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Abstract

In this paper we consider the location of the eigenvalues of the composite matrix0
BBB@
�A S1 S2

Q1 A
T 0

Q2 0 A
T

1
CCCA ; where the matrices Si and Qi are assumed to be semi-positive de�nite.

Two interesting observations, which are not or only partially mentioned in literature

before, challenge this study. The �rst observation is that this matrix appears naturally

in a both necessary and su�cient condition for the existence of a unique open-loop Nash

solution in the 2-player linear-quadratic dynamic game and, more in particular, its in-

ertia play an important role in the analysis of the convergence of the associated state

in this game. The second observation is that from the eigenvalue and eigenstructure of

this matrix all solutions for the algebraic Riccati equations corresponding with the above

mentioned dynamic game can be directly calculated and, moreover, also the eigenvalues

of the associated closed-loop system.

Simulation experiments suggest that the composite matrix will have at least n eigenval-

ues (here n is the state dimension of the system) with a positive real part. Unfortunately,

it turns out that this property of the inertia of this matrix in general does not hold. Some

speci�c cases for which the property does hold are discussed.

Keywords: Linear Quadratic games, open-loop Nash equilibrium, asymptotic analy-

sis, inertia of a matrix
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I. Introduction

A well known problem studied in the literature on dynamic games is the existence of a

unique open-loop Nash equilibrium in the two-player linear quadratic di�erential game

de�ned by (see e.g. Starr and Ho (1969), Simaan and Cruz (1973) or Ba�sar and Olsder

(1982)):

_x = Ax+B1u1 +B2u2; x(0) = x0 (1)

with cost functionals:

J1(u1; u2) := x(tf )
TK1fx(tf ) +

Z tf

0

fx(t)TQ1x(t)

+ u1(t)
TR11u1(t) + u2(t)

TR12u2(t)gdt;

and

J2(u1; u2) := x(tf )
TK2fx(tf ) +

Z tf

0

fx(t)TQ2x(t)

+ u1(t)
TR21u1(t) + u2(t)

TR22u2(t)gdt;

in which all matrices are symmetric and, moreover, Qi are semi-positive de�nite and Rii

are positive de�nite.

It is well known (see e.g. Starr and Ho (1969)) that the unique open-loop Nash solution

for this game is given by

u�
1
(t) = �R�1

11
BT

1
K1(t)�(t; 0)x0

u�
2
(t) = �R�1

22
BT

2
K2(t)�(t; 0)x0

provided that there exists a unique solution set K1(t) and K2(t) satisfying the coupled

asymmetric Riccati-type di�erential equations

_K1 = �ATK1 �K1A�Q1 +K1S1K1 +K1S2K2; K1(tf ) = K1f

_K2 = �ATK2 �K2A�Q2 +K2S2K2 +K2S1K1; K2(tf ) = K2f

Here �(t; 0) satis�es the transition equation

_�(t; 0) = (A� S1K1 � S2K2)�(t; 0); �(t; t) = I

and Si = BiR
�1

ii B
T
i ; i = 1; 2:

More recently, the asymptotic behaviour of these Riccati equations and convergence of

the associated closed-loop state of the system has been considered by Abou-Kandil and

Bertrand in (1986), Abou-Kandil, Freiling and Jank in (1993) and Weeren, Schumacher

and Engwerda in (1994). Abou-Kandil et al used in (1986) already indirectly the matrix

M :=

0
BBB@
�A S1 S2

Q1 A
T 0

Q2 0 A
T

1
CCCA to study the asymptotic behaviour of the associated closed-loop

system for a special subclass of games of the above mentioned type (1). We will show
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in sections 2 and 3 that their approach can be generalized straightforwardly if one anal-

yses problem (1) from its roots: the corresponding Hamiltonian equations. In section 2

we will show how both necessary and su�cient conditions for the existence of a unique

open-loop Nash equilibrium from these Hamiltonian equations can be derived, which

are tightly connected with matrix M. Then, in section 3 we will study the asymptotic

behaviour of the associated state if the planning horizon tf tends to in�nity and show in

particular that if matrix M has at least n eigenvalues (counted with their multiplicities)

with a positive real part, this state will converge to zero. In Abou-Kandil et al (1993)

it was shown, amongst other things, that under some technical conditions solutions of

the with the above set of di�erential equations corresponding set of algebraic Riccati

equations

0 = �ATK1 �K1A�Q1 +K1S1K1 +K1S2K2;

0 = �ATK2 �K2A�Q2 +K2S2K2 +K2S1K1;

9=
; (ARE)

can be calculated from the eigenstructure of matrix M. In section 4 we will show that

also the eigenvalues of the associated closed-loop system, obtained by applying the state

feedback control u�i (t) = �R�1ii B
T
i Ki(t)x(t), is completely determined by the eigenvalues

of matrix M. In particular we have that if matrix M has only real eigenvalues containing

n positive ones then from the corresponding eigenvectors of M one can derive a solution

for the algebraic Riccati equations which stabilize the associated closed-loop system.

The above observations naturally lead to the question whether matrix M will always

have n eigenvalues with a positive real part. Simulation experiments suggest that this

conjecture might be true. Therefore, we study the location of the eigenvalues of this

matrix in section 5 in more detail. In literature it is usual to summarize the number

of eigenvalues with a positive real part, denoted by �(M), the number of eigenvalues

with a negative real part, denoted by �(M), and the number of eigenvalues on the imag-

inary axis, denoted by �(M ) of a matrix M in the notion of "inertia" of M . So the

inertia of M , written In M , is the triple of integers (�(M); �(M); �(M)) (counted with

their algebraic multiplicities) (see e.g. Lancaster et al.(1985) pp.186 et seq.). Obviously,

�(M ) + �(M) + �(M ) = 3n, and the matrix M is nonsingular if �(M ) = 0: Unfortu-

nately, it turns out that in general In M 6� (n; 0; 0) (here we use the convention to write

In M � (p; q; r) if as well �(M ) � p; �(M) � q and �(M) � r). On the other hand we

will see that for a number of special cases the relationship In M � (n; 0;0) does hold.

The paper ends with some concluding remarks.
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II. The open-loop Nash equilibrium of the LQ di�erential game revisited

In this section we consider the existence of a unique open-loop Nash equilibrium of

the di�erential game (1) in some more detail. This is done for two reasons. On the one

hand we like to stress that there is a simple necessary and su�cient condition for the

existence of a unique open-loop Nash equilibrium of the game, and that the existence

of a solution to the Riccati-type di�erential equations is (generally speaking) just a suf-

�cient condition. On the other hand we like to show how the matrix M we introduced

in the introduction plays a crucial role in the analysis of the properties of this Nash

equilibrium.

So, reconsider the existence of a unique open-loop feedback Nash equilibrium for problem

(1). Due to the stated assumptions both cost functionals Ji; i = 1; 2, are strictly convex

functions of ui for all admissible control functions uj; j 6= i and for all x0. This implies

that the necessary conditions following from the minimum principle are also su�cient

(see e.g. Ba�sar and Olsder (1982, section 6.5)).

Minimization of the Hamiltonian

Hi = (xTQix+ uT
1
Ri1u1 + uT

2
Ri2u2) +  T

i (Ax+B1u1 +B2u2); i = 1; 2

with respect to ui yields the optimality conditions:

u�
1
(t) = �R�1

11
BT

1
 1(t) (2)

u�
2
(t) = �R�1

22
BT

2
 2(t); (3)

where the n-dimensional vectors  1(t) and  2(t) satisfy

_ 1(t) = �Q1x(t)�AT 1(t); with  1(tf ) = K1fx(tf )

_ 2(t) = �Q2x(t)�AT 2(t); with  2(tf ) = K2fx(tf )

and

_x(t) = Ax(t)� S1 1 � S2 2; x(0) = x0:

In other words, the problem has a unique open-loop Nash equilibrium if and only if the

di�erential equation

d

dt

0
BBB@

x(t)

 1(t)

 2(t)

1
CCCA = �

0
BBB@
�A S1 S2

Q1 A
T 0

Q2 0 A
T

1
CCCA

0
BBB@

x(t)

 1(t)

 2(t)

1
CCCA

with boundary conditions x(0) = x0;  1(tf )�K1fx(tf) = 0 and  2(tf )�K2fx(tf ) = 0;

has a unique solution. Denoting the state variable (xT (t)  T
1
(t)  T

2
(t))T by y(t), we can

rewrite this two-point boundary value problem in the standard form

_y(t) = �My(t); with Py(0) +Qy(tf ) = (xT
0
0 0)T ; (4)



6

where P =

0
BBB@
I 0 0

0 0 0

0 0 0

1
CCCA and Q =

0
BBB@

0 0 0

�K1f I 0

�K2f 0 I

1
CCCA

Elementary matrix analysis shows then that

Theorem 1:

For every initial state the two-player linear quadratic di�erential game (1) has a

unique open-loop Nash equilibrium if and only if, with W (�tf ) = (Wij(�tf )) fi; j =

1; 2;3; Wij 2 R
n�ng := exp(�Mtf ), the following matrix is invertible0

@ W22(�tf)�K1fW12(�tf ) W23(�tf )�K1fW13(�tf )

W32(�tf)�K2fW12(�tf ) W33(�tf )�K2fW13(�tf )

1
A ;

or, equivalently (since matrix exp(Mtf ) is invertible, P + Q exp(�Mtf ) is invertible if

and only if P exp(Mtf) +Q is invertible) the next matrix is invertible

W11(tf ) +W12(tf)K1f +W13(tf )K2f :

Moreover, this solution is given by (2,3). The optimal control trajectories together with

the associated state trajectory can be calculated from the linear two-point boundary

value problem (4). 2

It is easily veri�ed that if the Riccati-type di�erential equations mentioned in the intro-

duction have a solution, then  i(t) = Ki(t)x
�(t) satis�es the above two-point boundary

di�erential equation which yields the result as stated by Starr and Ho.

III. Asymptotic analysis of the Nash equilibrium

In this section we study the asymptotic behaviour of the equilibrium state trajectory, that

is x�(tf ); if the planning horizon tf approaches in�nity. Since u�i (tf ) = �R�1ii B
T
i  i(tf );

with  i(tf ) = K1fx(tf); this also completely determines the limiting behaviour of

u�i ; i = 1; 2:

To that end, we �rst rewrite the boundary condition as (P + Q exp(�Mtf ))y(0) =

(xT
0
0 0)T : Consequently,

y(tf ) = exp(�Mtf )y(0)

= exp(�Mtf )(P +Q exp(�Mtf ))
�1(xT

0
0 0)T

= (P exp(Mtf) +Q)�1(xT
0
0 0)T :

So that

x(tf ) = (I 0 0)(P exp(Mtf ) +Q)�1(xT
0
0 0)T :
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Now, using the previously introduced notation W (�tf) = Wij(�tf ); i; j = 1; 2;3 for

matrix exp(�Mtf), we have that

P exp(Mtf ) +Q =

0
BBB@
W11(tf ) W12(tf ) W13(tf )

�K1f I 0

�K2f 0 I

1
CCCA :

Elementary calculation shows that the left-upper n�n-block of the inverse of this matrix

is given by (W11(tf ) +W12(tf )K1f +W13(tf)K2f )
�1: So, we �nd the following expression

for x(tf ):

x(tf ) = (W11(tf ) +W12(tf )K1f +W13(tf)K2f)
�1x0 (5)

This yields then the following result

Theorem 2:

For every initial state the �nal state corresponding with the open-loop Nash equilibrium

in the two-player linear quadratic di�erential game (1) converges if and only if the matrix

(W11(tf ) +W12(tf)K1f +W13(tf )K2f )
�1 converges. 2

Note that this result di�ers from the result obtained by Abou-Kandil et al. in (1993)

in the sense that their "dichotomic separability" condition is just a su�cient condition

to conclude that the Riccati-type di�erential equations converge. They do not say any-

thing on the convergence of the associated state of the open-loop Nash equilibrium of

the game.

Next we discuss a su�cient condition under which one can conclude that the open-loop

Nash-equilibrium and its associated state will converge to zero. Roughly spoken this

condition says that if matrix �M has at least n eigenvalues (counted with multiplicities)

with a negative real part then the associated equilibrium state of the game will converge

to zero.

Theorem 3:

To avoid some technicalities assume that the eigenvalues of �M are ordered as follows:

Re�1 � Re�2 � . . . � Re�n < Re�n+1 � . . . � Re�3n.

Then, under the assumption that the �rst n eigenvalues �1; . . . ; �n have a negative real

part and the matrices T11 and H (see proof below) are invertible, the state x�(tf ) corre-

sponding with the Nash equilibrium for the di�erential game (1) converges to zero.

Proof:

To prove this theorem, we �rst recall from linear algebra that it is always possible to
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make a Jordan decomposition of matrix M , that is, there exists an invertible matrix S

such that �M = S�1JS, where J is in Jordan canonical form (see e.g. Lancaster et al.

(1985)). Then, J can be partitioned as

J =

0
@ J1

J2

1
A :

Partition S =

0
@ S11 S12

S21 S22

1
A and S�1 =

0
@ T11 T12

T21 T22

1
A accordingly. Then it is easy to

verify that

W11(tf ) +W12(tf)K1f +W13(tf )K2f = T11 exp(�J1tf )(S11 + S12(K1f K2f )
T )

+T12 exp(�J2tf )(S21 + S22(K1f K2f )
T )

Now let r := maxfRe(�) j � 2 �(J1)g, and � := rI.

Note that r < 0 and for all � 2 �(J2) we have r�Re(�) < 0. Hence exp((��J2)tf)! 0

for tf ! 1. Consequently, under the assumption that both T11 and H := S11 +

S12(K1f K2f)
T are invertible we have:

x(tf ) = ertf �

�
T11 exp((�� J1)tf ))(S11 + S12(K1f K2f )

T )

+T12 exp((�� J2)tf )(S21 + S22(K1f K2f )
T )

�
�1

x0

= ertfH�1

�
exp((�� J1)tf )

+T�1
11
T12 exp((�� J2)tf )(S21 + S22(K1f K2f)

T )H�1

�
�1

T�1
11
x0

= ertfH�1 exp(�(�� J1)tf )T
�1

11
x0 +O(ertf )

= H�1 exp(J1tf )T
�1

11 x0 +O(ertf ):

Hence x(tf)! 0 for tf !1.

2

IV. The relationship between ARE and M

In this section we consider the relationship between the eigenstructure of matrix M and

the solutions of the algebraic Riccati equations (ARE) in some more detail. We have the

following relationship between the spectra of M and the associated closed-loop system

matrix that results by using the state feedback control, u�i (t) = �R�1

ii B
T
i Ki(t)x(t), as

mentioned in the introduction:

Lemma 4:

Assume that (ARE) has real solutions K1 and K2.
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Then, �(A� S1K1 � S2K2) � �(�M ) (Here �(A) denotes the spectrum of matrix A).

Proof:

Let fK1, K2g be a set of solutions satisfying (ARE). Consider the matrix T =0
BBB@

I 0 0

�K1 I 0

�K2 0 I

1
CCCA : Then simple calculations show that

�TMT�1 =

0
BBB@
A� S1K1 � S2K2 �S1 �S2

0 K1S1 �AT K1S2

0 K2S1 K2S2 �AT

1
CCCA ;

which yields the advertised result. 2

The next theorem sharpens this result considerably in two ways. First it gives an exact

relationship between solutions of (ARE) and eigenvalues of M and second it gives us

precise information on the spectrum of the closed-loop system matrix. The price we pay

is that we make some technical assumptions on the eigenstructure of matrix M. How far

these assumptions can be relaxed remains a matter of future research. Results obtained

by Abou-Kandil et al in (1993) give hope that the assumptions may be considerably

relaxed.

Theorem 5:

Assume that matrix M has only real eigenvalues and that their corresponding algebraic

multiplicities equal their geometric multiplicities. Denote the eigenvector corresponding

to the eigenvalue �i of �M by (xT
i y

T
i z

T
i )

T , i = 1; ::; 3n. Let K pos be the set of all 3nxn

matrices (XTY TZT )T := ((xTi y
T
i z

T
i )

T ) i = 1; ::; n, where all matrices X;Y and Z are

square nxn matrices, which can be formed this way.

Then, (ARE) has a real solution K1;K2 if and only if K1 = Y X�1 and K2 = ZX�1 for

some (XTY TZT )T 2 K pos . Moreover, assuming that the matrix (XTY TZT )T is deter-

mined by the n eigenvalues �i; i = 1; ::; n of �M , we have that �(A� S1K1 � S2K2) =

f�i; i = 1; ::; ng:

Proof:

")" According to (the proof) of lemma 4, we have that matrix A � S1K1 � S2K2

contains n real eigenvalues which have the additional property that their algebraic mul-

tiplicities coincide with their geometric multiplicity. Let �i be an arbitrary eigenvalue

of A � S1K1 � S2K2 and xi its corresponding eigenvalue. Then it is easily veri�ed
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that (I KT
1
KT

2
)Txi is an eigenvector of M corresponding with the eigenvalue �i. De-

note KT
1
xi; K

T
2
xi by yi and zi, respectively. Next form the matrix (XTY TZT )T :=

((xT
i y

T
i z

T
i )

T ) i = 1; ::; n, where all matrices X;Y and Z are square nxn matrices. Then,

obviously,

0
BBB@
X

Y

Z

1
CCCA equals

0
BBB@

I

K1

K2

1
CCCAX. Since X consists of the n di�erent eigenvectors of

matrix A � S1K1 � S2K2, it is invertible. So the above matrix equation immediately

yields that K1 = Y X�1 and K2 = ZX�1.

"(" Note that -M

0
BBB@
X

Y

Z

1
CCCA =

0
BBB@
X

Y

Z

1
CCCA�, where � = diag(�i), i = 1; ::; n. Denote X�X�1

by R. Then this matrix equation can be rewritten as -M

0
BBB@

I

K1

K2

1
CCCA =

0
BBB@

I

K1

K2

1
CCCAR; where

K1 := Y X�1 and K2 := ZX�1: Simply writing out this equation (see also Abou-Kandil

et al (1993)) shows then that this pair of matrices K1;K2 satisfy (ARE). 2

The previous theorem states in particular that if matrix M has n positive real eigen-

values (with the appropriate multiplicities) then the algebraic Riccati equations will

have a solution which will stabilize the closed-loop system. Moreover, if M has more

than n positive eigenvalues one may expect that there is more than one stabilizing solu-

tion for (ARE).

V. On the inertia of matrix M

In the previous sections we saw that if we can show that the eigenvalues of matrix

M always satisfy the condition �(�M ) � n then, almost always, the associated state of

the open-loop Nash equilibrium of the di�erential game will converge to zero if either the

open-loop control, in which the planning horizon is extended to in�nity, or the determin-

istic state feedback, using the appropriate solutions of the algebraic Riccati equations,

is used. The next example shows that this inertia property is, unfortunately, not always

satis�ed by matrix M.

Example 4:

Let A =

0
@ �1 0

0 �0:9

1
A ; S1 =

0
@ 500 �200

�200 100

1
A ; Q1 =

0
@ 2 1

1 1

1
A ;
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S2 =

0
@ 1000 200

200 50

1
A ; Q2 =

0
@ 1 0

0 1

1
A ; Then, the eigenvalues of �M are (according to

Matlab) f�42:1096; 0:3168; 0:3441 � 4:6285i;0:8866; 42:1181g. So, In �M = (5; 1; 0):2

It is interesting to note that with e.g. the choice of K1f := Q1 and K2f := Q2 ele-

mentary calculations show that the condition of theorem 2 is not satis�ed whereas M

is dichotomic seperable. In other words, this is also a non-trivial example of a game in

which the �nal state does not converge whereas the Riccati-type di�erential equations

do converge (see Abou-Kandil (1993)). We like to stress here that this result di�ers from

the results obtained in LQ theory. There, a su�cient condition to conclude that the so-

lution of the �nal horizon optimization problem converges to the solution of the in�nite

horizon problem is that the system is both controllable and observable. Furthermore,

under these conditions the state of the system converges to zero. Obviously, the system

is in this example both controllable and observable, but the convergence properties do

not hold.

Next, we consider three special cases in which the inertia property does hold.

Case 1: A is symmetric and commutes with either Qi or Si, i = 1; 2.

We prove the case thatA commutes withQi. The other case is proved similarly. Consider

the characteristic polynomial of M . We have that

det(M � �I) =

det2(AT � �I) det

0
B@�A� �I � (S1 S2)

0
@ AT � �I 0

0 AT � �I

1
A
�10
@ Q1

Q2

1
A
1
CA =

det2(AT � �I) det(�A� �I � S1(A
T � �I)�1Q1 � S2(A

T � �I)�1Q2):

Using the facts that A is symmetric and commutes with Qi; i = 1; 2 we can rewrite this

last expression as

(�1)n det(AT � �I) det((A+ �I)(AT � �I) + S1Q1 + S2Q2) =

(�1)n det(AT � �I) det(��2I + S1Q1 + S2Q2 +A2):

From this last formula we deduce that In �M � (0; n;0) if e.g. i) �(A) = n or ii)

�(S1Q1 + S2Q2 + A2) = 0. Note that the zeros of det(��2I + S1Q1 + S2Q2 + A2) are

symmetrically distributed w.r.t. to the imaginary axis (i.e. if �0 is a zero, then ��0 is a

zero too). 2

Case 2: Q2 = �Q1 or (symmetrically) S2 = �S1.
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Assume that S2 = �S1 then, with T :=

0
BBB@

I 0 0

0 I �I

0 0 I

1
CCCA, TMT�1 =

0
BBB@

�A S1 0

Q1 + �Q2 AT 0

Q2 0 AT

1
CCCA. Since matrix

0
@ �A S1

Q1 + �Q2 AT

1
A is a Hamiltonian matrix

(see e.g. Lancaster (1985)) we conclude that In �M � (0; n; 0) if �(A) 6= 0. 2

Case 3: A is a real matrix in "Jordan complex canonical" form and Si; Qi; i = 1; 2

are diagonal.

This case deals with the situation in which A has a (modi�ed-diagonal) Jordan form in

which the entries are restricted to be real.

In case matrix A is a diagonal matrix D the result follows immediately from case 1.

So, consider the case that A = D + J , where D = dI and J is a nilpotent matrix with

zeros everywhere except for the elements (equal to 1) along the diagonal just above the

principal diagonal. Then, from case 1, we have that

det(M � �I) =

det2(AT � �I) det(�A� �I � S1(A
T � �I)�1Q1 � S2(A

T � �I)�1Q2): (i)

Since A = D + J , we have that

(AT � �I)�1 = (D � �I + JT )�1 =

(I + (D � �I)�1JT )�1(D � �I)�1 =
nX

k=0

�
(�I �D)�1JT

�k
(�I �D)�1:

Substitution of this expression into (i) yields:

det2(AT � �I) det(�A� �I + S1

nX
k=0

�
(�I �D)�1JT

�k
(�I �D)�1Q1+

S2

nX
k=0

�
(�I �D)�1JT

�k
(�I �D)�1Q2):

Now, det(AT � �I) = det(D � �I). Therefore, we can rewrite this determinant as

det(AT � �I) det((�D � �I)(�I �D)� J(�I �D) + S1

nX
k=0

�
(�I �D)�1JT

�k
Q1+

S2

nX
k=0

�
(�I �D)�1JT

�k
Q2) =:

det(AT � �I) det(G(�)):

Next, consider the n�nmatrix S(�) = diag(1; �; �2; ::; �(n�1)). Obviously, S(�)S( 1
�
) = I:

So, det(G(�)) = det(S(��d))G(�)S( 1
��d

)): By induction one can show that the product

of the lastmentioned three matrices equals

~G(�) := (�D � �I)(�I �D)� J + S1

nX
k=0

�
JT
�k
Q1 + S2

nX
k=0

�
JT
�k
Q2:
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So, we see that if ~G(�0) is singular then also ~G(��0) will be singular. Furthermore, simple

calculations show that if d 6= 0 for every number ix on the imaginary axis det( ~G(ix)) 6= 0

(note that all entries on or below the principal diagonal are semi-positive and use ele-

mentary row operations to eliminate subsequently all entries of the second column, then

those of the third column etc.). The conclusion is thus that the eigenvalues of M are d

(with multiplicity n) and that the other eigenvalues are distributed again symmetrically

w.r.t. the imaginary axis (and are not located on it) if d 6= 0.

Note that by combining both cases we get the result as advertised for a matrix M in

general "complex Jordan canonical" form. 2

VI. Concluding remarks

In this note we reconsidered the existence and asymptotic behaviour of a unique open-

loop Nash equilibrium in the two-player Linear Quadratic game. We analyzed the prob-

lem starting from its basics: the Hamiltonian equations. We derived necessary and

su�cients conditions for the existence of a unique open-loop Nash equilibrium in terms

of a full rank condition on a modi�ed fundamental matrix. Furthermore, this direct

approach made it possible to analyze the asymptotic behaviour of the �nal state of the

game. We showed that this state converges if and only if a certain matrix converges in

time. A more detailed analysis of this matrix shows on the one hand that an almost suf-

�cient condition for this matrix to converge is that the matrix M =

0
BBB@

�A S1 S2

Q1 A
T 0

Q2 0 A
T

1
CCCA has

n eigenvalues with a positive real part. On the other hand, it is clear that this condition

can be relaxed. Probably, by considering the problem from a geometric point of view,

more detailed results can be achieved which also give more insight into the basics of the

problem. But this remains a topic for future research.

Since simulation experiments suggested that the above inertia condition is almost al-

ways satis�ed, we tried to prove this conjecture. Unfortunately, it turned out that our

supposition was wrong. We gave a counterexample, which has the additional interesting

property that it satis�es the dichotomic seperability conditions mentioned by Abou-

Kandil. As a consequence the corresponding set of Riccati-type di�erential equations

in this example will converge. As we pointed out, this raises a number of interesting

questions in comparison with the theory developed for LQ systems.



14

Though we were not able to prove our conjecture on the inertia of matrixM for the gen-

eral case, we succeeded in showing its correctness for a number of special cases. These

results may be helpfull in deriving more general properties on the inertia of this matrix.

We conclude this paper by noting that the results obtained in the lemma and theorems

can be straightforwardly generalized to the N-player linear quadratic di�erential game.
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