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ABSTRACT

In this short paper we discuss a new methodology for estimating reserves for
IBNR (incurred but not reported) claims.
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1. IBNR EVALUATIONS

The past data (the upper triangle) are the key elements of IBNR cal-
culations. In almost any method, analysing the upper triangle is based
on well-known techniques from statistics, see e.g. Neter, Kutner,
Nachtsheim and Wasserman (1995). However, the essential problem
to be solved is the management of the risk associated with the future
(the lower triangle). Most methods estimate the lower triangle cell-
by-cell, and do not pay (enough) attention to the structure describing
the dependencies between these cells. Indeed, each cell must be con-
sidered as a univariate random variable being part of the multivariate
random variable describing the lower triangle. Hence, the IBNR
reserve must be considered as a (univariate) random variable being
the sum of the dependent components of the random vector describ-
ing the lower triangle.

Estimating the correlations from the past data, and using them for
multivariate simulations of the lower triangle is a dangerous tech-
nique because the insurer is especially interested in the tail of the dis-
tribution function by choosing his reserve as a percentile. In practice,
the insurer will choose a very high percentile as basis for his reserve.
From the viewpoint of the insured, the choice of a high percentile is
a safe strategy, and will as such be favored by the control authorities.
The determination of the reserve as a percentile makes it possible to
compute an explicit safety loading (= reserve minus expectation of
the payments). Fiscal authorities tend to prefer explicit (i.e. visible)
margins to implicit (i.e. hidden) margins. The choice of a high per-
centile is also important for the insurers’ rating. It is a key element in
a Risk Based Capital approach. In the Belgian and Dutch insurance
practice, we observe that insurers determine their reserves on per-
centiles such as 99.75%, or even higher. Hence, only very high time-
consuming multivariate simulations will lead to a su.cient number of
simulated values in such an extreme tail. Another disadvantage of a
simulation technique is that there is no way to measure the distance
between the “real” and the “simulated” distribution function. Hence,
there is no information available concerning the error that is involved
by using a simulation technique. Of course, a multivariate simulation
technique will only be possible if the whole dependency structure of
the lower triangle is known. In practice, we encounter situations
where only the distribution functions of each cell can be estimated
with enough accuracy, but where only limited information of the
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dependency structure can be obtained (because not enough data are
available). We can conclude that a multivariate simulation technique
is not the appropriate way to determine IBNR reserves.

As mentioned above, the “true” multivariate distribution function
of the lower triangle cannot be determined in most cases, because the
mutual dependencies are not known, or di.cult to cope with. The only
conceivable solution is to find upper and lower bounds for this sum
of dependent random variables which use as much as possible of the
available information. Hence, within a certain class of random vec-
tors (with given marginals, and eventually additional information),
we propose to look for upper and lower bounds for the sum of the
cells of the lower triangle. For details of this technique, we refer to
Redant and Goovaerts (1999), Goovaerts, Dhaene and De Schepper
(2000) and Kaas, Dhaene and Goovaerts (2000). The upper and
lower bounds presented in these papers are bounds in the sense of
convex order, which means that the expectations are exact and the
stop-loss premiums are ordered. The convex order can of course be
interpreted in terms of utility theory.

The “total variation distance” can be used as a measure between
the true distribution function and each of the bounds Moreover, the
proposed technique leads to a solution of the IBNR problemwhich is
similar to a “value at risk” approach in finance. The technique
described in the above-mentioned papers also allows to calculate the
conditional tail expectation or the remaining tail risk for a given per-
centile, i.e. for a given level of the IBNR reserve.

II. NUMERICAL ILLUSTRATION

The statistical model that will be used to describe the past and the
future claim amounts is a loglinear model which looks for trends in
the three directions, namely accident year, development year and cal-
endar year. An early reference to the use of such models in the actu-
arial literature is De Vylder and Goovaerts (1979). Given the statisti-
cal model for the claim amounts, the present value S of the future
IBNR payments follows from the vectors X =(X;, - - -, X,) and Y
=(Y,, - - -, Y,) where the vector X describes the future claim amounts
and the vector Y describes the discount process:

S=3X 7,
=1
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We assume that the vectors X and Y are mutually independent and
that both have lognormal marginals. Hence, S 1s a sum of dependent
lognormal random variables.

In order to 1llustrate the technique explained in Redant and
Goovaerts (1999), Goovaerts, Dhaene and De Schepper (2000) and
Kaas, Dhaene and Goovaerts (2000) for determining IBNR reserves,
we use the run-off triangle of Table 1 in Mack (1993), see also Taylor
and Ashe (1983) and Verral (1990, 1991) and references therein.
First, we will assume that Y = (1, - - -, 1), hence we discount at an
interest rate equal to 0.

In Figures 1 and 2, we use a loglinear model with 2 parameters in
the direction of the accident years (denoted by «;) and 4 parameters
in the direction of the development years (denoted by f,) as is char-
acteristic for the chain-ladder model. No parameters are used in the
calendar year direction.

This model is obtained as a conceivable model (given the data),
from the software VACS-LRC.We call this model the “6 parameter
model”:

J
11‘1/X/,-j: a/,-+ E ﬁk+ 8,‘]‘,
=1

where X); is the claim amount of accident year i and development
year j and the ¢; are mutually independent normally distributed ran-
dom variables (with zero mean and variance equal to 0.069). The
parameters «; and f3, are given by:

@ = 12.514; & = - = &y = 12.838; B, = 0.938; f, = ~0.579; fis =
fs = B =—-0.219; g = —1.089.

The remaining /s are non-signi.cant (equal to 0).

Figure 1 shows the probability density function (pdf) of the opti-
mal approximation bound, as explained in Kaas, Dhaene and
Goovaerts (2000). This approximation can be shown to be very
close to the real distribution function. The closeness can be illus-
trated by the fact that the first moments are equaland the second
moments are almost equal: The “real” standard deviation equals
1,355,969, whereas the standard deviation of the lower bound
equals 1,341,161, An estimate for the 99,75% percentile is given by
22,111,049.
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FIGUUR 1
6-Parameter-Model: Optimal Approximation
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Figure 2 shows the pdf of the comonotonic upper bound. Here, the
only information used to compute the distribution function of the
sum are the marginal distribution functions of the respective cells.
Given the marginal distribution functions, comonotonicity is the
dependency structure of the vector X which leads to the most risky
sum S (in the sense of convex order).

The standard deviation of the upper bound is given by 5,481,136
which is much higher than the real standard deviation, as could be
expected. The estimate for the 99.75% percentile now equals
39,779,075, This estimate is of course much higher than the estimate
in Figure 1. This comes from the fact that in order to determine the
best approximation, we make use of the (estimated values of the) cor-
relations between the cells of the lower triangle, whereas in Figure 2,
the distribution function is an upper bound (in the sense of convex
order) for any possible dependency structure between the compo-
nents of the vector X.
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FIGUUR 2
6-Parameter Model: Comonotonic Upper Bound
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In Figure 3, we show the pdf of the optimal approximation of
S, when we take a stochastic discounting process into account. We
assume that the yearly returns are lognormally distributed (with
parameters x and o) and mutually independent. Three di.erent sce-
narios are presented: scenario 1 (# =+0.05 and ¢ = 0.03), scenario
2( 4 = 0.08 and ¢ = 0.1) and finally, the case of no discounting.
We observe that increasing the expected yearly return shifts the
pdf to the left, and increasing the variance of the yearly return
makes the pdf broader. Remark that in scenario 1 the 95% per-
centile is given by 18,435,063, whereas in scenario 2 this per-
centile is given by 19,751,126 and in the case of no discounting
the 95% percentile equals 20,274,672. Hence, as could be
expected, stochastic discounting will normally diminish the
required reserve.
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FIGUUR 3
6-Parameter Model: Optimal Approximation,
Different Discount Processes
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Finally, remark that the second scenario leads to a higher reserve
than the first one, which means that the e.ect of the higher
expected return (which tends to decrease the reserve) is overshad-
owed by the e.ect of the higher variability (which tends to increase
the reserve).

NOTES

1. The computations of Section II have been performed with the software VACS-LRC.
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