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ABSTRACT 

In this short paper we discuss a ilew iilethodology for estiinating reserves for 
IBNR (incui-i-ed but not reported) claims. 



I. IBNR EVALUATIONS 

Tlie past data (tlie upper triangle) are the key eleiiieiits of IBNR cal- 
culations. Iii alniost aiiy method, analysing the upper triangle is based 
on well-known techiiiques from stat~stics, see e.g. Neter, Kutner, 
Nachtsheiin and Wassermail (1 995). However, the esselitial problem 
to be solved is the inanageineiit of tlie risk associated with tlie filture 
(the lower triangle). Most inethods estiinate the lower triaiigle cell- 
by-cell, atid do iiot pay (enough) attention to tlie structure describing 
the dependencies betweeii +ese cells. Indeed, each cell inust be con- 
sidered as a uiiivariate random variable being part of the inultivariate 
randoin variable describing the lower triangle. Hence, the IBNR 
reseive must be coilsidered as a (uiiivariate) random variable being 
the sum of the dependent coniponents of the random vector describ- 
ing the lower triangle. 

Estimating the correlations from the past data, and using thein for 
multivariate simulatioiis of the lower triangle is a daiigerous tecli- 
nique because the insurer is especially interested in the tail of the dis- 
tribution function by choosing his reserve as a percentile. In practice, 
tlie insurer will clioose a vesy high percentile as basis for his reserve. 
Froin the viewpoint of the insured, tlie choice of a high percentile is 
a safe strategy, and will as such be favored by tlie control authorities. 
The detenninatioii of the reserve as a percentile maltes it possible to 
compute an explicit safety loading (= reserve ininus expectatioii of 
the payments). Fiscal authorities tend to prefer explicit (i.e. visible) 
inargins to iiiiplicit (i.e. hidden) margiiis. Tlie choice of a liigli per- 
centile is also iinportant for the insurers' rating. It is a key eleinent in 
a Risk Based Capital approach. 111 tlie Belgian and Dutch iiisurance 
practice, we observe that insurers determine their reserves on per- 
centiles such as 99.75%, or even higher. Hence, only vesy high time- 
consuming multivariate simulations will lead to a su.cient nuinber of 
siinulated values in sucli an extreine tail. Another disadvantage of a 
simulatioii teclinique is that there is no way to measure the distaiice 
betweeii the "real" and the "sitnulated" distribution function. Heiice, 
tliere is no infoimatioii available coiicerning the error that is involved 
by using a sirnulation techniqiie. Of course, a inultivariate simulation 
technique will only be possible if the whole dependency structure of 
the lower ti-iangle is lmowii. I11 practice, we encouilter sitiiations 
where only the distributioii filnctions of each cell caii be estimated 
with enough accuracy, but where only limited inforination of the 



depeiidency structure caii be obtained (because iiot enough data are 
available). We caii coiiclude that a multivariate simulation technique 
is not the appropriate way to determine IBNR reseiyes. 

As mentioiied above, the "true" in~iltivariate distribution function 
of the lower triangle caniiot be deteriniiied in most cases, because the 
inutual dependencies are not kiiowii, os di.cult to cope with. The only 
conceivable solution is to find upper aiid lower bounds for tliis suin 
of dependent random variables which use as iiiuch as possible of the 
available inforiiiation. Hence, within a certain class of random vec- 
tors (with given marginals, and evenrually additional information), 
we propose to look for uipper and lower bouiids for the sum of tlie 
cells of tlie lower triailgle. For details of this technique, we refer to 
Redant and Goovaerts (1999), Goovaests, Dhaene aiid De Schepper 
(2000) and Kaas, Dhaene and Goovaei-ts (2000). Tlie uipper and 
lower bouiids pi-eseiited in these papers are boui~ds in the sense of 
convex order, which means that the expectations are exact and the 
stop-loss preiniums are ordered. Tlie convex order can of coiirse be 
interpreted in temis of utility theoiy. 

The "total variation distance" can be used as a measure betweeii 
the tiue distribution function and each of the bounds Moreover, tlie 
proposed technique leads to a solution of the IBNR probleniwhich is 
sinlilar to a "value at risk" approach iii finance. The techiiique 
described in the above-mentioned papers also allows to calculate the 
conditional tail expectation os tlie reiiiaining tail risk for a given per- 
centile, i.e. for a given level of the IBNR reserve. 

11. NUMERICAL ILLUSTRATION 

Tlie siatistical znodel thai wil1 be used tû describe thc past and Ihe 
future claim ainounts is a logliiiear model wliich looks for trends iii 
the three directions, naniely accident year, development year and cal- 
eiidar year. AII early referente to tlie use of sucli rnodels in the achi- 
arial literature is De Vylder and Goovaerts (1979). Given the statisti- 
cal model for tlie claim ainounts, the present value S of the fiiture 
IBNR paymeiits follows froin the vectors X =(Xl, . . ., X,,) and Y 
=(Yl, . . ., Y,,) wbere the vector X describes the future claim ainounts 
and the vector Y describes tlie discount process: 



We assuine that the vectors X aiid Y are inutually independent and 
that both liave lognormal iiiarginals. Heiice, S is a sum of dependent 
lognorinal random variables. 

111 order to illustrate tlie technique explaiiied in Redant and 
Goovaerts (1 999), Goovaerts, Dhaene and De Schepper (2000) aild 
Kaas, Dhaene aiid Goovaerts (2000) for deteniiining IBNR reserves, 
we use tlie run-off triangle of Table 1 i11 Mack (1993), see also Taylor 
and Ashe (1983) aiid Verral (1990, 1991) aiid references therein. 
First, we wil1 assume tliat Y = ( l ,  . . ., l),  hence we discount at an 
iiiteresl rale eclual io 0. 

111 Figures l aiid 2, we use a loglinear model witli 2 paraiiieters iii 
the direction of the accident years (deiloted by a,) and 4 paranieters 
in tlie direction of the developinent years (deiioted by D,) as is cliar- 
acteristic for tlie chain-ladder inodel. No paraiiieters are used in tlie 
calendar year directioii. 

This niociel IS obtained as a conceivable inodel (given the data), 
from tlie software VACS-LRC.We cal1 this inodel tlie "6 parameter 
inodel": 

where X, is the claiin aniount of accident year i and developiiient 
year j and the c ,  are m~itually independent iionnally distributed ran- 
doin variables (with zero mean and variance equal to 0.069). The 
parameters a, and p, are given by: 

a, = 12.514; a, = = al, = 12.838; f l ,  = 0.938; fl4 = -0.579; = 

Pb = P7 = -0.219; Pg = -1.089. 

The remaining p's are non-signi.caiit (equal to 0). 
Figure l sliows the probabiliiy density f~~iiction (pdf) of the opti- 

mal approxiination bouiid, as explained in Kaas, Dhaene aiid 
Goovaerts (2000). Tliis approxiiiiation can be shown to be very 
close to the real distribution ftlilction. The closeness can be illus- 
trated by the fact that the first inoinents are equaland the second 
moments are alniost equal: The "real" standard deviation equals 
1,355,969, whereas the standard deviation of the lower bound 
equals 1,341,161. Aii estiniate for tlie 99,75% percentile is given by 
22,111,049. 



FIGUUR 1 

6-Porati~efrr-holo~r'el O~~trnlul 14ppin1 l~ncitroii 

Figure 2 shows tlie pdf of tlie coinonotonic upper bound. Here, tlie 
only iiiformation used to coinpute the distribution function of the 
suiii are the inarginal distribution hnctions of the respective cells. 
Giveil tlie rnargiiial distribution functions, comonotonicity is the 
dependeiicy structure of the vector X which leads to the most risky 
suili S (in the sense of convex order). 

The standard devirttion of the upper b o u d  is giver, Sy 5,481,136 
whicli is iiiuch Iiiglier than the real standard deviation, as could be 
expected. The estiinate For tlie 99.75% perceiitile iiow equals 
39,779,075. This estiinate is of course much higher than the estiinate 
in Figure 1. This coines froin tlie í'act tlial in order to deterniine the 
best approxiination, we make Lise of tlie (estiinated values of tlie) cor- 
relations between the cells of the lower triangle, whereas in Figure 2, 
tlie distributioii f~iiictioi~ is an upper bound (111 the seiise of coiivex 
order) for any possible depeiidency structure between the coinpo- 
iients of the vector X. 



In Figure 3, we show the pdf of the optililal approximatioii of 
S, when we talte a stochastic discounting process into account. We 
assume that the yearly returns are lognorinally distributed (with 
parameters p and a) and iilutually independent. Three di.ereiit sce- 
na r io~  are preseilted: scenario l ( p  =-0.05 and a = 0.03), scenario 
2( p = 0.08 and CJ = 0.1) aild finally, the case of ilo discounting. 
We observe that increasing the expected yearly return shifts the 
pdf to the left, and increasing the variance of the yearly return 
iilaltes the pdf broader. Reinark that in scenario 1 the 95% per- 
ceiitile is given by 18,435,063, whereas in scenario 2 this per- 
ceiitile is given by 19,751,126 and in the case of no discouiiting 
the 95% percentile eqiials 20,274,672. Hence, as could be 
expected, stochastic discounting wil1 nornially diininis11 the 
required reserve. 



FIGUUR 3 
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Finally, remark that the second scenario leads to a higher reserve 
than the first one, which means that the e.ect of the higher 
expected return (which teilds to decrease the reserve) is overshad- 
owed by the e.ect of the higher variability (which tends to increase 
the reserve). 

NOTES 

I The coinputations of Section 11 have been performed with Lhe software VACS-LRC. 
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