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Abstract

This paper characterizes the social-welfare maximizing equilibrium of a “stochas-

tic partnership matching market”, in which players paired to play a stochastic game

may quit to be costlessly and anonymously re-matched. Patterns of performance and

turnover in this equilibrium are consistent with the well-known “survivorship bias”

and, if partners form “meaningful first impressions”, with the “honeymoon effect”. By

contrast, maximizing social welfare in standard repeated games with re-matching typi-

cally requires that players receive low payoffs at the start of each relationship. Welfare

and turnover comparative statics are also provided: higher partnership-states are as-

sociated with higher joint payoffs and, in the special case of an exogenous stochastic

process, with both higher joint stage-game and joint continuation payoffs as well as

longer-lasting relationships.
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1 Introduction

Players in an ongoing interaction often face uncertainty regarding the fundamentals of their

relationship. For example, an employer may be unsure about whether his worker will have

an incentive in the future to leave for another job. Or, firms engaged in a joint venture

may be unsure about future payoffs within their partnership. Such uncertainty can make it

difficult to sign complete formal contracts, especially if what might change in the relationship

is difficult to communicate to an outside party. At the same time, a long-lasting stable

relationship is crucial for the effective provision of informal incentives. If shocks to the

productivity of a partnership may cause it to end or be less productive in the near future,

players will have less incentive to work today, reducing relational gains and potentially

hastening the partnership’s demise in a vicious cycle.

Given the option to leave one’s current relationship to costlessly and anonymously re-

match, players are only willing to make cooperative sacrifices if those who leave a relationship

face some endogenous cost of being re-matched. For this reason, in standard (non-stochastic)

repeated games with re-matching, maximizing social welfare requires that partners fail to

immediately achieve the full potential equilibrium benefits of their relationship, such as by

burning money or enduring an initial “incubation period” with efforts and payoffs lower than

could be supported in equilibrium; see e.g. Kranton (1996) and Carmichael and MacLeod

(1997). In particular, social-welfare maximizing equilibrium play necessarily fails to be

renegotiation-proof. This paper sheds new light on this classic result, by providing a sufficient

condition (“meaningful first impressions”) given which social-welfare maximizing equilibrium

play is renegotiation-proof (Theorem 5). Along the way, I will also establish new results about

joint-welfare maximizing play in complete information stochastic games with voluntary exit.

Each period in a given partnership, two players simultaneously decide how much effort to

exert after observing a partnership-specific state. “Effort” can be interpreted broadly, e.g.

to include relationship-specific investments. After observing efforts, the partners then decide

whether to quit the relationship and whether to pay voluntary “wages”. The partnership

ends if either player quits or “dies”, in which case each surviving player is costlessly and

anonymously re-matched with a new partner.
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The model imposes few substantive restrictions on stage-game payoffs or on the stochas-

tic state of the partnership. Notably, stage-game payoffs are assumed to satisfy increasing

differences in players’ efforts and the state, while the stochastic process is assumed to sat-

isfy a positive serial auto-correlation property that higher past states make higher future

states more likely in the sense of first-order stochastic dominance. However, no substantive

restrictions are placed on how efforts control the stochastic process. This allows for a rich

set of potential applications from labor to macroeconomics and organizational economics,

in which greater effort grows, depletes, or has a non-monotone effect on a payoff-relevant

relational stock. For example, in a labor context, one could interpret the worker’s (multi-

dimensional) effort as including work intensity as well as investments in firm-specific human

capital. The assumptions are sufficiently weak that the existing literature on comparative

statics in stochastic games does not apply. (See the literature discussion below.)

Analysis of the model is divided in two parts. In the first part (Section 4.1), I derive

a subgame-perfect equilibrium (SPE) that maximizes players’ joint welfare among all SPE,

taking as given the players’ outside options (Theorem 1). Joint payoff in this equilibrium is

non-decreasing in the state (Theorem 2), but higher states need not in general be associated

with higher joint stage-game payoff or higher joint continuation payoff. Consequently, players

in higher states may or may not exert more effort, may or may not exit with lower probability,

etc. However, more comparative statics are available in the special case in which players’

efforts have no effect on future states. In this case, partnerships in higher states will enjoy

higher stage-game payoffs, higher continuation payoffs, and later stopping times in the sense

of first-order stochastic dominance (Theorem 3).

In the second part (Section 4.2), I derive the maximal social welfare that can be supported

in equilibrium, within a “partnership matching market” with costless and anonymous re-

matching after partnership dissolution. If some player’s partnership ends, whether because he

quit, his partner quit, or his partner died, he is automatically re-matched with a new partner

to begin the next period. This new partnership is assumed to be a “fresh start”, in the sense

that (i) the stochastic processes driving stage-game payoffs are iid across partnerships and (ii)

players know nothing about their current partner’s history before their partnership began,
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including his age, number of past partnerships, etc.1 Expected payoffs in a new partnership

generate outside options for each player should his current partnership end. The analysis

endogenizes the maximal joint outside option that can be supported in any equilibrium of

the partnership market, thereby closing the model (Theorem 4). Further, given an equal

exogenous flow of births and deaths, I characterize the steady-state distribution of histories

among active partnerships in the social-welfare maximizing equilibrium.

Patterns of performance and turnover in the social-welfare maximizing equilibrium shed

light on well-known stylized facts about the dynamics of relationships, the so-called “sur-

vivorship bias” and “honeymoon effect”. The survivorship bias is a broad empirical finding

– documented in employment (Topel and Ward (1992)), marriage (Stevenson and Wolfers

(2007)) and organizations (Levinthal (1991)) – that older partnerships tend to be more

productive and less likely to dissolve in the near future. The honeymoon effect is a less

general empirical finding – documented in organizations (Fichman and Levinthal (1991))

but not marriage (Stevenson and Wolfers (2007)) – that brand-new partnerships also tend

to be more productive and less likely to dissolve in the near future, relative to those in

“adolescence”.2

The survivorship bias arises in the social-welfare maximizing equilibrium because part-

nership dissolution is triggered when the partnership-state falls below a threshold surface in

the state-space. Thus, partnerships that have lasted a long time tend to be those that have

received mostly positive shocks that made the partnership more profitable and less likely to

end in the near future. On the other hand, in classic models of repeated games with costless

and anonymous re-matching, maximizing equilibrium social welfare dictates that players fail

to realize all potential equilibrium gains at the start of each relationship. Thus, new re-

lationships may in fact tend to endure an “anti-honeymoon” before emerging into a more

productive, established phase. (See e.g. Section 5.2 of Mailath and Samuelson (2006).) This

1If historical variables such as age could be observed, then market-wide welfare might be enhanced in

“old-maid equilibria” in which players who are not newly-born are shunned.
2By contrast, Stinchcombe (1965) argues that partnerships can be especially unstable when they are

young if, among other reasons, players are uncertain about match quality and quickly learn whether they are

a good match. This insight is supported by this paper’s analysis, once the stochastic state of the partnership

is understood to reflect what players have learned about partnership quality.
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paper qualifies this well-known result, by providing a sufficient condition – “meaningful first

impressions” – given which equilibrium social welfare is maximized when players maximize

equilibrium joint welfare within every partnership. In that case, the honeymoon effect arises

in equilibrium due to a selection effect, just as in non-strategic models such as Fichman

and Levinthal (1991). Namely, partnerships that last more than one period are those that

generated sufficiently positive first impressions.3

In the joint-welfare maximizing equilibrium, there is typically a range of states in which

partners exert zero effort but elect to remain together despite this failure to cooperate. Play-

ers endure such “hard times”, rather than quitting, because of the option value associated

with waiting to exit. However, this option value does not only arise as usual from exogenous

variation in the productivity of the partnership itself. The option to exit later becomes more

valuable, in equilibrium, because of the endogenous variability of players’ behavior.

The rest of the paper is organized as follows. The introduction continues with discussion

of some related literature. Section 2 then presents a self-contained and in-depth analysis

of a simple illustrative example with Prisoners’ Dilemma stage-game payoffs. This example

highlights most of the paper’s qualitative results and novel analytical methods in a setting

of some independent interest. Sections 3-4 then generalize the model and analysis to a much

richer setting that allows for more general stochastic processes and does not require many of

the special features of the example. Section 5 concludes with some remarks and directions

for future research. Some proofs are in an Appendix.

Related literature.

This paper synthesizes elements from the literatures on productivity shocks (e.g. Jo-

vanovic (1979a)), relational contracts (e.g. Levin (2003)), and repeated games with re-

matching (e.g. Kranton (1996)), in a rich but tractable stochastic framework.

Jovanovic (1979a) considers a model in which a worker learns over time about the pro-

ductivity of the match with his present firm and quits as soon as he becomes sufficiently

3Using a dating metaphor, one may expect a couple that goes on a second date to be very likely to go

on a third (if first impressions are sufficiently more important than second impressions). However, in the

“adolescence” of such a relationship, break-up becomes more likely as negative impressions have time to

accumulate.
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pessimistic about the match. Consequently, workers who have remained longer at the same

firm are less likely to leave and more likely to be more productive.4 The key difference here

is that partners face an incentive problem as well as a learning problem. Whereas the worker

in Jovanovic always enjoys the full gains from his current match, players here must work to

enjoy those gains and choose how to distribute them through voluntary wages. Levin (2003)

characterizes optimal “relational contracts” in a principal-agent context in which the agent’s

cost of effort is iid. Unlike Levin (2003), this paper allows for two-sided incentives and

non-iid stage-game payoffs, and endogenizes players’ outside options through a re-matching

technology.5

The analysis here confirms and combines key qualitative findings from the literatures on

productivity shocks and relational contracts. For example, I show that performance inside

the partnership decreases with the attractiveness of players’ outside options. This extends a

well-known finding of the relational contracts literature (see e.g. MacLeod and Malcomson

(1989) and Baker, Gibbons, and Murphy (1994)) to a richer stochastic setting. Similarly, the

observation that partnerships can (under some conditions) exhibit the survivorship bias and

honeymoon effect is qualitatively similar to Fichman and Levinthal (1991)’s findings about

firm performance and survival when productivity follows a random walk.

On the other hand, some of these same findings are quite surprising when viewed from

the perspective of repeated games with re-matching (see e.g. Kranton (1996), Datta (1996)

and recently Eeckout (2006) and Fujiwara-Greve and Ohuno-Fujiwara (2009)). A key finding

of this literature is that social welfare is maximized when partners fail to realize all potential

equilibrium gains in their individual partnerships; instead, they burn money, forego profitable

cooperation on the basis of payoff-irrelevant information, or enduring an unproductive “in-

cubation” phase before transitioning to a maximally productive phase.6 The analysis here

4Also closely related is Jovanovic (1982), in which each firm’s growth rate and survival depends on what it

learns about own productivity, and Jovanovic (1979b), in which similar effects arise as workers who choose to

remain in their current job make firm-specific investments to improve the future performance of the match.
5However, Levin’s analysis is not less general, as he allows for incomplete information and imperfect

monitoring of effort.
6In an incomplete information setting, Ghosh and Ray (1996) and Watson (1999) provide a separate,

signaling rationale for “starting small”.
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shows that such results hinge crucially on the assumption of non-random payoffs. When

partnerships exhibit initial randomness in the form of “meaningful first impressions” (As-

sumption 6), social-welfare maximizing equilibria of the overall partnership market dictate

renegotiation-proof play within each partnership.

This paper also adds to the “dynamic games” literature in which a payoff-relevant state

follows a known stochastic process.7 For example, a key insight in Haltiwanger and Har-

rington (1991) and Bagwell and Staiger (1997)’s models of collusion and the business cycle,

that collusion thrives at those times when the future state is most likely to be conducive to

collusion, is helpful for interpreting this paper’s results as well. However, the focus here is on

how players’ ability to dissolve their partnership and re-match interacts with their incentive

to exert costly effort. Also, by allowing for any persistent stochastic process, my analysis

encompasses both the iid case (as in Rotemberg and Saloner (1986), Ramey and Watson

(1997)) and the “positively autocorrelated” case considered by Bagwell and Staiger (1997),

among others.

Like this paper, Roth (1996) shows how to construct joint-welfare maximizing equilibria

in a dynamic partnership, using an algorithm in the spirit of Abreu, Pearce and Stacchetti

(1990). Roth’s model can be viewed as a special case of mine in which, among other things,

the initial state is non-random, the state is one-dimensional and follows a simple random

walk, and there is no feedback of effort on future states. Also, Roth does not account for

the important distinction between joint-welfare vs. social-welfare maximizing play. Indeed,

social welfare in his setting is not maximized by joint-welfare maximizing play when players’

outside options are endogenous via the option to re-match. By contrast, this paper char-

acterizes social-welfare maximizing play and provides sufficient conditions given which such

play maximizes joint welfare within each partnership.

Recently, Chassang (2010a) and Bonatti and Horner (2010) have developed other theories

of cooperation dynamics. Namely, Chassang (2010a) shows how players “build routines”

in repeated games with incomplete information about payoffs, while Bonatti and Horner

(2010) develop a theory of dynamic public good provision given unobserved efforts and

7A growing and less closely related literature considers dynamic games in the presence of imperfect

information, e.g. Athey and Bagwell (2001) and Horner and Jamison (2007).
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uncertainty about the quality of the public good. In each of these papers, the underlying

environment does not change over time. This paper highlights dynamics that arise when

payoffs are stochastic, while abstracting from (important) issues of incomplete information

and imperfect monitoring.

More tangentially related is the existing literature on “stochastic games”, especially those

papers such as Amir (1996) and Curtat (1996) in which sufficient monotone structure is

imposed to generate comparative statics. However, most of these papers focus on equilibria in

Markov strategies, often proving uniqueness of such equilibria, whereas I consider subgame-

perfect equilibria (SPE) and focus on the SPE that maximizes joint welfare among all SPE.

Further, this literature imposes stronger assumptions than are needed here, in large part

because they prove stronger results such as uniqueness.

Lastly, although the option to exit plays an important role in the analysis, the literature

on so-called “option games” is not directly related. In an option game, players’ payoffs

depend upon who exercises a real option (e.g. exiting a market) and when they do so, and

papers in this literature tend to focus on issues of strategic pre-emption or delay that arise

when players prefer to be the first or last to exercise their option. See e.g. Grenadier (2002)

and Chassang (2010b). By contrast, my focus is to endogenize the productivity of the match

itself.

2 Dynamic Prisoners’ Dilemma

This section provides a self-contained analysis of an illustrative and tractable special case

– the “Dynamic Prisoners’ Dilemma” – of the more general model of Section 3. Several

of the results here are corollaries of more general findings presented in Section 4, but the

simplifying features of this example allow for proofs that are simpler and more intuitive. My

hope is that the analysis here will help build readers’ intuition for the more general analysis

to be presented later.

Model. Two symmetric players play a repeated “partnership game” that continues until

some player quits or dies, after which any survivors are anonymously re-matched with new

8



Work Shirk

Work 1, 1 −1− ct, 1 + ct

Shirk 1 + ct,−1− ct 0, 0

Figure 1: Stage-game payoffs at time t, while the partnership persists.

partners. Each player seeks to maximize his expected total (undiscounted) lifetime payoff.8

Partnership stage-game. Each period t ≥ 0 of the partnership proceeds as follows. First,

the players observe state variable ct > 0, which I shall call the “cost of effort”. Second,

the players simultaneously choose whether to work or shirk, observe these efforts, and re-

ceive Prisoners’ Dilemma stage-game payoffs as in Figure 1.9 Third, each player dies with

exogenous probability (1 − ), iid across players and periods. Should either player die, the

partnership ends and any survivor is costlessly and anonymously re-matched in a new part-

nership to begin the next period. (When a partnership begins, each player knows nothing

about his new partner’s history.) Otherwise, with probability 2, both players survive and

simultaneously choose whether to stay or quit the partnership. If either player quits, the

partnership ends and both players are costlessly and anonymously re-matched. If both stay,

the partnership continues to the next period.

Stochastic process. The “cost of effort” Ct > 0 for all t and log(Ct) follows a random walk,

i.e. Ct

Ct−1
are iid. Further, the players observe a public randomization Z0 ∼ U [0, 1] at the

start of their relationship, independent of (Ct : t ≥ 0). (The role of the public randomization

will become clear.)

Simplifying features of this example. Analysis of the Dynamic Prisoners’ Dilemma

considered here is dramatically simplified by four features of this example that are all relaxed

8The analysis can be easily extended to settings in which players discount payoffs each period instead of

(or in addition to) facing the risk of death.
9Such payoffs arise naturally in a context in which players bear all of the cost of their own effort but share

equally the return to that effort. Suppose that each player generates a return equal to his cost when working

alone, but generates an excess return of one when working together with the other player. The payoffs of

Figure 1 then arise when the cost and return of individual effort is 2(1 + ct).
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in Sections 3-4. First, payoffs are symmetric and asymmetric play generates weakly lower

joint stage-game payoff than symmetric play. (Joint payoff is zero when one player works

and one shirks and at least zero when both players work or both players shirk.) Second,

the productivity of the partnership does not depend on the state variable. (Joint payoff is

two when both players work and zero otherwise, regardless of the cost of effort.) Third, the

state variable Ct is exogenous, i.e. the distribution of the cost of effort in period t does not

depend on players’ efforts in previous periods. Fourth, log(Ct) is a random walk. Because of

these simplifying features, some details of the model presented in Section 3 are not relevant

here. In particular, because of players’ symmetry and the optimality of symmetric play, it

is without loss to restrict attention to symmetric equilibria with no voluntary transfers and

equal outside options for “males” and “females”. To avoid cluttering the exposition here, I

will therefore make no reference to either “wages” or “gender”.

2.1 Joint-welfare maximizing SPE.

Suppose that each player in a given partnership has an outside option worth v ≥ 0 should

he survive but the partnership end. (This outside option will be endogenized in Section 2.2.)

I begin by showing that, for any given v ≥ 0, the joint-welfare maximizing subgame-perfect

equilibrium (SPE) of the partnership game is characterized by a pair of thresholds.

Definition 1 (Work threshold). Both players “adopt work threshold cW” if, at every time

t, (i) both players work if ct ≤ cW and (ii) both players shirk if ct > cW .

Definition 2 (Exit threshold). Both players “adopt exit threshold cE” if, at every time t,

(i) both players stay if ct ≤ cE and (ii) both players quit if ct > cE.

Should both players adopt work threshold cW , standard real-options logic implies that

expected joint payoff is maximized when players terminate their relationship according to a

threshold rule, namely, when they both adopt an exit threshold cE(cW ; v) that depends on

the work threshold cW and the outside option v. Lemma 1 gathers together several useful

facts about this “optimal exit threshold”.
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Lemma 1 (Optimal exit threshold). Suppose that both players adopt work threshold cW .

Joint payoff is maximized when they also adopt exit threshold cE(cW ; v) = �(v)cW , where

�(v) is non-increasing in v.

Definition 3 (Threshold equilibrium). A (cW , cE)-threshold equilibrium is a SPE in which

both players adopt work threshold cW and exit threshold cE on the equilibrium path and,

off the equilibrium path, both shirk and quit.

Proposition 1 (Joint-welfare maximizing SPE). Fix any outside option v ≥ 0. There

exists c∗W (v) ≥ 0 such that (c∗W (v), �(v)c∗W (v))-threshold equilibrium exists and achieves the

maximal joint payoff among all SPE. (c∗W (v) is the “optimal work threshold” and c∗E(v) =

�(v)c∗W (v) is the “optimal exit threshold.”)

Proof. Optimal exit given a work threshold. Suppose that the players adopt work threshold

cW , so that each receives stage-game payoff one when ct ≤ cW and zero when ct > cW .

By Lemma 1, joint payoff is maximized when both players adopt exit threshold cE(cW ; v).

Indeed, since both players receive identical payoffs when both adopt work threshold cW ,

the exit threshold cE(cW ; v) = �(v)cW maximizes players’ individual payoffs so that each

player is willing to quit iff the state exceeds this threshold. Thus, if any SPE exists in which

the players adopt work threshold cW , then (cW , cE(cW ; v))-threshold equilibrium exists that

achieves the maximal joint payoff among all SPE in which players adopt work threshold cW .

Optimality of threshold SPE. Fix any SPE. Let W = {c : both players work with positive

probability at some time t, after some history, when ct = c}. Consider any time-t history

at which both players sometimes work and ct ∈ W . Shirking when one is supposed to

work increases each player’s stage-game payoff by at least ct, after which that player enjoys

continuation payoff (as evaluated immediately after time-t effort) of at least v.10 Thus, this

SPE must generate continuation payoff after time-t efforts of at least ct + v for each player.

I claim that a (supW, cE(supW ; v))-threshold equilibrium exists. Since both players work

whenever ct ≤ supW , such threshold strategies generate weakly greater joint stage-game

payoffs than the original SPE while the partnership persists, in every state ct. And, since

the players’ exit threshold cE(supW ; v) maximizes their joint payoff given work threshold

10This continuation payoff is guaranteed if the player quits whenever he survives to the end of period t.
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exit
threshold

work
threshold

effort
cost ct

c∗W (0)

6

outside option vv0

EXIT

SHIRK

WORK

ṽ

���
���

DOOMED

Figure 2: Summary of the optimal SPE of Proposition 1, for all v ≥ 0.

supW , players’ joint payoff from any on-path history in state ct is weakly higher than in

the original SPE, from any history in the same state ct. In particular, for all ct ∈ W ,

the players’ joint continuation payoff after both work at time t is at least 2(ct + v) when

these threshold strategies are played. Since the players receive equal payoffs, finally, each

player’s continuation payoff is at least ct + v and he has sufficient incentive to work. This

argument applies to all ct ∈ W , and hence by continuity to ct = supW . We conclude that

a (supW, cE(supW ; v))-threshold equilibrium exists and that this SPE generates weakly

greater joint payoff than the original SPE.

Players’ behavior in the joint-welfare maximizing SPE of Proposition 1 is summarized by

Figure 2. Since outside option v is fixed, the partnership state can be viewed as moving up

and down a vertical slice of this figure. When the region labeled “EXIT” is reached, both

players shirk and quit. Until then, both players work and stay when in the region labeled

“WORK” while both shirk and stay when in the region labeled “SHIRK”.

Figure 2 illustrates some noteworthy properties of the optimal work and exit thresholds.

First, not surprisingly, there exists a critical outside option ṽ above which all partnerships are

“DOOMED”, i.e. the players shirk and immediately quit regardless of how small their initial

cost of effort c0. Exit is efficient when v ≥ 1
1−2 , but the threshold ṽ < 1

1−2 . Intuitively,

the reason is that all partnerships operate under the “shadow of cooperation breakdown”.
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Should there be a negative shock that will induce exit, both partners will exert zero effort –

and hence earn zero stage-game payoffs – in the last period of their relationship. Due to this

risk, players only remain in a partnership if cooperation generates sufficient excess return

over the outside option.

“Hard times”. For all outside options v < ṽ, the optimal work threshold c∗W (v) and the

“gap” c∗E(v)
c∗W (v)

between the optimal work and exit thresholds is strictly decreasing in v. (See

Lemmas 1-2.) This gap represents what one might call “hard times”, periods in a relationship

when partners endure zero stage-game payoffs in hopes that cooperation will resume. As

the outside option becomes more valuable, players are both less willing to work and also less

willing to wait for their partnership to improve.

Partnership stopping time. Let T ∗ denote the stopping time of a partnership, when

the joint-welfare maximizing SPE of Proposition 1 is played. The partnership may end due

to (i) death of either partner or (ii) voluntary separation. To distinguish these, let T diei

be the time at which player i dies, T die = mini T
die
i the first time at which either player

dies, and T sep the first time at which the partners would have separated absent death, i.e.

T sep = min{t : Ct > c∗E(v)}. By definition, T ∗ = min{T die, T sep}.

Since death is independent of separation, the hazard rate of partnership termination

Pr(T ∗ = t∣T ∗ ≥ t) = 1 − (1 − Pr(T die = t∣T die ≥ t))(1 − Pr(T sep = t∣T sep ≥ t). Since

each player survives each period with probability , Pr(T die = t∣T die ≥ t) = 1 − 2 for all

t. Since the players separate in the first period in which the cost of effort exceeds the exit

threshold, (i) Pr(T sep = 0) = Pr(C0 > c∗E(v)) and (ii) Pr(T sep = t∣T sep ≥ t) = Pr(Ct >

c∗E(v)∣max{C0, ..., Ct−1} ≤ c∗E(v)) for all t ≥ 1. All together,

Pr(T ∗ > 0) = 1− 2 Pr(C0 ≤ c∗E(v)) (1)

Pr(T ∗ > t∣T ∗ ≥ t) = 1− 2 Pr
(
Ct ≤ c∗E(v)∣max{C0, ..., Ct−1} ≤ c∗E(v)

)
. (2)

“Survivorship bias”. Since players separate once the cost of effort first exceeds an exit thresh-

old, partnerships that have survived several periods will, more likely than not, have received

mostly positive shocks that moved the cost of effort away from the exit threshold. This posi-

tive selection effect tends to make partnerships that have lasted a long time less likely to end
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in the near future.11 For example, suppose that log(Ct) follows a symmetric random walk

with motion log(Ct) − log(Ct−1) ∼ U [−1, 1], and that c0 = c∗E(v) so that players are just

barely willing to stay in the relationship. Table 1 documents the hazard rate of separation

over time. For instance, conditional on partnership survival until time t = 4, the players

will choose to separate that period approximately 12.8% of the time. The survivorship bias

effect is present here, as the probability of separation decreases with partnership duration.

(The fact that the hazard of separation at time t is approximately 1
2t

follows from symmetry

of the random walk; see Hughes (1995).)

Period 2 3 4 5 10 25

% partnership ends 25% 16.7% 12.8% 9.8% 5.0% 2.0%

Table 1: Probability of separation in period t, when log(Ct) follows a symmetric random

walk, conditional on c0 = c∗E(v) and on partnership survival up to that point.

“Honeymoon effect”. Similarly, partnerships dissolve immediately if C0 > c∗E(v). Thus, the

set of partnerships that survive will be those for which C0 ≤ c∗E(v). As long as the cost of

effort varies sufficiently widely across partnerships while changing sufficiently slowly within

each partnership (e.g. C0 is atomless and C1

C0
≈ 1), partnerships that do not dissolve at time

t = 0 will likely not dissolve for several periods. Similarly, in such settings, partnerships that

are productive at time t = 0 will likely remain productive for several periods.

Payoffs in the optimal equilibrium. Let Π
eqm

(c0; v) denote each player’s expected pay-

off in the joint-welfare maximizing SPE of Proposition 1 given initial state C0 = c0. Each

player’s ex post payoff is equal to the number of productive periods enjoyed during the part-

nership plus the outside option v if player i survives the partnership’s demise (either as a

“widow” or as a “divorcee”):

E
[
Π
eqm

(C0; v)
]

= E
[
#
{
t ∈ {0, 1, ..., T ∗} : Ct ≤ c∗W (v)

}]
+ v Pr

(
T diei > T ∗

)
. (3)

11In general, the hazard of exit need not be monotone. For instance, suppose that log(Ct) is very likely

to either fall by slightly less than two or rise by slightly more than one, and that c0 = c∗E(v). Conditional

on both staying at time t = 1, the partnership is much more likely end at time t = 3 then at time t = 2.
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The optimal work and exit thresholds. The work and exit thresholds (c∗W (v), c∗E(v))

in the joint-welfare maximizing SPE are characterized by a pair of indifference conditions.

First, should the initial state equal the exit threshold (c0 = c∗E(v)), each player is indifferent

between staying and quitting. The benefit of staying is that each player will earn stage-game

payoff one in each future period in which both players work. On the other hand, the benefit

of quitting is that the player avoids the possibility of losing outside option v, should the

partnership end with his death (RHS of (4)). Similarly, should the initial state equal the

work threshold (c0 = c∗W (v)), each player is indifferent between working and shirking. As

before, the benefit of working is that each player will earn stage-game payoff one in each

productive future period (LHS of (5)). On the other hand, the benefit of shirking – and

thereby inducing the other player to quit and dissolve the partnership – is that one both

saves the cost of effort and avoids losing the outside option to death (RHS of (5)).

Let T (cE) denote the stopping time of the partnership when both players adopt exit

threshold cE. (So, T ∗ = T (c∗E(v).) The optimal work and exit thresholds (c∗W (v), c∗E(v))

solve the following pair of equations:12

E
[
#
{
t ∈ {1, 2, ..., T (cE)} : Ct ≤ cW

}
∣c0 = cE

]
= v Pr

(
T diei = T (cE)∣c0 = cE

)
(4)

E
[
#
{
t ∈ {1, 2, ..., T (cE)} : Ct ≤ cW

}
∣c0 = cW

]
= cW + v Pr

(
T diei = T (cE)∣c0 = cW

)
(5)

Lemma 2 documents some useful facts about the optimal work threshold c∗W (v). (See Lemma

1 for more on the optimal exit threshold c∗E(v) = �(v)c∗W (v).)

Lemma 2 (Optimal work threshold). The optimal work threshold c∗W (v) is non-increasing

in v and
∣∣c∗W (vℎ)− c∗W (vl)

∣∣ ∈ [0, vℎ − vl] for all vℎ > vl.

Special case: worthless outside option. An interesting special case is that in which

players’ outside option is worthless (v = 0). Without loss, one may assume that players never

voluntarily exit the partnership in the joint-welfare maximizing equilibrium (c∗E(0) = ∞),

so the only question is when the players will be able to cooperate. Fortunately, the optimal

work threshold c∗W (0) can be characterized quite simply in terms of (i) the likelihood of

12Since (Ct : t ≥ 0) is a random walk, it is straightforward to show that (4-5) has a unique solution.
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Figure 3: Illustration of Corollary to Claim 1.

death and (ii) the likelihood that the players’ cost of effort will cumulatively increase over t

periods, for all t ≥ 1.

Claim 1. c∗W (0) =
∑

t≥1 
2t Pr(Ct ≤ C0).13

Corollary. (a) c∗W (0) = 2

1−2 if Ct = C0 for all t. (b) c∗W (0) = 2

2(1−2)
if log(Ct) =

log(Ct−1) +Xt for all t ≥ 1, where Xt ∼ U [−", "] iid and " > 0.

Proof of Claim 1: c∗W (0) = max{cW : (cW ,∞)-threshold equilibrium exists}. Since the

partnership survives each round with probability 2 and both players work (shirk) when the

cost of effort is less (greater) than the work threshold, each player’s continuation payoff after

time-0 efforts in state c0 is∑
t≥1

2t Pr(Ct ≤ cW ∣C0 = c0) =
∑
t≥1

2t Pr(Ct/C0 ≤ cW/c0)

≥ (≤)
∑
t≥1

2t Pr(Ct ≤ C0) = c∗W (0) for all c0 ≤ (≥)cW . (6)

That is, each player’s continuation payoff in any (cW ,∞)-threshold equilibrium equals c∗W (0)

when his cost of effort c0 = cW and exceeds c∗W (0) when c0 < cW . In particular, a (cW ,∞)-

threshold equilibrium exists for all cW ≤ c∗W (0) but not for any cW > c∗W (0).

“Discontinuity” in maximal SPE payoffs.14 The corollary to Claim 1 may be surprising at

first, since the range of states in which cooperation can be supported in SPE is discontinuous

13This result does not depend on the fact that log(Ct) is a random walk. c∗W (0) =
∑

t≥1 
2t Pr(Ct ≤ C0)

(and the joint-welfare maximizing SPE is a threshold equilibrium) as long as (Ct : t ≥ 0) is an exogenous

stochastic process with the “persistence” property that Pr(Ct+1 > z∣Ct = c) is non-decreasing in c for all t

and all z, including the case of iid costs.
14The discontinuity of the optimal work threshold documented here hinges on the fact that there are

finitely many actions. If one enriches the model to allow a continuum of efforts et ∈ [0, 1], then there need

not be any such discontinuity. For instance, suppose that stage-game payoffs take the form �it(eit, ejt) =
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in the “speed” " ≥ 0 at which the cost of effort evolves over time (Figure 3). In fact, this

result is quite intuitive. When the cost of effort is exactly at the work threshold, players

anticipate that they will only be able to cooperate in those future periods when the cost

of effort is not greater than today. When the cost of effort does not change, it is obviously

certain not to be greater than today. On the other hand, when the cost of effort follows

a symmetric stochastic process, future costs are equally likely to be greater or less than

today’s cost. This shrinks by half the future value of the relationship, regardless of the

speed at which the players’ cost of effort changes over time. Consequently, cooperation can

only be credibly sustained given cost of effort that is half as large.

2.2 Social-welfare maximizing equilibrium with re-matching

Players’ outside option v is simply their ex ante expected equilibrium payoff in a new part-

nership. Thus, maximizing ex ante social welfare is equivalent to maximizing players’ en-

dogenous outside option.

Outside option v can be “generated by SPE play” if there exists a SPE of the partnership

game given outside option v in which each player’s ex ante expected payoff from a new

match equals v. Recall that E
[
Π
eqm

(C0; v)
]

denotes each player’s ex ante expected payoff

in the joint-welfare maximizing SPE of Proposition 1, given outside option v. Thus, an

outside option v cannot possibly be endogenously supported in equilibrium unless v ≤

E
[
Π
eqm

(C0; v)
]
, and

v = sup
{
v : E

[
Π
eqm

(C0; v)
]
≥ v
}

(7)

is an upper bound on the outside option that can be generated by SPE play.

Efficient benchmark. In the Dynamic Prisoners’ Dilemma example considered here, play-

ers’ joint stage-game payoff each period equals two should both work and equals zero should

one or both shirk, regardless of the state variable ct. (See Figure 1.) In particular, social

welfare is maximized when all players work and stay in their current partnership until parted

max{ei, ej} ≡ e(1) if eit = ejt, �it(eit, ejt) = e(1) + ct
(
e(1) − eit

)
if eit < ejt, and �it(eit, ejt) = −�jt(eit, ejt)

if eit > ejt. The joint-welfare maximizing SPE specifies symmetric effort at every history that is both weakly

decreasing in ct and continuous in the speed parameter ".
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by death, at which point any “widows” re-match and work in their new relationship, and so

on. Such play generates stage-game payoff one until death for each player, for an expected

lifetime payoff

veff =
∑
t≥0

t =
1

1− 
(8)

representing the “efficient outside option”. More generally, for any fixed outside option

v ≤ veff , social welfare is maximized when players always work and stay in their current

relationship, in which case each player enjoys expected lifetime payoff

Πeff (v) = 1 + (1− )v + 2Πeff (v) =
1 + (1− )v

1− 2
. (9)

(Each player gets continuation payoff zero upon death with probability (1 − ), v upon

being widowed with probability (1 − ), and Πeff (v) should both players survive and the

partnership continue. Note that Πeff
(
veff

)
= veff and Πeff (v) > v for all v < veff .)

The efficient outside option veff cannot be generated by SPE play. Indeed, both players

shirk and the partnership is certain to end at time t = 0 in all SPE of the partnership game,

given any outside option v ≥ veff . More precisely, Π
eqm

(c0; v) = 0 for all c0 > 0 and all

v ≥ veff so that E[Π
eqm

(C0; veff )] = 0 < veff . (The proof of this claim is straightforward

and omitted.) Thus, v < veff .

Achieving the upper bound v. Proposition 2 shows that the upper bound outside option

v can be generated by SPE play. (There are other sorts of SPE that also generate the upper

bound outside option; see the discussion after Proposition 3.)

Proposition 2. Outside option v can be generated by SPE play, in a SPE whose path of

play proceeds as follows: (i) if the initial public randomization z0 ≤
E[Πeqm

(C0;v)]−v
E[Πeqm

(C0;v)]−v
, then

both players shirk and quit at time t = 0; (ii) otherwise, play proceeds as in the joint-welfare

maximizing SPE of Proposition 1 given outside option v.

Proof. First, since shirking and quitting at time t = 0 is a SPE, the specified path of play

in fact arises in a SPE of the partnership game given outside option v. Let Π̂eqm(c0, z0, v)

denote each player’s interim expected payoff when starting a new partnership in which this

equilibrium will be played, given initial cost of effort c0 and public randomization realization

18



z0. To simplify formulae, let p̂ =
E[Πeqm

(C0;v)]−v
E[Πeqm

(C0;v)]−v
denote the probability with which the

partners shirk and quit at time t = 0. Observe that15

E
[
Π̂eqm(C0, Z0, v)

]
= p̂v + (1− p̂)E

[
Π
eqm

(C0; v)
]

= v. (10)

This completes the proof.

Renegotiation-proof play within partnerships. When E
[
Π
eqm

(C0; v)
]
> v, the upper

bound outside option v is generated by SPE play in which players fail to realize all of the

potential equilibrium gains from their relationship. Instead of immediately beginning a fully

productive partnership, these players sometimes shirk and quit on the basis of a payoff-

irrelevant public randomization. Such play is not renegotiation-proof, since other SPE exist

in which both players immediately work and both receive strictly higher payoffs. This failure

of renegotiation-proofness is an important feature of classic models of non-stochastic repeated

games with re-matching (see e.g. Kranton (1996) and Carmichael and MacLeod (1997)).

To induce players to work in such models, players who shirk and then quit to start a new

partnership must be punished in some way. However, since players are assumed anonymous in

each new partnership, it is impossible to punish past behavior directly. To deter exploitative

behavior, some “friction” must therefore be introduced that makes new partnerships less

valuable than existing partnerships. As long as new and existing partnerships have identical

equilibrium productive possibilities, any such friction – necessary to maximize equilibrium

social welfare in the matching market as a whole – must take the form of some failure to

maximize joint welfare within at least some new partnerships.

One of the main contributions of this paper is to provide conditions under which this con-

flict between social-welfare and joint-welfare maximization disappears in stochastic repeated

games with re-matching. When equilibrium productive possibilities vary from partnership

to partnership – whether because partnerships differ at the start or because “things change”

15ALGEBRAIC DETAILS FOR REFEREES: Let E = E
[
Π

eqm
(C0; v)

]
. Observe that

p̂v + (1− p̂)E =
v(E − v)

E − v
+
v(1− )E

E − v
=
vE − v2

E − v
= v.
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during the life of a partnership – new partnerships may differ from existing partnerships

because of a selection effect. In particular, players in a sufficiently attractive existing part-

nership will have ample incentive to work, in order to avoid being tossed back into the

matching market and a less desirable new partnership. In the context of the Dynamic Pris-

oners’ Dilemma, Proposition 3 establishes that payoff-relevant variation known by players at

the start of each partnership – “first impressions” that take the form of an atomless initial

cost of effort C0 – is sufficient to eliminate all conflict between social-welfare maximization

and joint-welfare maximization. (Theorem 5 establishes a closely-related result in a more

general setting.)

Proposition 3. Suppose that C0 is atomless. Then E
[
Π
eqm

(C0; v)
]

= v and outside option

v is generated by joint-welfare maximizing SPE play.

Proof. E
[
Π
eqm

(C0; v)
]

is each player’s ex ante expected payoff when both adopt the optimal

work and exit thresholds (c∗W (v), c∗E(v)) given outside option v. E
[
Π
eqm

(C0; v)
]

= v means

that outside option v is generated by joint-welfare maximizing SPE play. To show that

E
[
Π
eqm

(C0; v)
]

= v, it suffices by the definition of v in (7) to show that E
[
Π
eqm

(C0; v)
]

is

continuous in v.

Re-writing (3), E
[
Π
eqm

(C0; v)
]

= S(c∗W (v), c∗E(v); v) where

S(cW , cE; v) =
∑
t≥0

Pr
(
t ≤ T (cE)

)
Pr
(
ct ≤ cW ∣t ≤ T (cE)

)
+ v

∑
t≥0

Pr
(
t = T (cE)

)
Pr
(
T diei > t∣t = T (cE)

)
(11)

and T (cE) denotes the stopping time of the partnership given exit threshold cE. Since C0 is

atomless and log(Ct) follows a random walk, the ex ante distribution of Ct is atomless for

all t. Thus, all probability terms in (11) are continuous in both cE and cW . (Recall from

(2) that Pr(t = T (cE)∣t ≥ T (cE)) = 1− 2 Pr
(
Ct ≤ cE∣max{C0, ..., Ct−1} ≤ cE

)
. Continuity

of the probability terms in (11) then follows from the fact that C0, ..., Ct atomless implies

Ct∣(max{C0, ..., Ct−1} ≥ cE) is atomless for all t and all cE.) Thus, S(cW , cE; v) is continuous

in cW , cE, as well as obviously continuous in v. Next, recall that c∗W (v) is continuous in v

by Lemma 2. So, S(c∗W (v), cE; v) is continuous in v. By the Envelope Theorem, then,

E
[
Π
eqm

(C0; v)
]

= supcE≥0 S(c∗W (v), cE; v) is continuous in v. This completes the proof.
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Example 1 shows that, without an atomless initial state as in Proposition 3, it may

not be possible to generate outside option v by joint-welfare maximizing SPE play. By

contrast, Example 2 provides a concrete illustration of how outside option v is generated by

joint-welfare maximizing SPE play given an atomless initial state.

Example 1. Consider the simplest scenario of an unchanging, non-stochastic repeated game,

i.e. Ct = C0 for all t and Pr(C0 = c) = 1 for some c > 0. Define v∗ implicitly by

Πeff (v∗) = v∗ + c
2 . Given outside option v∗, each player is indifferent when the other

player works between (i) working and staying given that both players will work and stay

until parted by death or (ii) shirking and quitting. (Shirking induces the other player to

dissolve the partnership with probability 2, when it would have otherwise survived. Thus,

a “penalty” of c
2 next period in a new partnership is just sufficient to induce players to work

in their current relationship.) Thus, when v = v∗, a SPE exists in which both players work

and stay until parted by death. In particular, E
[
Π(C0; v∗)

]
= Πeff (v∗) > v∗. By contrast,

given any outside option v > v∗, all SPE of the partnership game are such that both players

shirk and the partnership is certain to end at time t = 0. Thus, E
[
Π(C0; v)

]
= v < v for

all v > v∗, and v = v∗. Since joint-welfare maximizing play generates payoff Πeff (v) > v,

outside option v can only be generated by SPE that “wastes” some surplus that could have

been achieved in equilibrium. This can be seen in Figure 4, where the surplus that must be

wasted equals the difference Πeff (v)− v.

Example 2. Consider now the next-simplest scenario of an unchanging repeated game with

an atomless initial state, i.e. Ct = C0 for all t and C0 atomless. Each player strictly prefers

to shirk and quit for realized payoff v given any cost of effort c0 > 2
(
Πeff (v)− v

)
, since

then each player’s present gain from shirking outweighs the “penalty” of needing to start

a new relationship. (See the discussion in Example 2.) On the other hand, given any

c0 ≤ 2
(
Πeff (v)− v

)
, a SPE exists in which both players work and stay until parted by

death, for realized payoff Π(c0; v) = Πeff (v). In other words, the optimal work threshold

c∗W (v) = 2
(
Πeff (v)− v

)
= 2(1−v(1−))

1−2 and (ii) the optimal exit threshold c∗E(v) = c∗W (v).

Since c∗W (v) is continuous in v and C0 is atomless, each player’s maximal ex ante expected
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Figure 4: Maximal SPE payoff if Ct = c for all t.

SPE payoff

E
[
Π(C0; v)

]
= Πeff (v) Pr

(
C0 ≤ c∗W (v)

)
+ v Pr

(
C0 > c∗W (v)

)
is continuous in v. By the definition of v in (7), then, E

[
Π(C0; v)

]
= v and the maximal

equilibrium outside option v is generated by joint-welfare maximizing SPE play that proceeds

as follows. At the start of their relationship, partners observe their match-specific cost of

effort c0. If c0 ≤ c∗W (v), then these partners work and stay until parted by death; otherwise,

the players exert no effort, dissolve their partnership at the first opportunity, and seek out

a new partner. This “dating” process continues for each player until he finds a sufficiently

attractive mate, or dies trying.

Further discussion. The conflict between social-welfare maximization and joint-welfare

maximization in Example 1 arises from an underlying discontinuity of the maximal equilib-

rium payoff Π
eqm

(c; v) with respect to the outside option v. In particular, lim"→0 Π
eqm

(c; v∗+

") = v∗ < v∗ < Πeff (v∗) = Π
eqm

(c; v∗); see Figure 4. Generating outside option v∗ therefore

requires that players fail to realize Πeff (v∗) − v∗ > 0 in potential equilibrium gains. More

intuitively, suppose for the sake of contradiction that all players were to work in the first
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period of every partnership in Example 1, as is possible in equilibrium given outside option

v. Each player would then strictly benefit by becoming a “serial shirker”, who shirks and

quits in a succession of partnerships for stage-game payoff 1 + c every period. To deter such

exploitative behavior, at least some partnerships must fail to maximize equilibrium joint

surplus.

In settings such as Example 1, there can be several distinct ways by which to generate

outside option v in equilibrium. Yet all such approaches share one crucial feature: each

player faces an endogenous “switching cost” should he quit his current partnership and seek

a new match. Such switching costs are essential to provide equilibrium incentives to work

in the current match. Consider an augmented version of Example 1 in which, at the start

of each partnership, players (i) observe a public randomization (as here) and (ii) have an

opportunity to “burn money” publicly. Three very different sorts of equilibria generate

outside option v in this augmented example.

∙ “Burn money.” At the start of period t = 0, each player burns money equal to c
2 . As

long as both burn this amount of money, play proceeds as in the joint-welfare maxi-

mizing SPE, with both players working and staying until parted by death. Otherwise,

both players shirk and quit immediately. Burning c
2 in one’s next partnership deters

players from shirking in their current relationship, by making established partnerships

worth c
2 more than new partnerships. Since each partnership survives with probabil-

ity 2 each period, this premium is just sufficient to deter players from shirking and

leaving for a new match. Consequently, players have an incentive to work and stay in

each partnership until parted by death.

∙ “Incubation period.” Both players shirk for S∗ periods, after which they transition to

joint-welfare maximizing SPE play. The “incubation period” S∗ is chosen so that each

player would be willing to pay c
2 in order to transition immediately to joint-welfare

maximizing SPE play at time t = 0.16

16S∗ may depend on the public randomization, but it suffices to restrict attention to support of the

form supp(S∗) = {s, s + 1} for some s ≥ 0. In this case, players always prefer to remain in their current

relationship, rather than leave to start a new one. (Once players with a (s + 1)-period incubation have
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∙ “Dating.” If the public randomization exceeds a threshold � ∗, then play immediately

proceeds according to the joint-welfare maximizing SPE; otherwise, both players shirk

and quit. I refer to this sort of equilibrium as “dating” since players engage in a

sequence of unproductive, one-period relationships until they find a “mate” with whom

they immediately enter into a fully productive match. Unlike the burning-money and

incubation equilibria, players in the dating equilibrium dissolve relationships on the

equilibrium path of play. However, as in these other equilibria, � ∗ is chosen so that

each player would be willing to pay c
2 in order to play the joint-welfare maximizing

SPE with the first partner they meet.

While there can be many sorts of equilibria that generate the maximal equilibrium outside

option v when the initial state C0 fails to be atomless, Proposition 3 shows that only one

sort of equilibrium generates v when C0 is atomless – the “dating” equilibrium. (See also

Example 2.) This is quite intuitive, since dating not only imposes an endogenous switching

cost through a costly search process – just as burning money or an incubation period impose

endogenous costs associated with starting a new partnership – but also serves a sorting

function whereby players only “mate” with a sufficiently attractive partner.

Further, since partnerships are differentiated by match-quality – “good” partnerships are

those with cost of effort less than the work threshold – players have sufficient incentive to

work in good partnerships without the need to burn money or otherwise fail to realize all

potential equilibrium gains in such partnerships. Fear of being tossed back onto the “dating

market” is sufficient to induce players in good partnerships to work. On the other hand, in

bad partnerships, there does not exist any SPE in which either player works, and shirking

and quitting to try a new date maximizes the players’ equilibrium joint payoff.

3 More General Model

The model has two parts: a “partnership game” played by two asymmetric players, and a

“partnership matching market”, which generates outside options in the partnership game by

endured one period, they prefer waiting s more periods rather than starting a new partnership in which they

will have to wait at least s more periods.)
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allowing players to anonymously re-match with a new partner should their current partner-

ship end. Each player dies with exogenous probability (1−) each period, iid across periods,

and seeks to maximize expected total lifetime payoffs. Likewise, each partnership ends when-

ever either player dies or quits, in which case each surviving player starts a partnership game

with a new partner.

Note on notational shorthand. To improve clarity and shorten equations, I have adopted

several notational conventions throughout the paper. First, random variables are capitalized

while realizations are in lower case. Second, variables specific to a player and time have two

subscripts, e.g. eit for player i’s effort in period t of the partnership. Vectors of such variables

for all players at one time t are unbolded with one subscript, e.g. et = (eit, ejt), while those

for all players at all times no later than t are bolded with one subscript, e.g. et = (e0, ..., et).

Finally, sums are denoted by a summation subscript, e.g. �Σt(et;xt) =
∑

i �it(et;xt).

v
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Figure 5: Timing of the partnership stage-game in period t = 0, 1, 2, ...

Partnership game. Each period t = 0, 1, 2, ... of a partnership proceeds as follows; see

Figure 5.17 First, a payoff-relevant state xt ∈ Xt = supp(Xt) is realized and publicly ob-

served. (Xt,ર) is a partially ordered set. Second, each player i simultaneously decides what

effort eit ∈ ℰit to exert, where efforts may control the stochastic process (Xt : t ≥ 0). Efforts

are then publicly observed and each player i receives stage-game payoff �it(et;xt). (ℰit,ર) is

a partially ordered, finite set having minimal element “0”.

Assumption 1 (Stage-game payoffs). For each player i, �it(et;xt) is weakly decreasing in eit

17“Time” t captures the duration of a partnership, not any notion of real time in the partnership market.

See Assumption 5.
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and weakly increasing in ejt, and �it(0, 0;xt) = 0 for all xt. Further, joint payoff �Σt(et;xt)

is uniformly bounded.18

Assumption 2 (Increasing differences). �it has weakly increasing differences in (et;xt).

That is, eHt ≻ eLt and xHt ≻ xLt implies �it(e
H
t ;xHt )− �it(eLt ;xHt ) ≥ �it(e

H
t ;xLt )− �it(eLt ;xLt ).

Definition 4 (Cost of effort). Let cit(et;xt) = supẽit (�it(ẽit, ejt;xt)− �it(et;xt)) denote each

player’s “cost of effort eit” when player j exerts effort ejt at time t in state xt.

By Assumption 1, each player has a weakly dominant strategy to exert zero effort in each

effort stage-game, so the cost of effort ct(et;xt) = �it(0, ejt;xt)− �it(et;xt). By Assumption

2, x′t ≻ xt implies

�it(et;x
′
t) ≥ �it(et;xt) for all et (12)

ct(et;x
′
t) ≤ ct(et;xt) for all et (13)

for all et. That is, stage-game payoffs are weakly increasing in the state and players’ incentive

to exert less effort is weakly decreasing in the state. (Increasing differences implies (12) when

we set eHt = et and eLt = (0, 0) and implies (13) when we set eHt = et and eLt = (0, ejt).)

Third, each player dies with exogenous probability (1−), iid across players and periods.

Should both players survive, each then simultaneously decides whether to stay or quit the

partnership. The partnership ends if either quits or if either dies. If so, each surviving player

i receives an outside option having value vi ≥ 0. Otherwise, the partnership remains active

in period t+ 1.

Utility is assumed to be transferable, and players can make voluntary wage transfers to

one another at any time. However, I will show that it is without loss to restrict attention to

equilibria in which players pay wages each period only in the form of “retention bonuses”,

after and only if both players stay (Lemma 3).

Stochastic process in each partnership. The stochastic process (Xt : t ≥ 0) has the

property that future states are more likely to be higher when the current state is higher,

18The analysis extends easily to settings in which joint payoff is not bounded (as when productivity follows

a random walk), as long as the maximum feasible expected lifetime joint payoff is finite from every history.
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a serial auto-correlation property that I will refer to as “persistence”. Two definitions are

needed to make this precise.

Definition 5 (Increasing subset). Let (Z,≥) be any partially-ordered set. Y ⊂ Z is an

“increasing subset of Z” if a1 ∈ Y , a2 ∈ Z, and a2 ≥ a1 implies a2 ∈ Y .

Definition 6 (Generalized first-order stochastic dominance19). Let A1, A2 be random vari-

ables with support in partially ordered set (Z,≥). A1 “first-order stochastic dominates”

(FOSD) A2 if Pr(A1 ∈ Y) ≥ Pr(A2 ∈ Y) for all increasing subsets Y ⊂ Z.

Assumption 3 (Persistence). x′t ર xt implies Xt+1∣(x′t,xt−1, et) FOSD Xt+1∣(xt,xt−1, et)

for all xt−1, et.

Finally, it will be convenient to assume that partners have access to a public randomiza-

tion at the start of their relationship. (Assumption 4 simplifies the characterization of the

maximal social welfare that can be supported in equilibrium. See the discussion below.)

Assumption 4 (Public randomization). X0 = (Y0, Z0) where Z0 ∼ U [0, 1] is independent

of (Y0, Xt : t ≥ 1) and payoff-irrelevant.

Partnership market. Players’ outside options are generated endogenously from their

ability to start a new partnership, within the following context.

Matching and re-matching. There is a unit mass of atomless players, half “male” and half

“female” who are paired to play the partnership game, with an equal flow of (1− ) births

and deaths each period.20 Any player who is newly-born or whose partnership ended in

the previous period (whether due to the death of a partner or due to endogenous exit) is

automatically and costlessly matched with a new partner. Further, each such match is a

“fresh start” in two senses. First, players know nothing about their current partner’s history

before their partnership, including his age, number of past partnerships, and so on. Second,

19When Z = R, this condition reduces to the familiar requirement that Pr(A1 ≥ z) ≥ Pr(A2 ≥ z) for all

z ∈ R. There is more than one natural way to generalize FOSD to multi-dimensional settings, some more

restrictive than the notion used here. See e.g. Stoyan and Daley (1983).
20Gender captures the possibility that certain players may be matched and re-matched into specific roles,

e.g. buyer and supplier, worker and firm, entrepreneur and investor.
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players’ history before the current partnership began has no impact on the state of that

partnership. (In particular, Assumption 5 implies that partnerships are iid.)

Assumption 5 (Fresh start). The distribution of Xt depends (only) on partnership duration

t, the history of states in the current partnership, and the history of efforts in this partnership.

Solution concept. The solution concept is subgame-perfect equilibrium (SPE) in each

partnership game, with the extra requirement that players’ outside options arise endoge-

nously as the expected present value of starting a new partnership in which that SPE will

be played. In particular, for a given SPE of the partnership game with given outside options

v = (v1, v2), let E [Πeqm
i0 (X0; v)] denote player i’s expected equilibrium payoff when starting

a new partnership at time t = 0.

Definition 7 (Partnership-market equilibrium). A “partnership-market equilibrium” con-

sists of a SPE of the partnership game and a profile of outside options v = (v1, v2) such

that

vi = E [Πeqm
i0 (X0; v)] for i = 1, 2. (14)

Discussion of Assumptions 3-5: By Assumption 3, the partnership is weakly more likely

to transition to a higher state tomorrow from a higher state today, holding fixed the history

of players’ efforts. The fact that no assumptions are made on how efforts impact future

states allows for great flexibility, e.g. the model can accommodate settings in which effort

grows, depletes, or has a non-monotone effect on a payoff-relevant stock. On the other hand,

Assumption 3 does rule out a variety of potential applications in which payoffs are stochastic

but not persistent. For instance, suppose that Xt = {low, high} for all t as in Bagwell and

Staiger (1997). Assumption 3 fails in the case of negative serial auto-correlation.

Here are some simple examples of state processes (Xt : t ≥ 0) satisfying Assumption 3. In

each case, Xt ⊂ RK . Examples (A-C) are exogenous Markov processes, (D) is a non-Markov

exogenous process, (E) is a non-trivially controlled process.

(A) Xt are iid.
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(B) Xt reverts to mean �, e.g. Xt = ��+ (1− �)Xt−1 + �"t, where "t are iid mean zero.

(C) g(Xt) is a random walk on RK , where g : RK → RK is any non-decreasing function

relative to the usual product order on RK .

(D) Xt = (Y0, ..., Yt) is a sequence of publicly observed estimates of K unobserved param-

eters, e.g. unknown productivity of the match à la Jovanovic (1979a).

(E) Xt is a capital stock with a random growth rate, e.g. Xt+1 = Yt(Xt +
∑

i eit), where

(Yt : t ≥ 0) is an exogenous stochastic process as in any of the previous examples.

By Assumption 4, no two partnerships are identical (with positive probability). Even if

two partnerships are payoff-identical, the players in those partnerships will observe different

realizations of the public randomization. Access to a public randomization can allow strictly

greater expected welfare to be supported in partnership-market equilibria. Intuitively, if the

randomization is used to coordinate on more or less desirable equilibria of the partnership

game, players in a productive relationship will treat their current partner well for fear that

they may get a “bad draw” in future partnerships. This role of public randomization is

well-known from the literature on non-stochastic repeated games, and guarantees that the

maximal joint outside option vΣ (to be defined in (24)) can be supported in partnership-

market equilibrium. By giving players access to a public randomization, I focus on the more

novel aspects of this paper’s analysis, such as whether vΣ can be supported by (renegotiation-

proof) joint-welfare maximizing equilibrium play.

Assumption 5 imposes at least two substantive economic restrictions. First, shocks to a

partnership are idiosyncratic to the players in that partnership. This rules out the possibility

of market-wide shocks (correlated across partnerships active at the same time), which would

of course be interesting to study in the context of enriching existing models of the business

cycle. Indeed, extending the present analysis to allow for correlated shocks appears to be

an important and promising direction for future research. Second, shocks to a partnership

have no bearing on future partnerships in which those players might participate. Thus, the

“state” here does not capture any payoff-relevant characteristics of the players themselves,

such as intelligence, beauty, or skills.
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4 Welfare-maximizing equilibrium

The analysis here has two parts. Section 4.1 characterizes the joint-welfare maximizing

subgame-perfect equilibria (SPE) of the partnership game for any given outside options

v = (v1, v2) (Theorem 1), and develops welfare and turnover comparative statics (Theorems

2-3). Section 4.2 then characterizes the maximal social welfare that can be supported in the

partnership market (Theorem 4), and explores some properties of the partnership-market

equilibria that support this maximal social welfare. Namely, I provide sufficient conditions

for equilibrium social welfare to be maximized by joint-welfare maximizing SPE play within

each partnership.

4.1 Joint-welfare maximizing subgame-perfect equilibrium

Let Π
eqm

Σt (xt, et−1; v) denote the maximal joint payoff that can be achieved in any SPE of

the partnership game given outside options v = (vi, vj), as evaluated before efforts at time

t from payoff-relevant history (xt, et−1).21 I will demonstrate an equilibrium that achieves

this maximal SPE joint payoff at every history reached on the equilibrium path.

By deviating from time-t effort-profile et with zero effort and then quitting, player i can

increase his time-t stage-game payoff by cit(et;xt) and then enjoy outside option vi with

probability  (should he not die that period). Thus, to support effort-profile et, each player

i’s equilibrium continuation payoff (including wage transfers) after time-t efforts must be

at least vi + cit(et;xt). In particular, costly efforts can only be sustained if joint equilib-

rium continuation payoff inside the partnership exceeds players’ (survival-weighted) joint

outside option plus their joint cost of effort. Assuming that continuation play after time-t

efforts maximize players’ joint equilibrium continuation payoff, equilibrium joint welfare is

21Without loss, one may restrict attention to SPE in which payoffs depend on the history of past states xt

only through the current state xt. Indeed, the current state may depend on the full history of past states.

For example, if xt = (xt−1, yt) for all t > 0, then the distribution of Xt can depend on all of the “new

information” (x0, y1, ..., yt−1) learned during the course of the partnership. Further, it is without loss to

restrict attention to SPE in which payoffs do not depend on the history of wages.
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maximized given time-t efforts et(xt, et−1), defined as

et(xt, et−1) = arg max
et

(
�Σt(et;xt) + max

{
vΣ, E

[
Π
eqm

Σt+1(Xt+1, et; v)∣xt, et
]})

(15)

subject to cΣt(et;xt) ≤ max
{

0, E
[
Π
eqm

Σt+1(Xt+1, et; v)∣xt, et
]
− vΣ

}
. (16)

In fact, this maximal joint payoff can be realized in SPE, with efforts et(xt, et−1) played at

each history (xt, et−1) on the equilibrium path.

Theorem 1 (Joint-welfare maximizing SPE). A SPE exists that maximizes joint payoff

among all SPE at every history. On the equilibrium path of play, (i) players exert efforts

et(xt, et−1) (defined in (15)) at every history (xt, et−1), (ii) both stay iff doing so is efficient

given their joint equilibrium continuation payoff, and (iii) wages are paid (if at all) at the

end of each period only if both players survive and stay.

Comparative statics. Theorem 1 is proven by an algorithmic argument (outlined in the

text below) in the spirit of Abreu, Pearce, and Stacchetti (1990). A side-benefit of this

algorithmic style of proof is that I am also able to establish comparative statics properties

of the joint-welfare maximizing equilibrium, by showing that these properties are preserved

at every step of the algorithm, as well as in the limit.

Theorem 2 (Welfare increasing in the state). The maximal joint welfare Π
eqm

Σt (xt, et−1; v)

that can be realized in SPE from history (xt, et−1) is weakly increasing in xt, for all et−1.

The model imposes essentially no restriction on how efforts can control the stochastic

process. Consequently, there is little that one can say in general about how efforts in the

welfare-maximizing SPE vary with the state, nor on how the history of efforts impacts

equilibrium variables such as players’ payoffs, efforts, and exit. Indeed, although Theorem 2

establishes that players’ joint payoff in the joint-welfare maximizing SPE is increasing in the

state xt, neither joint stage-game payoff nor joint continuation payoff need be increasing in

xt. Consequently, partners may exert lower efforts and even be more likely to exit in higher

states. However, additional comparative statics are available in a notable special case, when

players’ efforts have no impact on future states.

31



Definition 8 (Exogenous stochastic process). (Xt : t ≥ 0) is an exogenous stochastic process

if the distribution of Xt depends only on (t, xt−1).

Given exogeneity, players’ effort-decisions at time t have no impact on the set of SPE

continuation payoffs. Thus, in any joint-welfare maximizing SPE, players will choose what-

ever efforts maximize joint stage-game payoff, among those satisfying the relevant incentive-

compatibility constraint.

Theorem 3 (Comparative statics with an exogenous state). Suppose that (Xt : t ≥ 0) is an

exogenous stochastic process. In the joint-welfare maximizing SPE, at every history reached

on the equilibrium path: (i) players’ joint stage-game payoff and joint continuation payoff are

each weakly increasing in xt; and (ii) partnership stopping time conditional on xt is weakly

increasing in xt, in the sense of first-order stochastic dominance.

Proof sketch for Theorems 1-2. The rest of this section provides a sketch of the proof

of Theorems 1-2. (The proof of Theorem 3 is in the Appendix.)

Part I: Credibility and optimality of efforts et(xt, et−1) and associated “retention bonuses”.

The first part of the proof hinges on an important preliminary result.

Lemma 3 (Joint-welfare maximizing SPE play). Suppose that SPE exist such that, at time

t+ 1 from each history (xt+1, et), players’ joint payoff is Πeqm
Σt+1(xt+1, et; v). (i) A SPE exists

such that, at time t from history (xt, et−1), players’ joint payoff Πeqm
Σt (xt, et−1; v) solves

Πeqm
Σt (xt, et−1; v) = max

et

(
�Σt(et;xt) + max

{
vΣ, E

[
Πeqm

Σt+1(Xt+1, et; v)∣xt, et
]})

(17)

subject to cΣt(et;xt) ≤ max
{

0, E
[
Πeqm

Σt+1(Xt+1, et; v)∣xt, et
]
− vΣ

}
(18)

(ii) In this SPE, wages are paid (if at all) at the end of each period only if both players

survive and stay.

Lemma 3 vastly simplifies the analysis since it implies that an effort-profile can be im-

plemented in SPE iff its joint cost of effort is less than the partnership’s excess return over

the players’ joint outside option. In other words, one may view partners as choosing their
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effort-profile optimally subject to the endogenous incentive constraint (18),22 i.e. they will

play efforts et(xt, et−1) at every history (xt, et−1).

Part II: Algorithmic characterization of the optimal SPE. Next, I develop an algorithmic

argument in the spirit of APS to characterize the joint-welfare maximizing SPE of the part-

nership game. APS characterize the set of all SPE strategies as the limit of a decreasing

sequence of sets of strategy profiles. The approach developed here differs in two ways. First,

I focus on the simpler issue of characterizing just the maximal joint payoff that can be sup-

ported in SPE. Conceptually, at each stage of the APS algorithm,23 identify the maximal

joint payoff that can be achieved by any remaining strategy profiles. Clearly, the sequence

of such upper bounds on joint payoff is decreasing and converges to the maximal SPE joint

payoff. Second, and more important, the additional structure here allows me to establish

new results about the joint-welfare maximizing SPE. Conceptually, by keeping track of the

strategies that achieve the upper bound on joint payoffs at every step of the APS algorithm,

and by showing that these strategies always satisfy certain properties, I can prove by induc-

tion that the joint-welfare maximizing SPE strategies also possess those properties. This

allows me to prove, for example, that maximal SPE joint payoff is weakly increasing in the

state (Theorem 2) as well as, later, additional welfare and turnover comparative statics when

the state follows an exogenous stochastic process (Theorem 3).

Lemma 3 maps the maximal joint payoff that can be supported at time t + 1 to the

maximal joint payoff that can be supported at time t. Thus, one can construct a sequence

of upper bounds for every history,
{

Π
k

Σt(xt, et−1; v) : k = 1, 2, ...
}

, such that Π
k

Σt(xt, et−1; v)

is non-increasing in k and converges to the maximal SPE joint payoff at history (xt, et−1).

22The incentive condition (18) arises naturally in repeated games with voluntary transfers. More novel

here is the observation regarding the optimal timing of wages. In repeated games with exit and iid payoffs,

wages paid at any time can provide equivalent incentives to work and stay in the relationship (see Levin

(2003) for a discussion). By contrast, in this paper’s stochastic environment, the timing of wages matters.

Whereas Lemma 3 establishes that it is without loss to assume that wages are paid at the very end of each

period, McAdams (2010) provides an example showing that paying wages just after efforts are observed (in

the form of “performance bonuses”) does entail loss of generality.
23The approach developed in APS can be extended in a natural way to dynamic repeated games. See e.g.

Chapter 5.7.1 of Mailath and Samuelson (2006).
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Also importantly for this paper’s purposes, these upper bounds exhibit a monotonicity in

the state, i.e. Π
k

Σt(xt, et−1; v) is weakly increasing in xt for all k as well as in the limit.
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Figure 6: Key steps of the algorithmic argument.

Key steps of the algorithmic argument (illustrated in Figure 6): Suppose that there exist

upper bounds Π
k

Σt(xt, et−1; v) on SPE joint payoff from all histories at all times and that

these upper bounds are weakly increasing in the current state xt. The essence of the proof

is to use these upper bounds to derive weakly lower upper bounds Π
k+1

Σt (xt, et−1; v) at all

histories that remain weakly increasing in xt. Here in the text, I provide the inductive step

to construct this sequence of upper bounds on joint payoff and show that monotonicity in

xt is preserved along this sequence. In the Appendix, I prove that this sequence of bounds

is weakly decreasing in k and that it converges to joint payoff that can be realized in SPE.

Step A. Given bounds Π
k

Σt+1(xt+1, et; v) on joint continuation payoff at time t + 1, joint

continuation payoff after time-t efforts is bounded by

Π
k

Σt(xt, et; v) = max
{
vΣ, E

[
Π
k

Σt+1(Xt+1, et; v)∣xt, et
]}

. (19)

Observe that

E
[
Π
k

Σt+1(Xt+1, et; v)∣xt, et
]

=

∫ ∞
0

Pr
(

Π
k

Σt+1(Xt+1, et; v) ≥ z∣xt, et
)

dz. (20)

By presumption, Π
k

Σt+1(xt+1, et; v) is weakly increasing in xt+1. Thus, the set {xt+1 :

Π
k

Σt+1(Xt+1, et; v) ≥ z} is an increasing subset of Xt+1 for all z. By Assumption 3, then,

each of the probability terms inside the integral in (20) is weakly increasing in xt. Thus,

Π
k

Σt(xt, et; v) is weakly increasing in xt.

Step B. Let ℱk+1
t (xt, et−1; v) be the set of time-t efforts that can be supported in SPE given

joint continuation payoffs Π
k

Σt(xt, et; v) after effort, i.e. those satisfying the IC-constraint

34



(18) given these expected joint continuation payoffs after time-t effort. Since (18) slackens

with higher continuation payoffs, the fact that Π
k

Σt(xt, et; v) is weakly increasing in xt implies

that ℱk+1
t (xt, et−1; v) is weakly increasing in xt, relative to the set inclusion order.

Step C. By Lemma 3, we may define new upper bounds on time-t SPE joint payoff,

Π
k+1

Σt (xt, et−1; v) = max
et∈ℱk+1

t (xt,et−1;v)

(
�Σt(et;xt) + Π

k

Σt(xt, et; v)
)
. (21)

Π
k+1

Σt (xt, et−1; v) is weakly increasing in xt since both Π
k

Σt(xt, et; v) and ℱk+1
t (xt, et−1; v) are

weakly increasing in xt, while �Σt(et;xt) is weakly increasing in xt by Assumption 2.

The remainder of the proof is in the Appendix.

4.2 Social-welfare maximizing partnership-market equilibrium

A social-welfare maximizing partnership-market equilibrium is one that maximizes players’

joint outside option, among all partnership-market equilibria. Recall that Π
eqm

Σt (xt, et−1; v)

denotes the maximal SPE joint payoff at history (xt, et−1) given outside options v = (vi, vj).

Lemma 4 establishes that this maximal joint payoff depends on players’ outside options only

through their sum.

Lemma 4. v′Σ = vΣ implies Π
eqm

Σt (xt, et−1; v′) = Π
eqm

Σt (xt, et−1; v).

Proof. The proof of Lemma 4 is immediate from the algorithmic construction in the proof of

Theorems 1-2. Lemma 4 can also be viewed as a corollary of Lemma 3, once one observes that

players’ outside options do not appear in the objective (17) or in the constraint (18) except

through the sum vΣ. Intuitively, asymmetries in players’ outside options have no impact on

what can be achieved in equilibrium, since any such asymmetries can be counter-balanced

by appropriate retention bonuses.

Definition 9 (Maximal SPE joint payoff). Let Π
eqm

Σt (xt, et−1; vΣ) denote the maximal joint

payoff in any SPE from history (xt, et−1), as a function of players’ joint outside option vΣ.

Players’ joint outside option cannot exceed sup{vΣ : vΣ ≤ E
[
Π
eqm

Σ0 (X0; vΣ)
]
}. Theorem

4 establishes that this maximal joint outside option can in fact be supported in equilibrium,

and shows one way in which to do so.
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Theorem 4 (Maximal social welfare). In social-welfare maximizing partnership-market equi-

libria, players’ endogenous joint outside option is

vΣ = sup
{
vΣ : vΣ ≤ E

[
Π
eqm

Σ0 (X0; vΣ)
]}
. (22)

Further, play in one such equilibrium proceeds as follows: if the public randomization z0 ≤
E[Πeqm

Σ0 (X0;vΣ)]−vΣ

E[Πeqm
Σ0 (X0;vΣ)]−vΣ

, then both players exert zero effort and quit immediately; otherwise, con-

tinuation play maximizes SPE joint welfare as in Theorem 1.

Discussion of Theorem 4: Suppose for the moment that the maximal expected joint payoff

that can be supported in SPE, E
[
Π
eqm

Σ0 (X0; vΣ)
]
, is continuous in the players’ joint outside

option vΣ. In this case,

vΣ = E
[
Π
eqm

Σ0 (X0; vΣ)
]

(23)

and Theorem 4 implies that equilibrium social welfare is maximized only when players max-

imize equilibrium joint welfare within each partnership.

This finding sheds new light on a well-known result in the literature on repeated games

with re-matching. In non-stochastic repeated games with re-matching, maximizing social

welfare always requires that partners fail to maximize joint welfare. (See Section 5.2 of

Mailath and Samuelson (2006) for a particularly clear exposition.) A key insight that

emerges here is that the tension between market-wide and individual partnership perfor-

mance disappears once partnerships are not created equal, namely, when “first impressions”

are payoff-relevant. Indeed, even quite modest initial stochastic variation across partnerships

eliminates the need to perform sub-optimally at the start of relationships, as when the initial

state is augmented with a “partnership type” S0 ∼ U [0, 1] as follows.

Assumption 6 (Meaningful first impressions). Xt = (Yt, S0) for all t, where S0 ∼ U [0, 1]

and, for all t, yt, (yt, s
′
0) ≻ (yt, s0) for all s′0 > s0 and �it(e

′
t; s0, yt) − �it(et; s0, yt) is strictly

increasing in s0 for all i and e′t ≻ et.

S0 is a public signal (that I refer to as “the first impression” or as “the partnership type”)

observed by players at the start of their relationship, capturing an aspect of match quality

that, by definition, increases players’ stage-game payoffs and decreases their cost of effort.

36



Note that Theorem 5 holds no matter how small the impact of the partnership type on

payoffs.

Theorem 5. Given meaningful first impressions, a full measure of partnerships achieve the

maximal SPE joint payoff in any social-welfare maximizing partnership-market equilibrium.

Discussion of Theorem 5. The presence of meaningful first impressions eliminates the need

to “waste surplus” at the start of relationships. Intuitively, the reason is that observing

a payoff-relevant type at time t = 0 breaks players’ indifference over potential partners.

When players do not care about the identity of their partner, each player will naturally

be concerned that his current partner will cheat him and then re-match with an equally

attractive replacement. Burning money at the start of every partnership allows players to

assuage this concern. Once players strictly prefer some partners over others, however, the

re-matching market no longer provides “easy pickings” for a cheater. In particular, players

will reject any partner who is not a sufficiently good fit, and fear of future rejection provides

a deterrent against misbehavior in any sufficiently well-matched partnership. Of course, the

threshold for a “sufficiently good fit” is endogenous. It is determined so that players at this

threshold are indifferent between (i) staying and playing the joint-welfare maximizing SPE

of Theorem 1 or (ii) quitting to re-match. (For a worked-out example, see Section 2.2.)

When first impressions matter, Theorem 5 implies that all social-welfare maximizing

partnership-market equilibria specify joint-welfare maximizing play.24 Theorem 6 establishes

that joint-welfare maximizing play is also sufficient to maximize equilibrium social welfare

in this case.

Theorem 6. Given meaningful first impressions, vΣ is the unique solution to

vΣ = E
[
Π
eqm

Σ0 (X0; vΣ)
]
. (24)

Discussion of Theorem 6: Outside options v = (vi, vj) are generated by joint-welfare max-

imizing SPE play if vi = E
[
Π
eqm

i0 (X0; v)
]

for i = 1, 2. Theorem 6 implies that only one

joint outside option can be generated by joint-welfare maximizing SPE play. (This result is

24If (15) has multiple solutions at some history, then there will exist different social-welfare maximizing

SPE in which each of these optimal IC efforts is played. Otherwise, efforts are unique.
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not obvious, since equilibrium play depends on the outside option.) Technically, the proof

proceeds by showing that the maximal excess joint return of a new partnership over the

players’ joint outside option, E
[
Π
eqm

Σ0 (X0; vΣ)
]
− vΣ, is strictly decreasing in vΣ. Intuitively,

as players’ outside options become less valuable, they have more reason to work and invest in

their relationship. Thus, even if falling outside options are bad news in the sense of lowering

equilibrium payoffs, this loss is mitigated by the fact that the players’ partnership becomes

stronger and more productive.

Social-welfare maximizing partnership-market equilibria could potentially differ in how

the surplus is divided between the players. For example, if a wife anticipates that her next

husband will pay her a handsome wage, then her current husband might need to pay her

a wage to induce her to stay. In this way, even if there exists a social-welfare maximizing

partnership-market equilibrium in which no wages are paid, other such equilibria might exist

in which either player receives the lion’s share of the surplus.

Steady-state distribution over partnership histories. One may view a partnership

as a Markov chain over histories ℎt = (xt; et−1), where any partnership that ends at time t

is understood to transition to a brand new partnership (with new partners).

Suppose that a partnership is currently in history ℎt. Let et(ℎt) be the effort-profile played

in the optimal SPE at this history, as characterized in the proof of Theorem 2. Similarly, let

pexitt (ℎt) be the probability that at least one player would quit at time t after this history,

and let Xt+1(ℎt) ∼ Xt+1∣(ℎt, et(ℎt)) denote next-period’s state should the partnership persist

to that time. Transition probabilities among histories may be fully described as follows:

∙ With probability 1 − 2, the partnership will end due to death, after which a new

partnership will be created having random initial history H0 = X0.

∙ With probability 2pexitt (xt, et−1), the partnership will end due to some partner’s en-

dogenous departure, after which a new partnership will again be created.

∙ With probability (1−2)(1−pexitt (xt, et−1)), the partnership will continue to time t+1,

with an augmented random history Ht+1 = (ℎt; et(ℎt);Xt+1(ℎt)).
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Note that, through the process of death and re-birth, all histories that are reached on the

equilibrium path communicate and are positively recurrent. Thus, this Markov chain is

ergodic and there exists a unique steady-state distribution over histories.

Claim 2 (Steady-state distribution). For every partnership-market equilibrium, there exists

a unique steady-state distribution over partnership histories.

Proof. This result follows from standard Markov-chain methods; details are omitted to save

space. See Sections 4.3 and 4.6.2 of Ross (1996), especially Theorem 4.3.3.

In the remainder of this section, I discuss some qualitative features of a “typical” player’s

life experience, assuming welfare-maximizing partnership-market equilibrium play.

Dating. At time t = 0, players will immediately exit any relationship in which the realized

initial state is in a decreasing subset of X0. Consequently, any player who is seeking a new

partner will typically experience several partnerships that each last exactly one period – and

in which both players exert zero effort because they anticipate no future interaction – before

finding a partner who they do not immediately leave.

Honeymoon. In any partnership that continues to a second period, players obviously ex-

pect higher continuation payoffs than during their unsuccessful dating phase. In fact, such

“newly-joined” partners will also enjoy higher stage-game payoffs than when they were un-

successfully dating, for two reasons. First, the initial state in a “successful date” will be

higher than in an unsuccessful one, allowing players to generate higher stage-game payoffs

from any time-0 efforts (Assumption 2). Second, since the players view their future rela-

tionship as generating higher continuation payoffs than their outside options, they can also

support non-trivial effort at time t = 0.

Of course, there is no guarantee that a surviving partnership in its earliest periods will

be very profitable or very stable. For instance, it could be that the initial state lies very

close to the threshold below which the partnership would not have formed, and that there is

a high likelihood of break-up in the near future. However, since this caveat applies equally

to non-strategic models that identify a “honeymoon effect”, such as Fichman and Levinthal
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(1991),25 one can say that social-welfare equilibrium play here also exhibits a “honeymoon

effect” – if players form meaningful first impressions, so that social-welfare maximizing

play dictates joint-welfare maximizing play from the start of each relationship. Otherwise,

social-welfare maximizing play dictates that players in new partnerships receive artificially

depressed payoffs, a sort of “anti-honeymoon effect”.26

Hard times. The state of a partnership may rise and fall many times, in ways that affect

the extent of cooperation that can be supported in the welfare-maximizing equilibrium. This

volatility of players’ willingness to cooperate creates payoff volatility that in turn creates an

endogenous option value to remaining in the relationship. Consequently, players tend to

remain in relationships even when stage-game payoffs are low, in hopes that their partner’s

behavior will improve.

Good times and golden years. Players stay in the partnership during hard times in the

hope that they will enjoy positive shocks that will enable them to enjoy higher profits and

greater stability in the future. Indeed, depending on the details of the stochastic process

(Xt : t ≥ 0), there may be an increasing subset of the state-space from which the partnership

is certain never to end, save by exogenous death. Such “golden years” can arise for two sorts

of reasons. First, there may be an absorbing portion of the state-space, that is everywhere

high enough to support continuation of the partnership. Second, equilibrium efforts in high

enough states may be sufficiently high and feedback from profitable efforts may be positive

enough to overwhelm any exogenous shocks that might cause the relationship to deteriorate.

4.3 Extension: positive matching cost

The analysis of Sections 4.1-4.2 can be readily adapted to an extension of the model in

which players must pay m > 0 whenever (re-)matched. The main difference is that players’

25Fichman and Levinthal (1991) consider an organization’s decision to form and disband, when profits

follow an exogenous random walk. The analysis here differs in several ways, the most important being that

(i) profits are endogenous and (ii) the outside option is endogenous.
26The term “anti-honeymoon” is not standard, but this idea is well-known. See e.g. Section 5.2 of Mailath

and Samuelson (2006).
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outside options depend on whether there is an active re-matching market. If players of either

gender do not expect to recoup the matching cost in a new partnership, no new partnerships

will form and each player’s outside option is zero. In particular, for large enough matching

costs, all partnership-market equilibria are trivial ones in which (i) partnerships never form

and (ii) should they form, play proceeds as in a SPE of the partnership game given zero

outside options. For small enough matching costs, however, the social-welfare maximizing

partnership-market equilibrium is non-trivial, with non-negative outside options generated

by the prospect of starting a new partnership:

vi = E [Πeqm
i0 (X0; v)]−m ≥ 0 for i = 1, 2, (25)

where Πeqm
i0 (x0; v) denotes player i’s payoff in some SPE of the partnership game given initial

state x0 and outside options v = (vi, vj). (The set of such SPE payoffs is characterized in

Section 4.1.)

Claim 3. Given meaningful first impressions, vΣ(m) is strictly decreasing in m in a neigh-

borhood of m = 0.

Discussion: An increase in matching costs has competing effects on payoffs in the social-

welfare maximizing equilibrium. While players must pay more to form each partnership, such

costs can act as an exit deterrent and hence encourage players to work and invest in their

current partnership. However, this benefit of better partnership performance only arises if

the overall effect of higher matching costs is to lower players’ outside options. Thus, this

overall effect must be weakly negative on ex ante payoffs. Indeed, the overall effect of higher

matching cost is strictly negative since players will respond to higher partnership formation

costs by sampling strictly fewer partners, leading to a strictly worse average fit among active

partnerships when first impressions are payoff-relevant.

By contrast, in non-stochastic repeated games with re-matching, maximizing social wel-

fare requires that players “waste” some expected surplus at the start of their partnership,

in order to incentivize effort in established relationships. Matching costs then serve as a

substitute for such waste, allowing players to support the same social welfare for all small

enough matching costs.
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5 Concluding Remarks

In their study of relational contracts in developing economies, Johnson, McMillan, and

Woodruff (2002) emphasize the importance of established relationships in supporting the

“trust” necessary to work together in an environment lacking a reliable court system. The

theory of repeated games with re-matching has advanced two alternative explanations for

why players may only trust those with whom they already have a working relationship. Ac-

cording to one view (see e.g. Kranton (1996)), social custom may require that players incur

costs / forego potential equilibrium benefits (“burn money”) when establishing a relation-

ship. Since players already in a relationship prefer to avoid burning money a second time,

they will be careful to treat their current partner well. According to a second view (see e.g.

Sobel (1985)), players’ actions may signal information about their motives to their current

partner, so that surviving partnerships are only those in which both players have proven

themselves sufficiently trustworthy.

One of the novel findings of this paper is that burning money is never socially optimal

when (i) players have no private information and (ii) players form “meaningful first impres-

sions” that are at least somewhat informative of future payoffs. Put differently, increasing

the cost of forming a new relationship unambiguously lowers social welfare under these con-

ditions. Thus, this paper sheds light on the set of circumstances in which we should expect

costly courtship. In addition to settings with private information, in which a suitor may feel

compelled to prove his love, courtship may arise in environments in which players can only

learn about the quality of their match after forming a new relationship.

Separately, a broad empirical literature from Topel and Ward (1992) on employment,

Levinthal (1991) on firm survival, and Stevenson and Wolfers (2007) on marriage have

established certain stylized facts about relationship dynamics. For instance, partnerships

often exhibit a “honeymoon effect” and a “survivorship bias” in that very young and very

old partnerships are often more profitable and less likely to end in the near future than

those of intermediate age. A rich theoretical literature has provided a foundation for such

dynamics in a context with one-sided incentives. For instance, in a labor search context (e.g.

Pissarides (1994)), workers will only start a new job and/or leave their current job when

42



presented with a sufficiently attractive new opportunity, so that new jobs will tend at first

to be highly productive honeymoons. Similarly, when each firm’s productivity is subject to

persistent random shocks (e.g. Jovanovic (1982)), longer-lived firms will tend to be those

that have received mostly positive shocks and hence be more likely to survive in the near

future.

This paper extends this existing literature by adding two-sided incentives and a rich

stochastic structure. The resulting theory generates potentially testable predictions about

the dynamics and duration of partnerships (and of search interludes between matches) in

novel applications ranging from supply-chain and customer relationships to joint ventures, as

well as potentially enriching the study of classic applications in labor and macroeconomics.

I conclude with a brief discussion of a few directions that I hope to pursue in future work.

Macroeconomic shocks. One interesting direction for future research would be to consider

the interaction between macroeconomic shocks and partnership performance and turnover

dynamics. For instance, suppose that all active partnerships are subject to common mul-

tiplicative shocks to productivity,27 but that matching costs do not change over time. In

this context, positive shocks naturally induce greater search, as players care relatively more

about finding a better match. Such intensified search will lead to (i) less stable and hence

less productive partnerships but also (ii) higher-quality matches, with implications for how

macroeconomic shocks affect equilibrium social welfare.

Transitional dynamics. Similarly, it would be interesting to adapt this paper’s analysis to

characterize transitional dynamics, when the partnership market is not in steady state after

a macroeconomic shock. This could shed new light, for instance, on how the activity of labor

markets varies over a recessionary cycle.

Changing individuals. In this paper, each player’s next partnership is stochastically identical

to his current one. In other words, all shocks are to partnerships, not to the individuals

in those partnerships. Of course, individuals may also change in ways that will persist in

a new match. Enriching the model to allow for such personal characteristics is important

27That is, stage-game payoffs take the form �t�it(et;xt) where xt is a partnership-specific state and �t is

a common factor in all active partnerships.
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and could have profound implications for the steady-state distribution of the partnership

market. For one thing, the set of players seeking to re-match will be adversely selected. This

could increase active partners’ desire to avoid the re-matching market, creating a still deeper

adverse selection in this market.

Endogenous learning. The model here can capture a wide variety of “learning” settings in the

spirit of Jovanovic (1979a), including ones in which players make investments to increase the

precision of a public signal about an unobserved payoff-relevant parameter. (Such investment

could be one aspect of players’ multi-dimensional effort.) When investing in a more precise

signal of the underlying state, players create short-term volatility in their beliefs about the

state. Such volatility can increase the value of the players’ option to exit, but could also be

harmful if it disrupts an otherwise productive partnership. This suggests a speculation, that

players in a stable relationship may actively seek to avoid uncovering new information, while

players in a rocky relationship may seek to uncover as much new information as possible.

Appendix

Proof of Lemma 1.

Proof. Because (Ct : t ≥ 0) is a Markov process, the optimal exit rule is memoryless:

there exists an “optimal exit-set” E ⊂ R++ such that the players terminate the partnership

in the first period t in which ct ∈ E. A necessary condition of optimality is that, given

work threshold cW and exit-set E, expected joint payoff is maximized by terminating the

partnership when the current state is in E and by otherwise not terminating the partnership.

Indeed, given that (log(Ct) : t ≥ 0) is a random walk and joint stage-game payoff each

period is non-increasing in the state ct, this necessary condition pins down the optimal exit-

set as of the form E = [cE(cW ; v),∞), for some exit threshold cE(cW ; v). (The details are

straightforward and omitted to save space. See e.g. Dixit and Pindyck (1994).) To complete

the proof, I need to show that cE(cW ; v) = �(v)cW , where �(v) is non-increasing in v.

Suppose for the moment that cE(cW ; v) > 0. A necessary condition of optimality is

that, conditional on c0 = cE(cW ; v), players’ joint payoff is the same whether they both stay
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or quit, given that continuation play will be according to thresholds (cW , cE(cW ; v)). (If

cE(cW ; v) = 0, joint payoff must be weakly higher when players quit, and the argument is

easily modified.) In particular,

E[#{t ∈ {1, 2, ...,T (cE(cW ; v))} : Ct ≤ cW}∣c0 = cE(cW ; v)]

= v Pr
(
T diei = T (cE(cW ; v))∣c0 = cE(cW ; v)

)
. (26)

where T (cE) denotes the stopping time of the partnership when both players adopt exit

threshold cE, and T diei is the time of player i’s death. (26) is an indifference condition. LHS

of (26) captures the benefit of staying in the partnership, that each player will enjoy some

future periods in which both will work (when ct ≤ cW ) with stage-game payoff of one. RHS

of (26) captures the benefit of quitting, that each player will avoid the possibility of losing

their outside option v to death. (If T diei > T (cE(cW ; v)), then player i survives as either a

“widow” or “divorcee”.)

By definition, T (cE) is the first time at which ct > cE and/or some player dies. Con-

ditional on c0 = cE, then, T (cE) is the first time at which Ct

C0
> 1 and/or some player

dies. Since log(Ct) is a random walk, the distribution of Ct

C0
is independent of C0. Thus,

the distribution of T sep = min{t : Ct

C0
> 1}∣(c0 = cE) does not depend on cE. (T sep is

mnemonic for “time of separation”.) Since T (cE) = min{T sep, T diei , T diej ∣} and death is in-

dependent of separation, we conclude that (i) T (cE)∣(c0 = cE) does not depend on cE and

(ii) Pr
(
T diei = T (cE)∣c0 = cE

)
does not depend on cE. In particular, the RHS of (26) does

not depend on cE(cW ; v), and the LHS of (26) depends on cE(cW ; v) only through the ratio

cE(cW ;v)
cW

≡ �(v) (again, because (log(Ct) : t ≥ 0) is a random walk). We conclude that, for all

work thresholds cW > 0, the optimal exit threshold cE(cW ; v) = �(v)cW for some �(v) ≥ 0.

The key observation to prove that cE(cW ; v) is non-increasing in v is that the LHS of (26)

is non-increasing in the exit threshold, i.e. E[#{t ∈ {1, 2, ..., T (cE)} : Ct ≤ cW}∣c0 = cE] is

non-increasing in cE. To see why, note that (log(Ct) : t ≥ 0) being a random walk implies

(i) the distribution of T (cE)∣(c0 = cE) does not depend on cE and (ii) Pr(Ct ≤ cW ∣c0) is

non-increasing in c0. On the other hand, as discussed above, Pr
(
T diei = T (cE)∣c0 = cE

)
does

not depend on cE. By (26), then, cE(cW ; v) is non-increasing in v.
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Proof of Lemma 2.

Proof. As shorthand, let “v-SPE” refer to a SPE of the partnership game when the players’

outside option equals v.

Part I: c∗W (vℎ) ≤ c∗W (vl). Suppose there exists a vℎ-SPE in which players adopt work

threshold cW (vℎ). I will show that there exists a vl-SPE in which players adopt the same

work threshold cW (vℎ) and the vl-optimal exit threshold �(vl)cW (vℎ) (see Lemma 1). This

will imply that c∗W (vl) ≥ c∗W (vℎ).

As an intermediate step, suppose that players were to adopt the vℎ-SPE strategies given

outside option vl. That is, the players both adopt work threshold cW (vℎ) and quit at exactly

the same histories as in the vℎ-SPE. Given outside option vℎ, at every on-path history at

which ct ≤ cW (vℎ), each player gets continuation payoff after time-t efforts of at least ct+v
ℎ.

(Otherwise, each player would prefer to shirk and then quit should he survive to the end

of period t.) Given outside option vl, each player’s stream of payoffs differs only in that he

gets vℎ− vl less when enjoying his outside option. Since he survives after time-t efforts only

with probability , each player’s continuation payoff is at most (vℎ − vl) lower than given

outside option vℎ. At every on-path history at which ct ≤ cW (vℎ), then, each player gets

continuation payoff after time-t efforts of at least ct + vl. Thus, each player is willing to

adopt work threshold cW (vℎ) given outside option vl if players were to follow the quitting

strategies of the vℎ-SPE.

Now, suppose that both players adopt work threshold cW (vℎ) as in the vℎ-SPE but

now adopt vl-optimal exit threshold �(vl)cW (vℎ). Since this exit threshold maximizes each

player’s payoff from every history, each player’s continuation payoff from every history is no

less than when vℎ-SPE quitting strategies were followed. Thus, both players remain willing

to adopt work threshold cW (vℎ). Further, by the proof of Lemma 1, both players are willing

to adopt exit threshold �(vl)cW (vℎ) when they both adopt work threshold cW (vℎ). Namely,

(cW (vℎ), �(vl)cW (vℎ))-threshold equilibrium exists given outside option vl.

Part II: c∗W (vl) − c∗W (vℎ) ≤ vℎ − vl. Let ĉW = c∗W (vl) − (vℎ − vl) and recall that �(v)cW

is the optimal exit threshold given a work threshold cW and outside option v. To show that

c∗W (vℎ) ≥ ĉW , it suffices to show that there exists (ĉW , ĉE(vℎ))-threshold equilibrium given

46



outside option vℎ, where I will use notation ĉE(ṽ) = �(ṽ)ĉW . To establish such equilibrium

existence, in turn, it suffices to check that players are willing to work should c0 = ĉW ,

conditional on continuation play according to the work and exit thresholds (ĉW , ĉE(vℎ). (For

details of this step, see the proof of Proposition 1.) Since ĉE(vℎ) is the optimal exit threshold

given work threshold ĉW and outside option vℎ, each player’s continuation payoff inside the

partnership is weakly greater than under the sub-optimal exit threshold ĉE(vl). Thus, it

suffices to check that players are willing to work should c0 = ĉW , conditional on continuation

play according to thresholds (ĉW , ĉE(vl).28 That is, I need only show that

E
[
#
{
t ∈ {1, 2, ..., T (ĉE(vl))} : Ct ≤ ĉW

}
∣c0 = ĉW

]
≥ ĉW + vℎ Pr

(
T diei = T (ĉE(vl))∣c0 = ĉW

)
(27)

Using the fact that log(Ct) is a random walk, ĉE(vl)
ĉW

= c∗E(vl)
c∗W (vl)

= �(vl) implies that the LHS

of (27) equals E[#{t ∈ {1, 2, ..., T (c∗E(vl))} : Ct ≤ c∗W (vl)}∣c0 = c∗W (vl)]. Next, the RHS

of (27) is at most c∗W (vl) + vl Pr(T diei = T (c∗E(vl))∣c0 = c∗W (vl)) since (i) ĉW = c∗W (vl) −

(vℎ − vl) and (ii) Pr(T diei = T (c∗E(vl))∣c0 = c∗W (vl)) = Pr
(
T diei = T (ĉE(vl))∣c0 = ĉW

)
≤ 1.

The desired inequality (27) then follows from the fact that (5) holds with equality when

cW = c∗W (vl), cE = c∗E(vl), and v = vl.

Proof of Lemma 3.

Proof. Let Πeqm
it (xt, et; v) = E

[
Πeqm

Σt+1(Xt+1, et; v)∣xt, et
]

be shorthand for player i’s ex-

pected time-t continuation payoff, after efforts et from history (xt, et−1), should both players

subsequently choose to stay to period t+ 1 upon surviving period t. Figure 7 illustrates the

key idea of Lemma 3. As long as Πeqm
Σt (xt, et; v) exceeds the players’ joint payoff after exit,

vΣ, plus their joint incentive to shirk from efforts et, cΣt(et;xt), there exists a retention

bonus promise given which both players have sufficient incentive to exert efforts et and then

stay. Further, this promise is credible since each player promises less than his willingness to

pay to avoid cooperation breakdown.

28The argument here does not presume existence of (ĉW , ĉE(vl))-threshold equilibrium given outside option

vℎ. (Indeed, such strategies do not constitute an equilibrium, since players have an incentive to quit sooner

given a higher outside option.)
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vi cit(et;xt) vjcjt(et;xt)

wit

Πeqm
it (xt, et; v) Πeqm

jt (xt, et; v)

Figure 7: Efforts et are incentive-compatible when player i pays wage wit (and wjt = 0).

Let Δit(et) = Πeqm
it (xt, et; v) − vi − cit(et;xt) denote player i’s “excess continuation

payoff”, the extra profit that he enjoys inside the partnership after efforts et, relative to

deviating with zero effort and then quitting the relationship. Δit(et) is the most that player

i can credibly promise to pay player j as a reward for not deviating from the prescribed

efforts et and then not quitting.29

Without loss, suppose that Δit(et) ≥ Δjt(et). If Δit(et) + Δjt(et) < 0, then at least

one player who exerts positive effort must strictly prefer to deviate by exerting zero ef-

fort and then quitting, given any credible wage. Otherwise, any retention bonus wit ∈

[max{0,−Δjt(et)},Δit(et)] from player i to player j can credibly support efforts et. Thus,

effort-profile et can be supported in some SPE iff Δit(et) + Δjt(et) ≥ 0, i.e. iff et satisfies

(18). This completes the proof, since then the maximal SPE joint welfare given the specified

continuation payoffs is the solution to (17).

Proof of Theorems 1-2.

Proof. Let Π
eqm

t (xt, et−1; v) ∈ R2 be the players’ payoff profile in a SPE that maximizes joint

welfare among all SPE from history (xt, et−1), and let Π
eqm

Σt (xt, et−1; v) = ΣiΠ
eqm

it (xt, et−1; v).

Outline of proof. I will construct a monotonically decreasing sequence of bounds on SPE

joint welfare from each history, (Π
k

Σt(xt, et−1; v) : k ≥ 0), that converges pointwise to

29Should efforts et be played, player i becomes willing to pay up to Δit(et)+cit(et;xt) to avoid exit. Then,

should both players survive and stay to period t + 1, player i becomes willing to pay more still to avoid

a transition to an optimal punishment continuation SPE in which both players exert zero effort, pay zero

wages, and exit for certain at time t+ 1. Thus, player i has sufficient incentive to exert his prescribed effort,

then stay, then pay the specified bonus.

48



Π
eqm

Σt (xt, et−1; v), and show that this maximal joint payoff is implemented by SPE strate-

gies as specified in Theorem 1. Further, Π
k

Σt(xt, et−1; v) is non-decreasing in xt for each k,

as well as in the limit Π
eqm

Σt (xt, et−1; v), establishing Theorem 2.

Part I: Decreasing sequence of bounding payoff-profile sets. By Assumption 1, there exists a

uniform upper bound M on players’ joint payoff at any history. Define Π
0

Σt(xt, et−1; v) = M

at all histories. Clearly, Π
0

Σt ≥ Π
eqm

Σt . Next, for all k ≥ 1, define Π
k

Σt(xt, et−1; v) recursively

as follows (using shorthand et = (et−1, et)):

Π
k

Σt(xt,et−1; v) = max
et

(
�Σt(et;xt) + max

{
vΣ, E

[
Π
k−1

Σt+1(Xt+1, et; v)∣xt, et
]})

(28)

subject to cΣt(et;xt) ≤ max
{

0, E
[
Π
k−1

Σt+1(Xt+1, et; v)∣xt, et
]
− vΣ

}
. (29)

Assuming that Π
k−1

Σt+1(xt+1, et; v) are upper bounds on joint payoff at time t+1, then (29) is a

necessary condition for efforts et to be supported in any SPE from history (xt+1, et). Proof:

Players expect joint “inside continuation payoff” of at most E
[
Π
k−1

Σt+1(Xt+1, et; v)∣xt, et
]

should they choose effort-profile et and then both stay should both survive. If players’ joint

outside option vΣ exceeds this bound, then at least one player strictly prefers to quit and

neither player can be incentivized to exert any costly effort. Otherwise, players’ joint cost

of effort cΣt(et;xt) must be less than or equal to the amount by which their joint inside

continuation payoff exceeds their joint outside option. (If not, at least one player would

strictly prefer to deviate by exerting zero effort and then quitting.) Indeed, by Lemma

3, (29) is also a sufficient condition to support time-t efforts et in SPE given continuation

payoffs Π
k−1

Σt+1(xt+1, et; v).

Since Π
0

Σt(xt, et−1; v) is an upper bound on joint payoff, Π
0

Σt(xt, et−1; v) ≥ Π
1

Σt(xt, et−1; v).

By induction, Π
k

Σt(xt, et−1; v) is non-increasing in k. (The value of the maximization (28) is

non-decreasing in continuation payoffs. Thus, Π
k

Σt+1(xt+1, et; v) ≤ Π
k−1

Σt+1(xt+1, et; v) for all

(xt+1, et) implies Π
k+1

Σt (xt, et−1; v) ≤ Π
k

Σt(xt, et−1; v).) Further, by induction, Π
k

Σt(xt, et−1; v) ≥

Π
eqm

Σt (xt, et−1; v) for all k. (Higher-than-equilibrium payoffs can be supported given higher-

than-equilibrium continuation payoffs. Thus, the fact that Π
k−1

Σt (xt, et−1; v) ≥ Π
eqm

Σt (xt, et−1; v)

implies Π
k

Σt(xt, et−1; v) ≥ Π
eqm

Σt (xt, et−1; v).)

Part II: These upper bounds on joint welfare are non-decreasing in xt.
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Base step: k = 0. Π
0

t (xt, et−1; v) = M is constant and hence trivially non-decreasing in xt.

Induction step: k ≥ 1. Suppose that Π
k−1

t (xt, et−1; v) is non-decreasing in xt for all t. Ob-

serve that, for any xHt ર xLt ,

E[Π
k−1

Σt+1(Xt+1; et; v)∣xHt , et]) =

∫ ∞
0

Pr(Π
k−1

Σt+1(Xt+1; et; v) > z∣xHt , et; v)dz

≥
∫ ∞

0

Pr(Π
k−1

Σt+1(Xt+1; et; v) > z∣xLt , et; v)dz (30)

= E[Π
k−1

Σt+1(Xt+1; et; v)∣xLt , et])

By the induction hypothesis, {xt+1 ∈ Xt+1 : Π
k−1

t+1 (Xt+1; et; v) > z} is an increasing subset of

Xt+1 for all z. Inequality (30) now follows from Assumption 3. Thus, for any given effort-

history et, max
{
vΣ, �E

[
Π
k−1

Σt+1(Xt+1, et; v)∣xt, et
]}

is non-decreasing in xt, so that higher xt

slackens the IC-constraint (29) while increasing the second term of (28). Finally, the first

term of (28) is non-decreasing in xt by Assumption 2. All together, we conclude that the

value of the maximization (28) is non-decreasing in xt. This completes the desired induction.

Let Π
∞
Σt(xt, et−1; v) denote the pointwise limit of Π

k

Σt(xt, et−1; v) as k → ∞. Since

Π
k

Σt(xt, et−1; v) is non-decreasing in xt for all k, Π
∞
Σt(xt, et−1; v) inherits this monotonicity

as well.

Part III: Limit of upper bounds can be achieved in SPE. It suffices now to show that

Π
∞
t (xt, et−1; v) = Π

eqm

t (xt, et−1; v). As shown earlier, Π
∞
t (xt, et−1; v) ≥ Π

eqm

t (xt, et−1; v). Let

et(xt, et−1) denote a limit of any sequence of solutions to (28) subject to (29), as k →∞. By

construction, efforts et(xt, et−1) are incentive-compatible if players expect continuation play

in later periods that generates time-(t+1) payoffs of Π
∞
t+1(xt+1, et; v) for each player. Again by

construction, these efforts generate continuation payoffs Π
∞
t+1(xt+1, et; v); thus, these strate-

gies constitute a joint-welfare maximizing SPE. Thus, Π
∞
t (xt, et−1; v) ≤ Π

eqm

t (xt, et−1; v).

This completes the proof.

Proof of Theorem 3

By Theorem 2, joint payoff Π
eqm

Σt (xt, et−1; v) in the joint-welfare maximizing SPE is weakly

increasing in xt for all (et−1, v) . Given an exogenous stochastic process, further, such payoffs
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do not depend on the history of efforts. Since outside options v = (vi, vj) are held fixed, I

will henceforth use the simpler notation Π
eqm

Σt (xt) here.

Proof of (i). Recall that Π
eqm

Σt (xt) = maxet
(
�Σt(et;xt) + max

{
vΣ, E

[
Π
eqm

Σt+1(Xt+1)∣xt
])}

subject to the IC-constraint cΣt(et;xt) ≤ max
{

0, E
[
Π
eqm

Σt+1(Xt+1)∣xt
]
− vΣ

}
. Joint contin-

uation payoff should period t+ 1 be reached,

E
[
Π
eqm

Σt+1(Xt+1)∣xt
]

=

∫ ∞
0

Pr
(
Π
eqm

Σt+1(Xt+1) > z∣xt
)

dz, (31)

is weakly increasing in xt: {xt+1 : Π
eqm

Σt+1(Xt+1) > z} is an increasing subset of Xt+1 so that,

by Assumption 3, each of the probability terms in (31) is weakly increasing in xt. Finally,

since efforts do not control future payoffs, time-t efforts in the optimal SPE will be chosen

to maximize joint stage-game payoff subject to the IC-constraint. Since joint continuation

payoff is weakly increasing in xt, so is the set of effort-profiles et satisfying the IC-constraint.

Consequently, realized joint stage-game payoff is weakly increasing in xt.

Proof of (ii). Let QUITt = {xt ∈ Xt : Π
eqm

Σt (xt) < vΣ} and STAYt = Xt∖ QUITt denote

the set of time-t states in which both players quit and stay, respectively, in the joint-welfare

maximizing SPE of Theorem 1. Since joint continuation payoff is weakly increasing in xt by

Theorem 3(i), STAYt is an increasing set for all t.

Let pkt (xt) denote the probability that the partnership will survive until at least time

t+k, conditional on Xt = xt. I need to show that, for each k ≥ 1, pkt (xt) is weakly increasing

in xt. The proof is by induction.

Base step. At any time t, the partnership is certain to end if xt ∈ QUITt and otherwise ends

with probability 1 − 2 if xt ∈ STAYt. Thus, p1
t (xt) being weakly decreasing in xt follows

directly from STAYt being an increasing subset of Xt.
30

Induction step. As the induction hypothesis, suppose that pmt (xt) is weakly increasing in xt

for all t and all m = 1, ..., k − 1. I need to show that pkt (xt) is weakly increasing in xt for all

t. Note that

pkt (xt) = p1
t (xt)E

[
pk−1
t+1 (Xt+1)∣Xt = xt

]
(32)

30DETAILS FOR REFEREES: (i) p1
t (xt) ∈ {1− 2, 1} for all xt, (ii) p1

t (xt) = 1 implies p1
t (x′t) = 1 for all

x′t ≺ xt, and (iii) p1
t (xt) = 1− 2 implies p1

t (x′t) = 1− 2 for all x′t ≻ xt.

51



(The partnership survives for k periods iff it survives for k − 1 periods after first surviving

for one period.) The base step showed that p1
t (xt) is weakly increasing in xt. It suffices now

to show the same of the expectation term

E

[
pk−1
t+1 (Xt+1)

∣∣Xt = xt

]
=

∫ 1

0

Pr

(
pk−1
t+1 (Xt+1) > p

∣∣Xt = xt

)
dp (33)

By the induction hypothesis, each set {xt+1 ∈ Xt+1 : pk−1
t+1 (xt+1) > p} is an increasing subset

of Xt+1. By Assumption 3, we conclude that each of the probability-terms in (33) is weakly

increasing in xt. This completes the proof.

Proof of Theorem 4

As argued in the text, no joint outside option greater than vΣ can possibly be supported

in partnership-market equilibrium. To complete the proof, it suffices to verify that the

strategies specified in Theorem 4 constitute a SPE and generate outside options vΣ. (The

theorem specifies play on the equilibrium path; augment this with shirking and quitting to

start a fresh relationship should either player deviate from this path of play.)

Let p̂ =
E[Πeqm

Σ0 (X0;vΣ)]−vΣ

E[Πeqm
Σ0 (X0;vΣ)]−vΣ

be the probability with which players shirk and quit immedi-

ately based on the public randomization. Note that, by construction,

p̂vΣ + (1− p̂)E
[
Π
eqm

Σ0 (X0; vΣ)
]

= vΣ. (34)

Thus, if players adopt the specified strategies, market-wide play generates ex ante expected

joint payoff vΣ at birth, supporting the maximal joint outside option vΣ. It suffices now to

show that these strategies constitute a SPE. First, players are willing to shirk and quit when

the public randomization is less than p̂, since they expect uncooperative continuation play

in the current relationship. Second, given joint outside option vΣ, Theorem 1 specifies SPE

continuation play should the public randomization be more favorable. This completes the

proof.

Proof of Theorem 5

Proof. To complete the proof, it suffices to show that E[Π
eqm

Σ0 (S0, Y0; vΣ)] is continuous in

vΣ. (Recall that Xt = (S0, Yt) where S0 ∼ U [0, 1] is the partners’ “first impression”; see
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Assumption 6.) If so, the maximization (24) requires that vΣ = E[Π
eqm

Σ0 (S0, Y0; vΣ)], which

in turn is only possible if a probability-one measure of partnerships achieve the maximal

joint equilibrium payoff Π
eqm

Σ0 (S0, Y0; vΣ) given their endogenous outside options.

An increase in joint outside option from vΣ to vΣ +" has two effects on the maximal SPE

joint payoff. First, the direct effect is that players enjoy higher joint payoff when quitting

and quit whenever they were previously almost indifferent to doing so. This direct effect

increases joint payoff by at most ". Second, since E
[
Π
eqm

Σt+1(ℎt, et(ℎt; vΣ), Yt+1; vΣ)
]
− vΣ

is non-increasing in vΣ (see Part I of the proof of Theorem 6, which does not depend on

Theorem 5), an indirect effect is that players can support (weakly) fewer effort-profiles at

every history ℎt = (s0, yt, et−1). This decreases payoffs at those histories, inducing more exit

and less effort at previous histories, and so on in a backward cascade that decreases joint

payoff. This indirect effect of higher vΣ may have a discontinuous effect on ex post payoffs

but I will show that, when there are meaningful first impressions, it has a continuous effect

on ex ante expected payoffs.

Recall that players’ efforts et(ℎt; vΣ) maximize joint payoff subject to the IC-constraint

that joint continuation payoff is greater than or equal to joint outside option plus joint cost

of effort:31

cΣt(et(ℎt; vΣ);ℎt) ≤ E
[
Π
eqm

Σt+1(ℎt, et(ℎt; vΣ), Yt+1; vΣ)
]
− vΣ. (35)

I begin by showing that (35) binds with zero probability on the equilibrium path. Fix any

joint outside option vΣ, effort-profile et, history of effort profiles et−1, and state xt = (s0, yt).

By Assumption 6, cit(et; s0, yt) is strictly decreasing in s0 for each player i while, by the proof

of Theorem 2, E
[
Π
eqm

Σt+1(s0, yt, et−1, et, Yt+1; vΣ)
]

is weakly increasing in s0. Thus, if the IC-

constraint (35) binds for some efforts et at history (s0, yt, et−1), then for all sl0 < s0 < sℎ0 it fails

at history (sl0, yt, et−1) and is strictly satisfied at history (sℎ0 , yt, et−1). Since by assumption

there are finitely many effort-levels, (35) binds on et(s0, yt, et−1) for finitely many partnership

types s0 ∈ R. We conclude that, with probability one in the joint-welfare maximizing SPE,

31To simplify the presentation, I focus on the case in which there is a unique such maximizer at almost all

histories reached on the equilibrium path. More generally, the proof extends almost unchanged, when one

recognizes that a discontinuity of E
[
Π

eqm

Σ0 (S0, Y0; vΣ)
]

in vΣ requires that the IC-constraint be binding on

all such maximizers at a set of histories reached with positive probability.
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the IC-constraint will not be binding on any effort-profile prescribed on the equilibrium path.

Next, I prove right-continuity, that lim"→0 Π
eqm

Σt (ℎt; vΣ + ") = Π
eqm

Σt (ℎt; vΣ) for all vΣ and

all histories ℎt reached with probability one on the equilibrium path. For this step, I employ

a variation on the algorithm used in the proof of Theorem 2 (illustrated in Figure 6). Fix

v̂Σ. For all histories ℎt and " ≥ 0, define

Π
1

Σt(ℎt; v̂Σ + ") = Π
eqm

Σt (ℎt; v̂Σ) + ".

Since the positive “direct effect” of higher joint outside option discussed earlier is at most "

and the “indirect effect” is always negative, Π
1

Σt(ℎt; v̂Σ + ") > Π
eqm

Σt (ℎt; v̂Σ + "). Also, clearly,

Π
1

Σt(ℎt; vΣ) is right-continuous at vΣ = v̂Σ for all histories ℎt.

As in Steps A-C of the algorithm illustrated in Figure 6, define

Π
1

Σt(ℎt, et; vΣ) = max
{
vΣ, E

[
Π

1

Σt+1(ℎt, et, Xt+1; vΣ)∣ℎt, et
]}

ℱ2
t (ℎt; vΣ) =

{
et : vΣ + cΣt(et;xt) ≤ Π

1

Σt(ℎt, et; vΣ)
}

Π
2

Σt(ℎt; vΣ) = max
et∈ℱ2

t (ℎt;vΣ)

(
�Σt(et;xt) + Π

1

Σt(ℎt, et; vΣ)
)

As argued above, the IC-constraint (35) is not (exactly) binding for any effort-profile at

a probability-one set of histories reached on the equilibrium path. At each such history,

ℱ2
t (ℎt; vΣ) is unchanging in a neighborhood of v̂Σ. Thus, the right-continuity of Π

1

Σt(ℎt, et; vΣ)

in vΣ implies right-continuity of Π
2

Σt(ℎt; vΣ) in vΣ, at a probability-one set of equilibrium

histories. Repeating this argument for all k ≥ 1, we conclude that Π
k

Σt(ℎt; vΣ) is right-

continuous in vΣ at v̂Σ at a probability-one set of equilibrium histories. Such continuity

carries over to the limit as well, so that maximal equilibrium joint payoff Π
eqm

Σt (ℎt; vΣ) is

right-continuous in vΣ at a probability-one set of histories. In particular, E[Π
eqm

Σt (S0; vΣ) is

right-continuous in vΣ at v̂Σ. The proof of left-continuity is similar, and omitted to save

space.

Proof of Theorem 6

Proof. Part I: vΣ −E[Π
eqm

Σ0 (X0; vΣ)] is strictly increasing in vΣ. In a slight variation on the

notation used in the text, let Π
eqm

Σt (ℎt; v
ℎ
Σ) denote the maximal SPE joint payoff from history
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ℎt = (xt, et−1) given joint outside option vℎΣ. Consider now a lower joint outside option

vlΣ ∈ [0, vℎΣ) and let Π̃Σt(ℎt; v
l
Σ) denote the joint payoff that would result should players

with joint outside option vlΣ mimic welfare-maximizing play as if it were vℎΣ. Note that the

stage-game payoff process and the partnership stopping time T are identically distributed

when players follow the same strategies. Thus, the only difference in payoffs arises from the

fact that players only get vlΣ when they survive but the partnership ends instead of vℎΣ. In

particular, for all histories ℎt,

Π
eqm

Σt (ℎt; v
ℎ
Σ)− Π̃Σt(ℎt; v

l
Σ) = (vℎΣ − vlΣ)

∑
t′≥t

t
′−t Pr(T = t′∣ℎt) ≤ 

(
vℎΣ − vlΣ

)
(36)

Let et(v
ℎ
Σ) denote the efforts played in the optimal SPE given joint outside option vℎΣ.

Observe that these efforts remain incentive-compatible given lower joint outside option vlΣ:

E
[
Π̃Σt+1(Ht+1; vlΣ)∣ℎt, et(vℎΣ)

]
≥ E

[
Π
eqm

Σt+1(Ht+1; vℎΣ)∣ℎt, et(vℎΣ)
]
− 

(
vℎΣ − vlΣ

)
(37)

≥ vℎΣ + cΣt(et(v
ℎ
Σ);xt)− 

(
vℎΣ − vlΣ

)
(38)

= cΣt(et(v
ℎ
Σ);xt) + vlΣ.

((37) follows from (36). (38) follows from the incentive-compatibility constraint (18) as ap-

plied to the optimal equilibrium given vℎΣ.) By similar logic, staying is incentive-compatible

given these mimicking strategies whenever players stay in the optimal equilibrium given

joint outside option vℎΣ. (Details omitted to save space.) Thus, these mimicking strate-

gies constitute a SPE given vlΣ. In particular, E[Π
eqm

Σ0 (X0; vlΣ)] ≥ E[Π̃0(X0; vlΣ)]. Thus,

E[Π
eqm

Σ0 (X0; vℎΣ)]−E[Π
eqm

Σ0 (X0; vlΣ)] ≤ 
(
vℎΣ − vlΣ

)
and we conclude that vΣ−E[Π

eqm

Σ0 (X0; vΣ)]

is non-decreasing in vΣ. Since  < 1, this implies that vΣ − E[Π
eqm

Σ0 (X0; vΣ)] is strictly in-

creasing in vΣ.

Part II: vΣ = E[Π
eqm

Σ0 (X0; vΣ)] has a unique solution vΣ. (a) Given zero outside option,

each player’s expected payoff is non-negative in any SPE of the partnership game. In par-

ticular, 0 ≤ E[Π
eqm

Σ0 (X0; 0)]. (b) Since joint payoffs are bounded (Assumption 1), vΣ ≥

E[Π
eqm

Σ0 (X0; vΣ)] for all large enough vΣ. (c) By Part I and the proof of Theorem 5, vΣ −

E[Π
eqm

Σ0 (X0; vΣ)] is strictly increasing and continuous in vΣ. Thus, vΣ = E[Π
eqm

Σ0 (X0; vΣ)] has

a unique solution.
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Proof of Claim 3

Proof. For all sufficiently small matching costs m, vΣ(m) is implicitly defined by vΣ(m) =

E[Π
eqm

Σ0 (X0; vΣ(m))]− 2m. (Each player pays m ≥ 0 to start a new partnership having joint

outside option vΣ(m). When m is sufficiently large, an active matching market cannot be

supported in equilibrium and vΣ(m) = 0.) In Part I of the proof of Theorem 6, I show that

vΣ−E[Π
eqm

Σ0 (X0; vΣ)] is strictly increasing in vΣ. Thus, vΣ(m) is strictly decreasing in m for

all small enough m.
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