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Are Basic Science and Biotechnology Complementary Activities? 

 A decade ago, most U.S. farmers thought genetically modified seed was in their distant 

future.  Today, transgenic crops have substantial market share, including 50% of the corn, 45% 

of the cotton, and 60% of the soybeans grown in the United States.  The cost and environmental 

advantages of the pest and herbicide resistance in transgenic plant and animal material is only 

the beginning of the picture.  New generations of plant and animal tissue will embody novel 

product characteristics, enabling marketers to cater to specific demand profiles in ways 

unthinkable in the past.   These opportunities will revolutionize agricultural research, extension, 

production, and marketing.   

The revolution came about through a discrete jump in scientific knowledge.   Discovery 

of recombinant DNA in the 1950s and 1960s led, after a substantial incubation period, to 

practical protocols for transferring potentially useful genes from one organism to another.  The 

exploitation of these protocols soon led to patentable products, which found their way to 

market after years of field trials.  Applied agricultural research in the biotechnological era has 

become increasingly science-based, less dependent on trial-and-error than in earlier years 

(Narin, Hamilton, and Olivastro 1997; Mansfield 1995).  For example, a typical biotechnology 

patent document now cites an average of 15 to 20 scientific publications, an increase since even 

the mid-1990s and far higher than the one per patent document in non-biotech fields (CHI 

Research).  As Arora and Gambardella (1993, 1994) point out, this has tended to universalize 

the categories with which applied technology operates, fostering greater communication 

between researchers in related fields.  

 Implications of the new science-based technology growth are profound.  The enhanced 

research returns which recombinant DNA have made possible likely are responsible for much 
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of the rise in R&D expenditures – and share of R&D in total investment – in the agricultural 

input industries since the 1970s.  Just as importantly, the increasingly universal terms in which 

applied R&D can be conducted have enabled a greater division and specialization of research 

effort.  Once, that is, science has mapped the broad features of the biophysical terrain, 

technologists can more easily partition this space for more detailed prospecting, coordinating 

their efforts through the language of molecular biology (Paul, Mowery, and Steinmueller 

1992).   

The emergence of a common technological paradigm, like the rise of standardized 

commodity grade standards sixty years ago, is in turn facilitating the growth of a market-based 

research system.  Thus, the private sector’s share of agricultural research is growing rapidly 

(Fuglie, et al. 1995) and patent protection is granted for an ever-widening array of product and 

process innovations (Jaffe 1999).  The increasing ease of obtaining intellectual property 

protection, that is, can be viewed as an endogenous response to the increased ease of dividing 

innovation processes into sub-tasks, which stimulates the demand for transactions in 

intellectual property. 

The Issues 

 Specialization of agricultural R&D functions poses a challenge to economic analysis.  

Studies of the returns to public agricultural R&D traditionally have employed university 

research and extension expenditures as shift terms in a production or cost function of a class of 

farm commodities (Fuglie, et al. 1998; Huffman and Evenson 1995; Khanna, Huffman, and 

Sandler 1994; Alston, Norton, and Pardey 1993; Pardey and Craig 1989).  This approach 

exploited readily available data and permitted direct inferences about the social welfare effects 

of public expenditure decisions.  Furthermore, the concentration of research in public 
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institutions obviated the need for explicit models of public-private relationships or of 

intellectual property issues.  With the science-based biotechnology revolution well underway, 

new approaches are needed.  Now, a clear understanding of the returns to public investment in 

agriculture requires a detailed examination of the relationship between basic and applied 

research and between public and private R&D.   

 In the present study, we focus on the manner in which public research inputs interact 

with those in the private sector to produce agricultural biotechnology innovations.  We are 

interested, that is, in the productivity of the public-private research enterprise, or in Arora and 

Gambardella's (1994) words, the “technology of technical change.”  Little explicit work has yet 

emerged on this subject in agricultural economics, although it was first broached forty years 

ago (Nelson 1959).  Since the late 1980s, interest in the subject has intensified, especially in 

regard to pharmaceutical biotechnology.  Some economists have focused on the 

conceptualization and measurement of research outputs, especially on the use of patent 

applications and awards as indicators of the quantity or value of research effort (Trajtenberg, 

Henderson, and Jaffe 1997; Zucker and Darby 1995).  A few have investigated incentive 

schemes for rewarding scientists’ efforts (Cockburn, Henderson, and Stern 1999; Stern 1999; 

Heller and Eisenberg 1998), while others have concentrated on knowledge accumulation as a 

dynamic process (Koo and Wright 1999; Aghion and Howitt 1992; Segerstrom, Anant, and 

Dinopoulos 1990). 

Identifying Information Flows 

  The technology of technical change is the process through which information 

inputs are transformed into information outputs; it is the study of information transformation.  

Information variables cannot be traced as easily as physical inputs are.  A researcher herself 
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would have difficulty identifying every source of information or suggestion that led her to a 

particular insight.  However, because ideas are fruitful only in combination with related ones, 

they are best bundled in some form, such as in patent documents, books, and journal articles.  

Bundling of this nature implies it is feasible to identify some of the principal sources of a 

researcher’s inspiration and direction. 

Document bundling has its limits.  Scientists cannot put in writing everything they 

know about a genetic sequence on which they are working.  Part of their knowledge remains 

“tacit” and local in the sense that they can provide practical information about it only through 

continuous and personal communication.  As Zucker and Darby (1995), Jaffe, Trajtenberg, and 

Henderson (1993), and Stern (1999) have shown, this explains why start-up biotech companies 

tend to locate near universities.  It explains also why firms engaged primarily in applied 

research, field trials, and marketing also employ basic scientists.  Only by doing so can they 

develop the “absorptive” capacity” to evaluate and exploit prospective scientific breakthroughs 

(Nelson and Rosenberg 1994, Lim 1999, Rausser 1999).  More generally, a research unit’s 

human and physical capital influence the cost of exploiting the information sources available.  

Intellectual property is patentable only if it has a direct, useful application.  Most 

university bioscience research instead focuses on relatively abstract concepts, those which 

develop, refine, or test hypotheses that do not have immediate applications to goods or services.  

Thus, most university biological research has economic value, beyond its utility for teaching, 

only insofar as it affects the subsequent development of commercially viable intellectual 

property.  In the absence of patent protection, university research typically is best disseminated 

through publicly accessible media.  How these publications influence (spill over into) 

commercially valuable property rights, how subsequent commercial success spills back into 

basic science, and what university administrators can do to encourage a research that would 
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best generate such complementarities, is therefore the frontier of work on the management of 

university biotechnology resources. 

Complementarity Between Applied and Basic Research 

 An information complementarity especially relevant to both the research administrator 

and industrial organization analyst is that potentially found between basic bioscience and 

applied biotechnology.  Just as science provides the technology lab with a general map of the 

biomolecular terrain, so do the successes and failures of a scientific insight to develop 

profitable products guide scientists in where next to look for fundamental insights.  Thus, the 

practical success of the DNA paradigm in generating marketable products has stimulated more 

scientific research on DNA.  For this reason, and as Rausser (1999) has discussed at some 

length, inputs allocated to applied research programs can enhance basic research, just as basic 

research insights facilitate technological development.   

Cockburn, Henderson, and Stern (1999) provide an example of this complementarity in 

the design of research incentives at large biotech firms.  They show that firms whose promotion 

systems weight an employee’s published or basic research highly tend also to be those which 

offer high budgetary rewards to departments with significant patent successes.  These firms 

tend to devolve decision-making power to departments, exploiting the complementarity 

between scientific and technological skill at the departmental level.  Other firms specialize or 

centralize, treating basic and applied science inputs as though competitive for the same set of 

resources.  Zucker, Darby, and Brewer (1998) demonstrate similarly that successful biotech 

start-up firms tend to concentrate in locales with the leading university bioscientists, since 

geographic proximity reduces the cost of exploiting the feedback between conceptual and 

patentable innovation.  The intensive merger and co-venture activity we now are witnessing in 
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agricultural biotechnology arises from attempts to seek and exploit such complementarities, a 

process which continually exhausts some complementary relations and thus provides niches for 

more specialized firms (Brennan, Pray, and Courtmanche 1999; Kalaitzandonakes and Hayenga 

1999).  Public universities face similar choices between pursuing a broad or focused research 

activity. 

 A model addressing these issues must distinguish between inputs and outputs of both 

applied and basic research, allow the feedback essential to complementary relationships, and 

more generally permit both complementarity and substitutability among research programs.  

Oehmke et al.(1999), Falck-Zepeda, Traxler, and Nelson (1999), Koo and Wright (1999), and 

Moschini and Lapan (1997), among others, have developed dual models of optimal R&D 

investment in generally imperfectly competitive market structures.  Here, we focus instead on a 

primal model of knowledge production, stressing the relationship between applied and basic 

research. 

Conceptual Framework 

In a given time interval, let 

bI   be the quality-weighted number of bioscience innovations at a given university; 

aI   the quality-weighted number of agricultural biotechnological innovations linked 

to the bioscience innovations at the given university; 

bb LK ,   the quantity of capital and bioscientist FTE, respectively, employed in 

bioscience research at the given university;  



 8 

aa LK ,   the quantity of capital and biotechnologist FTE, respectively, employed in 

applied research at the university or institution producing the biotechnological 

innovations; 

univX     the vector of fixed factors (including overhead and qualitative characteristics) of 

the university producing the bioscience innovations; and 

 firmX  the vector of fixed factors of the firm or university achieving the 

biotechnological innovations.  

The technology of biotechnological change might be specified as 

(1)  ),,,( firmbaaaa XILKII =  

(2)  ),,,,( univaabbbb XLKLKII =  

where time subscripts and lag operators are, for notational simplicity, suppressed.  Equation (1) 

says the number of applied innovations in a given time interval depends on the quantity of 

capital and technologist FTE devoted to producing applied innovations, on the number of basic 

innovations which the biotech firm has the capacity to absorb, and on the biotech firm’s fixed 

factors and characteristics.  Variable bI  in this equation reflects the scientific information 

guiding biotechnology development.  Equation (2) says the number of basic innovations 

depends on the quantity of capital and labor allocated to producing basic innovations, on the 

quantity of inputs allocated to applied research in that field, and on the university’s fixed 

factors and characteristics.  Applied inputs aa LK ,  in equation (2) represent the feedback from 

applied to basic science, because it is applied research efforts – including failures as well as 

successes – rather than marketable outputs that arguably influence the direction and success of 

basic research.   
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Equations (1) and (2) form a schematic of the influence of university investments on 

commercial biotech outputs.  The university allocates scientist and capital inputs to its basic 

and applied biological research programs.  After the appropriate lags, these investments 

generate bioscience outputs bI  at a rate depending upon the university’s fixed factors such as its 

location, history, and overhead structure.  Biotech firms and universities exploit the science 

outputs by hiring capital, scientists, and technologists to develop them into patentable 

technological innovations.  Their success in doing so depends on their location, market 

strategies, fixed investment, and other characteristics.  In general, a society might wish to 

allocate public research inputs so as to maximize the long-run commercial value of patentable 

outputs.  Of course, such decisions in the United States are not centrally directed.  However, 

understanding the principal forces of agricultural biotechnological change can, under 

appropriate assumptions about private-sector market structure and behavior, provide useful 

guidance to public resource allocation. 

To simplify the exposition, suppose equation (1) is weakly separable in the partition 

),(),,( firmbaa XILK and equation (2) in the partition ),( bb LK , ),( aa LK , univX .  The technology 

then can be expressed in terms of expenditures a
l

aa
k

aa LPKPE += and b
l

bb
k

bb LPKPE +=  on 

applied and basic science, respectively, where the P’s are the associated prices.  Holding prices 

fixed, we can write (1) and (2) as 

(1′)   ),,( firmbaaa XIEII =  

(2′)   ),,( univabbb XEEII =  

The feedback from applied to basic, and from basic to applied science in the above 

equations form the essentials of a test of the hypothesis that the two enterprises are 
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complementary with one another.  In the weakly separable model, for example, substitute (2′) 

into (1′) to obtain the reduced form 

(3′)  ],),,(,[ firmunivabbaaa XXEEIEII =    

        =   ),,,( firmunivbaa XXEEI   

This form is especially useful if consumer welfare is thought to depend only on applied 

innovations. 

Complementarities and Spill-Ins 

If firmuniv XX ,  are held fixed, the total differential of (3′) is 

(4)  adI   = a
a

b

b

a
b

b

b

b

a
a

a

a dE
E
I

I
I

dE
E
I

I
I

dE
E
I

∂
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∂

+
∂
∂

∂
∂

+
∂
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Often, research administrators would operate under a budget restriction ba
o EEB += , 

implying (3′) can be written as ),,( firmunivbaa XXSII = , where o
bb BES /= is the budget share 

allocated to basic research.  The restriction implies ba dEdE −= .  Substituting the latter into 

(4) and dividing by bdE  gives total derivative 

(5)  





∂
∂

−
∂
∂

∂
∂

+
∂
∂

−=
a

b

b

b

b
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I

E
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I
I

E
I

dE
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 Allocating another scarce dollar to basic bioscience reduces the money available for 

applied research.  This has the direct effect – shown in the first right-hand term (5) – of 

reducing the output rate of applied biotech innovations.  In addition, as reflected in ab EI ∂∂ / , it 

reduces the rate of bioscience innovation to the extent that applied research activity, which the 

budget cutback has retarded, stimulates successful basic science.  Through ba II ∂∂ / , this 
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reduction feeds back into a lower rate of applied innovation.  On the other hand, the extra dollar 

spent on bioscience research increases basic science output by amount bb EI ∂∂ / , increasing the 

rate of applied output by way of the positive influence ( ab II ∂∂ / ) of basic research on applied 

innovations.  Equation (5) is positive, that is shifting money from applied to basic science 

increases the rate of applied biotech innovations, if ( )( )bbba EIII ∂∂∂∂ //  exceeds 

( ) ( )abbaaa EIIIEI ∂∂∂∂+∂∂ ///  in absolute value.  This will occur only if the impact 

bb EI ∂∂ / of basic science expenditures on basic science outputs is especially large.  Arguably, 

that has been the case in recent decades. 

It is useful to distinguish between bioscience’s partial and total effect on 

biotechnological innovations.  The partial complementarity, ba II ∂∂ / , of basic with applied 

research presumably is positive because scientific insight is a partial substitute for 

technological effort.  But total complementarity ba dIdI /  is positive only if (5) is, since only 

then do aI  and bI both rise as science expenditures bE do.  That is, in the present formulation, 

basic and applied research outputs are complementary only if both rise as the research budget is 

exogenously reallocated toward basic science.  Diagrammatically, the reallocation represents a 

movement along a production possibility frontier in which the two output possibilities are 

published science and patentable innovations and in which the total research budget is held 

constant.  Complementarity prevails where the frontier has positive slope.  Essentially, 

bioscience in these zones acts more as an input to than as a co-output with biotechnology.  In a 

world of decreasing returns, decision makers push beyond such complementarity zones and 

operate where outputs substitute for one another.  But in the presence of agglomeration or 

network economies, or where the supply function of productive scientists slopes upward, 
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administrators might rationally operate where basic and applied research are complements 

(Rausser 1999).  

The sample variation necessary for estimating aggregate model (1) and (2) or (1′) and 

(2′) is provided by inter-year and inter-university differences in research budgets and 

productivity.  An aggregate production function of this sort differs from conventional ones in 

which inputs are rival and tradable.  Here, a firm buys science information at zero market price 

(because it is publicly available in journals), but at a shadow cost equaling the resources 

expended to evaluate and exploit the information.  Such a cost is a function of the firms’ fixed 

investments in market position, location, and science know-how.  Hence, our model will reflect 

a weighted average of individual firms’ and universities’ knowledge-creation technologies.  

Nevertheless, it can readily by used to draw inferences about the impacts of individual 

university and biotech firm characteristics.  Commercial, Patent Office, and university data 

bases offer information on many of the shift variables represented above by univX  and firmX  , 

including unit size, overhead expenditure, geographic location, and specialization.  These can 

be used to test hypotheses about the principal factors affecting scientific output, 

biotechnological innovation, and the synergy between them.  

Empirical Model 

  Drawing a clear line between what is “basic” and what is “applied,” either in patented 

innovations or in publications, is difficult.  Furthermore, both private firms and universities 

conduct both types of research.  Nevertheless, most agricultural biotechnology patents are 

awarded to the private sector and most basic scientific research is conducted in universities.  

And, as discussed above, biotech firms pursue basic research primarily to enhance their 
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absorptive capacity for evaluating and using scientific research published in the public sector 

(Lim 1999).  For this reason, we will assume that private-sector expenditures are intended 

primarily to produce patentable innovations, and will ignore scientific publications of private-

sector employees unless they are also university employees.  In contrast, universities’ non-

overhead expenditures often can be divided between their applied and basic research programs. 

Consistent with most of the recent literature, we will use patent awards as our measure 

of applied research output (Aghion and Howitt 1992; Harhoff, Narin, Scherer, and Vopel 1999; 

Henderson, Jaffe, and Trajtenberg 1998) and published scientific articles as our measure of 

basic research output (Lim 1999).  The strengths and weaknesses of these measures have been 

discussed extensively (e.g. Cockburn, Henderson, and Stern 1999).  Patents represent the end of 

a discovery phase in the development of either a research process or a candidate seed or 

compound.  Many of these discoveries perform unsuccessfully in the subsequent field- or 

clinical-trial phase of R&D, or even if they are successful there, prove later to be commercially 

unprofitable.  On the other hand, patent awards can also understate productivity inasmuch as 

some biotech firms – especially larger ones – retain certain discoveries as trade secrets, 

developing and marketing them on their own rather than patenting and licensing them to other 

entities.  The U.S. Patent Office requires a patent document to list the patented inventions 

which the discovery has utilized, since permission must be obtained from the owners of these 

patents before the invention in question can be commercially exploited.  Thus, a frequent way 

of accounting for patent quality is to weight each patent by the number of subsequent patents 

which cite it (Trajtenberg, Henderson, and Jaffe 1997; Lerner 1994).  Scientific publications 

can be quality-weighted in similar fashion, namely by accounting for the number of times they 

are cited in subsequent publications. 
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 With the above considerations in mind, our empirical model will take the following 

general form.  Let 

itjA ,   be the number of bioscience publications authored by the jth scientist at the ith 

university in the tth year; 

itjP ,
τ  be the number of agricultural biotechnology patents awarded in the τth year 

which cited a publication authored by the jth scientist at the ith university in the 

tth year; 

τr be the discount rate in the τth year. 

We can then define the magnitude of scientific innovations at the ith university in the tth year as 

(6)   ∑=
j

itjitb AI ,,  

that is, the unweighted sum of its scientists’ journal publications.  The magnitude of 

biotechnological innovations subsequently linked to authors at the ith university in the tth year is 

(7)  ∑∑ +=
j

itj
ita rPI

τ
ττ )1(/,

,  

that is, the time-discounted number of patent citations in year τ to the jth scientist’s year-t 

publications, summed over years τ = t+1, …, Tτ  following publication, then summed over all 

Jit authors at the ith university in the tth year.  

Quality-Weighting the Research Outputs 

 We can vary these definitions in such a way that each publication and patent is 

weighted by the frequency of its subsequent citations.  For these purposes, define 
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itmj
tC ,
'   as the number of times in the t´th year that a scientific article cites the mth 

publication in the tth year of the jth scientist at the ith university; 

jitnD ,
'
τ

τ  as the number of times in the τ´th year that a patent document cites the nth patent 

awarded in the τth year which had cited a scientific article authored by the jth 

scientist at the ith university in the tth year. 

The first definition allows us to specify a quality-weighted measure of the magnitude of 

scientific innovations at the ith university in the tth year, namely 

(6´)  )1(/ '
'

,
'

*
, t

j t m

itmj
titb rCI += ∑∑∑   

In (6′), Σm is the number of times the jth scientist was cited in the t´th year for articles he 

published in the tth year.  Σt´ Σm is the number of times this scientist was eventually cited for all 

articles he published in the tth year.  Summing the latter over all Jit scientists at the ith university 

gives that university’s tth-year scientific output in terms of the number of times any article 

published from that university in that year was subsequently cited.   

The second definition above allows us in similar fashion to specify a quality-weighted 

measure of the magnitude of agricultural biotechnological innovations linked to scientists at the 

ith university in the tth year. The measure is 

(7′)  ∑∑∑∑ +=
j n

jitn
ita rDI

τ τ
τ

τ
τ

'

,
'

*
, )1(/    

In (7′), Σn is the number of times in the τ´th year that any patent cited an earlier patent awarded 

in the τth year which had cited the jitth publication.  Summing over all years τ´ gives the total 

number of times that any patent cited a τth –year patent which in turn had cited the jitth 

publication.  Summing again over all years τ gives the time-discounted number of patents that 
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ultimately referenced the jitth publication, and Σj sums this number over all scientists at the ith 

university in the tth year.  Measure (7′) reflects a given university’s effectiveness in generating 

scientific publications which will be cited in highly-cited patents.  In certain circumstances 

other quality-weighting procedures might be more appropriate and can easily be developed 

with the present tools. 

 In the context of this research, unweighted measure (6) of a university’s scientific 

output is not as naive as it might appear.  Estimating equation (1) even with unweighted 

variables (6) and (7) constitutes a way of judging the quality of a university’s bioscience 

publications, because it estimates the effectiveness of those publications in producing 

patentable innovations.  Employing weighted measure (6′) for such purpose instead is a way of 

answering the question:  Does weighting a scientist’s publications by the volume of their 

subsequent literature citations improve our ability to forecast the effectiveness of those articles 

in generating patentable biotechnology innovations?  Preliminary evidence suggests it does.  

That is, bioscience publications highly cited in patent documents tend also to be highly cited in 

the publicly accessible scientific literature (CHI Research). 

Econometric Estimation 

 We can now specify econometrically estimable versions of (1) and (2) or (1′) and (2′).  

Employing weakly separable form (1′) and (2′), for example, in conjunction with unweighted 

measure (6) of bioscience output and weighted measure (7′) of the patents linked to them, gives 

(1′′ )  ),,( *
,,,,

i
firmitbiaitaita XIII !Ε=   i  =  1, …, I ;   t  =  1, …, T 

(2′′ )  ),,( ,,
*
,

*
,

i
univiaibitbitb XEEII !!=   i  =  1, …, I ;   t  =  1, …, T 
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where !
ia,Ε  is a weighted average of the applied technology expenditures at the firms receiving 

patents which cited a scientist at the ith university, i
firmX  is the set of characteristics of these 

firms, !
iaE ,  are applied technology expenditures at the ith university, and ! superscripts indicate 

the appropriate lags.  University applied technology expenditures would reasonable include 

outreach expenditures.  The sample frame in this model consists of annual observations on the 

bioscience inputs and publications of a set of universities, and of the patent outputs, expenses, 

and characteristics of the set of firms which used those publications in their applied 

biotechnology programs.  The model can be estimated with standard simultaneous equations 

methods. 

One might expect the econometric results to indicate that complementarity between 

bioscience and biotechnology is greater in large universities than in small ones.  The 

communication essential for synergy between basic and applied research usually is less costly 

within than between organizations (Zucker and Darby 1998).  Because fixed costs of molecular 

biology research are high, returns to size in biotechnology R&D probably are increasing in 

output.  If so, large universities can operate both basic and applied research programs more 

cheaply than can small universities, and hence take advantage of the low cost of in-house 

communication between the two programs.  This simply is a variant of the argument that size 

provides agglomeration economies.  On the other hand, recent breakthroughs in remote 

communication technology may have eliminated these size advantages:  scientists working in 

the same sub-field at two different universities may communicate more easily with one another 

than do two scientists in less related fields at the same university.  In any event, we would 

expect university bioresearch to be more complementary with the biotechnology at small start-

up firms than with that at larger firms such as Novartis, since start-up firms’ physical proximity 
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and ownership connections with university scientists should enhance the communication of 

tacit knowledge (Zilberman, Yarkin, and Heiman 1999).   

Apart from permitting tests of these hypotheses, our results will provide a basis for 

university decision-making in both the short and long run.  The short-run issue is how to 

allocate annual university expenditures between applied and basic science.  The long-run issue 

is how to design the university’s research strategy given the university’s location and other 

fixed features. 

Data 

The data for the econometric model divides into research outputs (patents and scientific 

papers) and inputs to the research process.  To derive observations on the research output data, 

we draw a large sample of agricultural biotechnology patents from the United States Patent 

Office database and observe the identity of the awarded firms or other institutions and the 

scientific publications cited on the patent documents. We then identify the authors of those 

publications and the universities or labs at which they worked at time of publication.  Because 

of the tedium of determining ag-biotech patents, discriminating between science and non-

science references on a patent, and matching alternative forms of a scientist’s or a firm’s 

names, we hire CHI Research of Haddon Heights, New Jersey to conduct the above data search 

and cleaning process for this study.  Finally, from other sources, including NSF and the Bureau 

of Census, we collect data on the research input allocations at the identified firms and 

universities, such as the R&D expenditures and technologists’ and scientists’ FTEs, and match 

them with the research outputs at the same institutions, taking account of the requisite lag 

structure.   

 Consider, for example, a case in which a bioscience article listed in a given patent 

document was authored by two scientists, one at university i and the other at university i´.  
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Upon encountering this article, we increment unweighted measures itaI ,  and tiaI ',  of applied 

biotechnology output by one unit each.  If quality-weighted measures *
, itaI  , *

', tiaI  are to be used 

instead of unweighted ones, these unit increments are replaced with the number of times the 

given patent was cited in subsequent patents.  We then increment unweighted measures itbI ,  

and tibI ', of basic bioscience output by one unit each if the indicated article had not earlier been 

counted as part of that university’s science output in year t.  That is, in the unweighted 

bioscience output measure, the fact of being cited in at least one patent qualifies a publication 

to be counted once, and only once, as part of the ith and i´th universities’ science output in year 

t.  If quality-weighted measures *
, itbI  of bioscience output are to be used instead of unweighted 

ones, that unitary observation is replaced with the number of times the article was cited in 

subsequent scientific articles.  The indicated output variables are then matched to the respective 

research inputs i
univiaib XEE ,, ,,

!!  at the ith and i′ th universities and to inputs !
ia,Ε  , firmX  at the 

patenting firms. 
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