N has an ICI y upon x, then y 2 BE (G). 2

Using the following modi�ed forms of Pareto optimality and converse consistency, we are

able to provide an axiomatic characterization for the coalition-proof Bayesi

4.14 De�nition

Let � be a solution on a closed set � of EBG's.

(i) � satis�es relative Pareto-optimality (RPO) if for every G 2 �:

if x 2 �(G) then there is no y 2 ~�(G) which is an improvement of N upon x.

(ii) � satis�es COCONS-CP if for every G 2 �:

if x 2 ~�(G) and there is no y 2 ~�(G) which is an improvement of N upon x, then

x 2 �(G).

It is not di�cult to prove that CPBE satis�es OPR , RPO and CONS. In the next lemma

we prove that CPBE also satis�es COCONS-CP.

4.15 Lemma

Let � be a closed set of EBG's.

Then CPBE satis�es COCONS-CP on �.

Proof.

Let G 2 � and x 2 X .

Suppose x 2 gCPBE (G) and suppose x 62 CPBE (G). We show that there is an y 2
gCPBE (G) which is an improvement of N upon x.

Choose a coalition S � N which has an ICI yS upon x. Then yS is also an ICI of S upon

xS in GS;x.
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If S 6= N then we have a contradiction because x 2 gCPBE (G), so S = N . Clearly y = yN

is an improvement upon x, moreover y 2 gCPBE (G) since yR 2 CPBE (GR;y) for all

R �
6=
N . For, if T �

6=
R has an ICI zT upon yR inGR;y then zICI ofTuponyinG;whichcontradictsthefactthat

For the proof of the following theorem we refer to the analogue in Peleg & Tijs [1992]

for coalition-proof Nash equilibria.

4.16 Theorem

Let � be a closed set of EBG's.

Then there is a unique solution on � that satis�es OPR , RPO, CONS and COCONS-CP,

and it is the CPBE.

We conclude this section with a modi�cation of the de�nition of strong Bayesian equi-

librium.

4.17 De�nition

Let G be an EBG and x 2 X.

x is a strictly strong Bayesian equilibrium (SSBE) if there is no coalition S � N;S 6= ;

which has a weak improvement upon x, which means that there is no yS 2 XS such that,

for all i 2 S; ti 2 Ti: Ui(yS; xNnSjti) � Ui(xjti) and there is a least one i 2 S such that

for all ti 2 Ti: Ui(yS; xNnSjti) > Ui(xjti).

In the de�nition of SSBE we look at a coalition in which at least one player gains in

every type. One can also imagine a concept in which every player in a certain coalition

gains in at least one type. It will not be di�cult to characterize this concept by OPR ,

CONS and slightly modi�ed versions of Pareto optimality and converse consistency.

Finally we want to mention that some of the theorems of section 3 and 4 can be strenght-

ened by replacing 'closedness' by '�-closedness', where � is the solution in question. We

call a set � of EBG's �-closed if, for

5 Bayesian potential games

In this section we introduce a speci�c closed class of EBG's namely the class of Bayesian po-
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tential games. Bayesian potential games are generalizations of (strategic) potential games,

introduced by Monderer & Shapley [1991]. It turns out that, under a special condition on

the priors, each Bayesian potential game has a pure Bayesian equilibrium.

5.1 De�nition

Let G be an EBG.

G is a Bayesian potential game (BPG) if there exists a function q : A � T ! IR such

that, for every i 2 N; a 2 A; bi 2 Ai and t 2 T

ui(a; t)� ui((a
�i; bi); t) = q(a; t)� q((a�i; bi); t):

Such a function q is called a potential for G.

One can easily verify that the class of BPG's is closed. More precisely:

if G is a BPG with potential q, S � N and x 2 X, then qx : AS � T ! IR de�ned by

qx(aS; t) := q(((xi(ti))i2NnS ; aS); t) (aS 2 AS ; t 2 T )

is a potential for GS;x.

Moreover, if G is a BPG with potential q then, in order to determine the set of Bayesian

equilibria of G, we can replace each player's utility function by q.

5.2 De�nition

Let G be an EBG.

(i) We say that G has consistent priors if each player has the same prior p on T .

If G has consistent priors, we write G = hN; (Ai)i2N ; (Ti)i2N+; p; (ui)i2N i.

(ii) We de�ne the ex ante game Ĝ as the strategic game hX1; :::;Xn; û1; :::; ûni where, for

every i 2 N;Xi is the set of pure strategies of player i, and for every x 2 X; i 2 N :

ûi(x) :=
X

t2T

pi(t)ui((xj(tj))j2N ; t):

Note that the ex ante game Ĝ is a potential game if G is a Bayesian potential game with

consistent priors.

We mention the following important relation between an EBG and the corresponding ex

ante game. For the proof we refer to Harsanyi [1967], part II, theorem I.
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5.3 Theorem

Let G be an EBG with consistent priors.

Then, for every x 2 X, x is a Bayesian equilibrium of G if and only if x is a Nash equilib-

rium of the ex ante game Ĝ.

5.4 Corollary

Let G be a BPG with consistent priors, such that every type has positive probability. Then

BE (G) 6= ;.

Proof.

If G is a BPG, then Ĝ is a potential game, so Ĝ has an NE (see Monderer & Shapley

[1991], corollary 2.3). Hence G has a BE. 2

5.5 Example

(A congestion situation : cf. Rosenthal [1973], Monderer & Shapley [1993].)

We consider a situation, corresponding to the network in the following �gure.

��

��

C
��

��

A

��

��

B

�
�
�
�
��

@
@
@

@
@@

�gure 1.

This network gives rise to a 2-person Bayesian potential game with consistent priors.

Suppose player 2 lives in A and has to go to C, either directly using road AC or via the

detour ABC. Suppose player 1 lives in C and has to go with probability 1

2
to A (using the

road CA or CBA) and with probability 1

2
to B (using CB or CAB).

These probabilities are common knowledge to both players. Suppose that if one player uses

a road AC;BC or AB he has to pay 2 units and if two players use the same road, then

both of them have to pay 8 units. Suppose further that the reward for player 2 going to C

is 200 and that the reward for player 1 is 100 (or 50) if he goes to A (or B). This situation

corresponds to the following Bayesian potential game:

N = f1; 2g;A1 = fCA;CBA;CB;CABg; A2 = fAC;ABCg; T1 = fA;Bg; T2 = fCg,
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where e.g. A is interpreted as 'player 1 has to go to A'. Further pi(A;C) = pi(B;C) = 1

2

for i 2 f1;2g and u1; u2 and a potential are given in table 7.

So e.g. u1((CBA;ABC); (A;C)) = 84; u2((CBA;ABC); (A;C)) = 184 which we

obtain as follows. Player 1 and 2 obtain a reward of 100 and 200, respectively, but both

have costs 16 because both use the roads CB and BA.

The Bayesian game in table 7 gives rise to a 16�2- ex ante bimatrix game. In table 8 we

only give the relevant 4�2-bimatrix, leaving out 12 dominated rows, and also a 'knotted'

4�2-potential game.

Note that the unique pure Nash equilibrium ((CBA;CB); AC) corresponds to the fol-

lowing behaviour in the network:

player 2 goes straight to his goal C using AC and player 1 goes straight to his goal B,

using CB, if he is of type B; otherwise player 1 goes to A making the detour CBA.

This Nash equilibrium corresponds in the original game to the Bayesian equilibrium (x1; x2)

where x1(A) = CBA;x1(B) = CB and x2(C) = AC.

For a systematic study of congestion situations we refer to Tijs [1994].

type C type C

type A

AC ABC

CA 92;192 98; 196

CBA 96;198 84; 184

CB �2; 198 �8; 190

CAB �10; 192 �10; 190

AC ABC

CA 290 294

CBA 294 280

CB 196 188

CAB 188 186

type B

AC ABC

CA �8; 192 �2; 196

CBA �4; 198 �16; 184

CB 48;198 42; 190

CAB 40;192 40; 190

AC ABC

CA 190 194

CBA 194 180

CB 246 238

CAB 238 236

the Bayesian game a potential

table 7.
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AC ABC

(CA;CB) 70; 195 70;193

(CA;CAB) 66; 192 69;193

(CBA;CB) 72; 198? 63;187

(CBA;CAB) 68; 195 62;187

AC ABC

(CA;CB) 268 266

(CA;CAB) 264 265

(CBA;CB) 270? 259

(CBA;CAB) 266 258

the 'knotted' ex ante game a 'knotted' potential

table 8.

The following example shows that the ex ante game of a BPG which does not have consis-

tent priors need not to be a potential game. This shows that one cannot follow the same

line of reasoning as in Corollary 5.4 to prove that BPG's with inconsistent priors have a BE.

5.6 Example

Let G = hf1;2g; A1; A2; T1; T2; p1; p2; ui be the BPG de�ned by A1 := fT;Bg;

A2 := fL;Rg; T1 := f�; �g; T2 := f
; �g and p1; p2 and a potential q given by the

matrices in tables 9 and 10.

p1 :


 �

� 1

2
0

� 0 1

2

p2 :


 �

� 0 1

2

� 1

2
0

q : 
 �

�

L R

T 1 0

B 0 0

L R

T 0 0

B 1 0

�
T 0 1

B 0 0

T 0 0

B 0 1

table 9.

The corresponding ex ante game is given by
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LL RR LR RL

TT 1

2
; 0 0; 1

2

1

2
; 0 0; 1

2

BB 0; 1
2

1

2
;0 1

2
; 0 0; 1

2

TB 1

2
; 0 1

2
;0 1; 0 0; 0

BT 0; 1
2

0; 1
2

0; 0 0; 1

table 10.

This game is not a potential game, because we have the following cycle of improvements:

(TT;LL) ! (TT;RR) ! (BB;RR) ! (BB;LL) ! (TT;LL):

So if q would be a potential for this game, we would have that

q(TT;LL) < q(TT;RR) < q(BB;RR) < q(BB;LL) < q(TT;LL)

which is a contradiction.

Note that the BPG in example 5.6 does have a BE, for example (TB;LL). The following

example shows that a 3-person BPG with inconsistent priors need not have Bayesian equi-

libria.

5.7 Example

Let N = f1; 2; 3g; A1 = fT;Bg; A2 = fL;Rg; A3 = fMg and T1 = f
g; T2 =

f�g; T3 = f�; �g. Also p1(
; �; �) = p2(�; 
; �) = 1; p1(
; �; �) = p2(
; �; �) =

0; p3(
; �; �) = p3(
; �; �; ) =
1

2
.

A potential is de�ned by:

� �

L R

T 1 0

B 0 1

L R

T 0 1

B 1 0

table 11.

One can easily verify that this game has no Bayesian equilibria in pure strategies.

We do not know whether 2-person BPG's with inconsistent priors always have Bayesian
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equilibria. We found the following partial solution.

5.8 Theorem

Every 2-player BPG with complete information on one side and such that every type has

positive probability, has a pure BE.

Proof.

Let G be a 2-player BPG with T1 = f�g. So player 2 has complete information. We prove

that player 2's prior p2 can be replaced by p1, without changing the set of BE 's. Then

the priors are consistent, so we know by corollary 5.4 that BE (G) 6= ;.

For every a 2 A; t 2 T2:

U2(ajt) =
X

s2T1

p2(sjt)u2(a; (s; t))

= p2(�jt)u2(a; (�; t))

=
p2(�; t)P

s2T1
p2(s; t)

u2(a; (�; t)) = u2(a; (�; t)):

So U2 does not depend on p2, which means that, to calculate BE (G), we can replace p2

by p1. 2
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