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Abstract:  
The identification of information problems in different markets is a challenging issue in 
the economic literature. In this paper, we study the identification of moral hazard from 
adverse selection and learning within the context of a multi-period dynamic model. We 
extend the model of Abbring et al. (2003) to include learning and insurance coverage 
choice over time. We derive testable empirical implications for panel data. We then 
perform tests using longitudinal data from France during the period 1995-1997. We find 
evidence of moral hazard among a sub-group of policyholders with less driving 
experience (less than 15 years). Policyholders with less than 5 years of experience have 
a combination of learning and moral hazard, whereas no residual information problem is 
found for policyholders with more than 15 years of experience.   
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1. Introduction 
 
Information asymmetries generally follow two distinct pathways. Adverse selection 

strongly predicts a positive correlation between the accident probability of a policyholder 

and the generosity of his insurance contract. In the presence of moral hazard, the positive 

correlation is caused by the unobservability of effort to prevent accidents. Generous 

coverage reduces the expected cost of an accident and therefore reduces the incentives for 

safety. In the end, both pathways predict a positive correlation between accidents and 

coverage within a risk class. This suggests an empirical test for asymmetric information 

often referred to as the conditional correlation test. 

The evidence is not conclusive concerning the existence of residual asymmetric 

information in automobile insurance markets.2 Some studies using the conditional 

correlation approach on cross-sectional data find evidence of asymmetric information 

(Dahlby, 1992; Puelz and Snow, 1994; Richaudeau, 1999; Cohen, 2005; Kim et al., 2009) 

while others did not (Chiappori and Salanie, 2000; Dionne et al., 2001). One major 

criticism of the conditional correlation approach with cross-sectional data is that it does not 

allow separation of adverse selection from moral hazard (Chiappori, 2000).3 

Abbring et al. (2003) investigate the dynamics in claims as a way of directly testing 

for moral hazard. Under most experience rating regimes, an at-fault claim raises the 

marginal future cost of another claim. Hence, such regimes should promote safe driving, at 

                                                 
2 Results in other markets can be found in Chiappori et al. (1998), Dionne and St-Michel (1991), Fortin and 
Lanoie (1992), Hendel and Lizzeri (1999, 2003), Finkelstein and Porteba (2004), Finkelstein and McGarry 
(2006). See Cohen and Siegelman (2009) for a recent survey. 
3 Also, with cross-sectional data, unobserved confounders such as risk aversion may mask evidence of 
asymmetric information. Chiappori et al. (2006) propose cross-sectional tests based on profit maximization 
in competitive markets that are robust to heterogeneity in preferences. 
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least in theory. Empirically, negative temporal occurrence dependence in accidents within 

a risk class should be observed under moral hazard. The authors find little evidence of 

moral hazard in France. 4 In fact, there is only weak evidence among inexperienced drivers, 

which points to learning rather than moral hazard, i.e. beginners who learn they are bad 

risks exert caution.5 To separate learning leading to adverse selection (asymmetric 

learning) from moral hazard, we consider the case where information on contracts and 

accidents is available for multiple years in the form of panel data. We exploit dynamics in 

accidents and insurance coverage controlling for dynamic selection due to unobserved 

heterogeneity. Changes in insurance coverage allow us to construct two additional tests, 

which, coupled with the negative occurrence test of Abbring et al. (2003), allow us to 

separate moral hazard from asymmetric learning.  

We analyze the identification of asymmetric learning and moral hazard within the 

context of a tractable structural dynamic insurance model. From the solution of the model, 

we simulate a panel of drivers behaving under different information regimes or data 

generating processes (with or without both moral hazard and asymmetric learning). We 

validate our empirical tests on simulated data generated from these different information 

regimes. We then apply these tests to longitudinal data on accidents, contract choice and 

experience rating for the period 1995-1997 in France. We find no evidence of information 

                                                 
4 The French experience rating system rates at-fault claims (Dionne, 2001; Picard, 2000; Pinquet, 1999). The 
information is public and shared across insurers. The system is enforced by a law stipulating the penalty 
(malus) and reward (bonus) in case of an at-fault accident. The rating coefficient, or the bonus-malus 
coefficient, is applied proportionally to the base premium at the time the signing/renewal of the contract. On 
the effectiveness of experience rating, see Dionne and Doherty (1994) and de Garidel-Thoron (2005). 
5 Their estimate of negative occurrence dependence among inexperienced drivers is insignificant.  Further, 
combining claims at-fault and other claims changes the result significantly, as would be predicted under 
asymmetric learning (all accidents should matter). Dionne et al. (2005) and Israel (2004) apply similar tests 
in other countries (Canada and U.S. respectively) and find evidence of moral hazard. Abbring et al. (2008) 
analyze accidents and claims reporting in a dynamic setting with moral hazard using data from the 
Netherlands. They find evidence of moral hazard. 
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problems among experienced drivers (more than 15 years of experience). For drivers with 

less than 15 years of experience, we find strong evidence of moral hazard but little 

evidence of asymmetric learning. We obtain evidence of asymmetric learning, despite the 

small sample size, when focusing on drivers with less than 5 years of experience.  

The remainder of the paper is structured as follows. In Section 2, we present the 

theoretical model we use to construct empirical tests. In Section 3, we present our 

empirical tests and validate these data using simulated data from the theoretical model in 

Section 2. In Section 4, we present results of the tests applied to French panel data. Section 

5 concludes. 

2. Theoretical Model 
 

To investigate how contract choices and accident outcomes allow us to distinguish moral 

hazard and asymmetric learning leading to adverse selection, we start with a dynamic 

model similar to Abbring et al. (2003). They build a model where policyholders directly 

choose the probability of future accidents by exerting effort. The marginal benefit on the 

accident probability and expected future premium is weighted against the immediate utility 

cost of effort. Given the time frame of their data, they focus on the dynamics within the 

contract-period in claims. They show that under an experience rating system such as the 

one used in France, an accident not only raises the average cost of future accidents but also 

the marginal cost. Given that premiums and deductibles are low relative to income and 

wealth, such that wealth effects do not dominate, they find that the optimal level of effort 

increases with past accidents and the corresponding increase in the premium. Hence, at the 

time of an accident, incentives to exert effort jump discontinuously.  They then derive an 
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empirical test based on this prediction.   

In order to consider other information problems in a multi-period context, we extend 

their model along two dimensions. First, we add a contract choice decision to the model. 

We also consider the possibility that there is learning (drivers and insurers learn about an 

individual’s innate risk). Over time, this may lead to adverse selection if the policyholder 

learns faster than the insurer, or to full information if both share symmetric learning. 

Because the data we will use contains all accidents (not only claims), we allow consumers 

to learn faster than insurers, hence allowing for asymmetric learning. A final distinction is 

that we use a discrete-time model because our data are annual. We discuss timing issues 

below. Adding these extensions makes analytical solutions difficult, so we solve the model 

numerically and show how the dynamics in accidents and insurance coverage allow us to 

separate moral hazard from adverse selection and learning. Because the model has clear 

policy parameters that govern the presence of moral hazard, adverse selection and learning, 

we can simulate a cohort of drivers from different scenarios and confirm whether the 

empirical tests we propose can separate these information problems. We now give a brief 

overview of the model and its key elements. 

 The most important insurance decision in France is that of buying comprehensive 

insurance coverage (CC) in addition to compulsory “responsabilité civile” or limited 

liability coverage (LL). By law, every driver must purchase an LL contract that protects 

third parties if the driver is at fault. However, the LL contract does not cover the driver’s 

damages if he is at fault. The CC contract covers such damages and the policyholder pays a 

deductible only when he is at fault, which varies across contracts. Finally, the other party’s 

insurer pays all damages if the policyholder is not at fault. The insurer observes only the 
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claims, whether the insured is at fault or not, while the insured observes all accidents. 

 The total premium paid is experience rated. It is scaled by a coefficient, the bonus-

malus coefficient, which is a function of the history of claims where the driver is at fault. 

The individual bonus-malus coefficient is publicly known by all insurers and the premium 

adjustment is mandated by law, so insurers are fully committed to the bonus-malus pricing 

scheme. New drivers start with a bonus-malus coefficient of 1 and the coefficient varies 

between 0.5 and 3.5. Each at-fault accident increases the malus by 25%, while a year 

without accidents leads to a 5% reduction. 

We assume drivers differ in terms of risk type (or ability). In the model, agents first 

obtain insurance without knowledge of their own risk. They learn about risk with 

experience and accidents. Accidents differ depending on whether the driver is at fault or 

not.6 Although the insurer observes the bonus-malus he does not learn as fast as the agent 

about his riskiness, partly because it observes only the claims. Thus asymmetric learning 

develops, which may lead to pure adverse selection in contract choices (Rothschild and 

Stiglitz, 1976; Wilson, 1977; Cocker and Snow, 1986). The agent can influence his 

accident probability by exerting effort. Effort is unobservable to the insurer and there is 

moral hazard within a given risk class because the driver has less incentive to exert effort 

under more generous insurance contracts (Holmstrom, 1979; Shavell, 1979; Winter, 2000) 

or when past accidents increase the marginal cost of future accidents (Abbring et al., 

2003). 

Contracts are renewed annually. An agent makes two decisions at each period 

   t = 1,...,T  consisting of the choice of contract and of the level of effort to prevent 

                                                 
6 We do not model the decision to report an accident or not. We assume all at-fault accidents are reported 
which is reasonable because these accidents typically involve two parties.  
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accidents. For the sake of simplicity we assume time represents driving experience. The 

timing of the decisions is shown in Figure 1. 

After the agent has made his decisions, uncertainty is resolved. We assume only one 

accident can occur in each period (few drivers have more than one accident per year). We 

denote by    nt
= {0,1,2}  the occurrence of accidents where 0 means no accidents, 1 denotes 

an accident where the driver is not at fault and 2 an accident where he is at fault. As usual 

 nt
is unknown prior to making decisions at  t . At the beginning of the following period 

damages are paid prior to the agent’s making any new decision. Finally, the agent pays the 

premium on the new contract when he makes his contract decision, conditional on past 

accidents and beliefs. 

2.1. Insurance Contracts  
 

We denote the choice of the CC contract as    dt
= 1  ;    dt

= 0  when only the LL contract 

is retained as coverage. An accident results in a fixed monetary loss,  L . If    dt
= 1  and if 

the policyholder has an at-fault accident, he pays, at most, the deductible   f < L . If he does 

not purchase CC, he pays damage L . If the driver is not at fault, no payments are made by 

the driver, regardless of whether CC is purchased. 

The premium has two components: an a priori and an a posteriori pricing component. 

The a posteriori component is a function of the driver's accident history, summarized by 

his bonus-malus    bt−1
at the start of the preceding contract period, and the occurrence of an 

at-fault accident in the same period. The new bonus-malus for the current contractual year 

is given by 
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where   δb is the bonus coefficient (0.95) and   δm  is the malus coefficient (1.25). In the 

French market, the first at-fault accident does not increase the premium if the policyholder 

has the minimum coefficient (0.5). We keep track of this particular clause in the model. 

 
The a priori pricing component depends on the choice of the CC contract. The total 

premium paid (pr) is the product of the bonus-malus and the a priori component 
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where    exp(ρ
1
) > 0  denotes the percentage increase in the premium for the CC contract 

and exp(  ρ0
) is the base premium for the LL coverage.  

We assume it is costly to change coverage over time. The cost is given by  ψ and is 

symmetric (the same for increasing and decreasing coverage). Contract choices are quite 

persistent in the data and not allowing for switching costs would entail too many 

transitions compared with the data. Furthermore, some studies show that price dispersion is 

large for the same insurance product across insurers, which is consistent with the existence 

of switching or search costs (see Schlesinger and von der Shulenburg, 1993).  

2.2. Effort and Accidents 
 

Agents can choose to exert prevention effort    et
= {0,1}  during the contractual year. 

Effort reduces the probability of both types of accident. Assume the probability of an 

accident takes the multinomial logit form  
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where 
   
µ

j1
 is the coefficient affecting the marginal productivity of effort for the probability 

of an accident of type  j . The individual is not certain of his true innate risk 

classification α , which is time invariant. It can take two values     α = {0,α
H
} , where   αH

 

denotes the high-risk type. These accident probabilities are serially uncorrelated over time, 

for a given  α  and effort sequence. We also assume for simplicity that there is no 

“experience” effect irrespective of the accident history, i.e. accident probabilities do not 

depend on time.  

The experience of the policyholder can be used to construct expectations about his 

innate riskiness. He knows equation (3) and the fraction of high types   αH
 in the 

population,   δH . We denote by     πt
(α

H
| n

1
,...,n

t−1
,e

1
,...,e

t−1
)  the subjective probability that 

the policyholder is a high-risk type for the current contractual period given his effort and 

accident realization in the previous periods. We denote the accident history by 

   n
t = (n

1
,...,n

t
) and do the same for other variables. Using Baye's rule, the probability that 

the driver is a high-risk type given his history or experience up to  t  is 
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given that effort is non-stochastic. Using equation (3), we can rewrite equation (4) as  



 10 

 

    

Pr(α
H

| nt−1,et−1) =
Pr(n

t−1
| e

t−1
,α

H
)

Pr(n
t−1

| e
t−1

)

Pr(nt−2 | et−2,α
H
)

Pr(nt−2 | et−2)
Pr(α

H
)

=
Pr(n

t−1
| e

t−1
,α

H
)

Pr(n
t−1

| e
t−1

)
Pr(α

H
| nt−2,et−2)

 (5) 

Thus, denoting   πt
 as the subjective belief in period t, equation (5) simplifies to a recursive 

form 
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This equation shows how policyholders update their prior probability of being a 

particular risky type from     πt−1
 to   πt

. Having an accident makes it more likely they are the 

high-risk type. It makes it even more likely if they exerted effort but still had an accident.  

Every period, the subjective probability of an accident of type  j  is given by 

      p(nt
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2.3. Maximization Problem 
 

Within a period, utility is assumed separable in consumption ( ct
) and effort 

 
    
u(c

t
,e

t
) =

c
t
1−σ

1−σ
+ γe

t
 (8) 

The coefficient of relative risk aversion is  σ  and the marginal disutility of effort is    γ < 0 . 

 Agents receive income  yt
 every period. We assume income is stochastic and 

follows a first order Markov process. Its distribution    F(y
t
| y

t−1
)  is known to the agent. We 

also assume there are no assets in the model so that 
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where    L(d
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) = (1−d
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f  and 
   
n

2,t−1
 is equal to 1 if an at-fault accident occurs 

and zero otherwise.7 The indicator function is given by    I(z) = 1  if z is observed and zero 

if not. Finally, we denote the agent’s subjective discount factor as  β . 

 The deterministic part of an agent’s state at the beginning of a period is given by 

    st
= (π
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) . His/her optimization problem can be expressed as a series of 

one-period problems using Bellman’s principle of optimality. We have 
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 (12) 

subject to the transition equations above for the bonus-malus, accidents and subjective 

probability (equations 1,2 and 6 respectively) and for t=1,…,T. The maximization problem 

can be solved by backward recursion from the last period T=40. We discretize the state-

space for the log of the bonus-malus b, over the interval [0.5,2] and  π  over the unit 

interval.8 We use 35 grid points for both. We use bi-dimensional cubic spline 

approximation at each point in the state-space because the optimal solution and transition 

from one bonus-malus and subjective probability may fall between two points where we 

have calculated the value function in the following period.  It is important to stress that the 

optimal solution for a given period will be a function of all variables at the beginning of 

                                                 
7 We do not allow for savings. This would complicate the numerical solution of the model substantially given 
that we have two continuous state variables. It is not clear whether wealth effects are important for this 
analysis. As Abbring et al. (2003) argue, premiums and deductibles are fairly low relative to household 
income and wealth in France. As we will see, even the mean loss for an accident on an LL contract is 
relatively low relative to income. See Chiappori et al. (1994) for a dynamic model of moral hazard with 
financial assets. 
8 Given the parameters of the accident process, the maximum bonus-malus coefficient approaches 2. Very 
few observations in the SOFRES panel have a bonus-malus greater than 2 (4 observations out of 12,000).  
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the period. Hence, we will focus on the dynamics in contract choice and accidents to derive 

empirical tests of moral hazard and asymmetric learning. 

2.4. Calibration 
 
We first present the data. We then justify the calibration for the analysis. We calibrate the 

model in an attempt to get realistic profiles for the key observed variables. We do not 

claim to be able to identify all parameters from the data. Nevertheless, we attempt to 

“choose” reasonable parameters, either borrowed from the literature or calibrated using 

either SOFRES data or market data provided by the French Federation of Insurers (FFSA). 

2.4.1. SOFRES Longitudinal Survey 
 
The data are from the SOFRES longitudinal survey, Parc Automobile,  which is a rotating 

panel representative of the French policyholders and their vehicles for the years 1995, 1996 

and 1997.  Respondents were interviewed by mail (questionnaires were sent each January) 

about several topics including car insurance and their accident history. The head of the 

household completed the questionnaire and returned it to SOFRES.  SOFRES is an 

independent survey organization conducting monthly consumer surveys and is not an 

insurer. This allowed information gathering on both claims and accidents, including those 

not reported to insurers. Furthermore, SOFRES re-interviews individuals even if they 

switch insurers. Both of these characteristics of the survey are advantages from the point of 

view of testing for asymmetric information in insurance markets using longitudinal data. 

Existing studies often use data from one insurer (or a group of insurers). In that case, panel 

attrition is a potential problem because only “good customers” may remain in the panel. 

Accidents rather than claims are useful as accidents convey additional “private” 
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information about respondents that is not in the public domain. We rely on self-reports 

from respondents rather than actual administrative records of claims, accidents, and 

perhaps more importantly, contract characteristics. Finally, the timing of the survey does 

not correspond exactly to the renewal of insurance contracts. Contracts are renewed year 

round in France while the survey is conducted in January. Accidents over the previous 12 

months are reported.   

 We define an observation as a respondent-vehicle pair. To match vehicles across 

waves, we use a combination of the respondent ID, the first 4 digits of the license plate and 

the year when the car was manufactured. A sizeable proportion of contracts are observed 

for less than three years. SOFRES aims to maintain the representativity of its sample over 

time,  which means that some respondents are not re-interviewed for exogenous reasons or 

reasons related to observable characteristics that we control for (i.e. region). We keep 

entries from 1996 and 1997 even if they were not present in 1995.  The appendix provides 

more details on the number of observations and the participation patterns in the survey. 

 The survey contains four modules. The first covers the socio-economic 

characteristics of policyholders. The second covers characteristics of the vehicle. In the 

appendix we provide descriptive statistics on these data. The third concerns insurance 

contracts. It provides the current bonus-malus coefficient and the current type of insurance 

coverage: CC or LL contract. The bonus-malus coefficient is updated at the end of every 

contractual year and is constant within a year (i.e. premiums can be adjusted only at the 

end of each contract year). The new bonus-malus appears only when it is time to negotiate 

a new contract. Insurers are committed to apply the regulated bonus-malus but are free to 

renegotiate all other parameters of the contract. Given the design of survey, this implies 
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that the bonus-malus in a given year does not take account of  accidents that have taken 

place during the months preceding the survey date but after the contract renewal date. 

When regressing the bonus-malus coefficient on accidents, this could create obvious 

simultaneity, so we use the bonus-malus coefficient from the last year to avoid 

simultaneity.  Finally, the survey covers accidents and claims, and as mentioned earlier, 

both are reported. However, we cannot distinguish at-fault claims from other claims.  

In the top panel of Figure 2, we report the prevalence of CC contracts, accidents 

and claims, and the bonus-malus coefficient by experience (in years) in the SOFRES panel. 

Comprehensive coverage increases with experience, from roughly 40% for drivers with 

little or no experience to over 70% for those with more than 30 years of experience. This is 

despite the fact that less experienced drivers have more accidents and make more claims, 

which should lead them to choose more coverage. About one fourth of drivers with little or 

no experience have an accident (very few have more than one).  This fraction decreases 

with experience. Roughly 68% of accidents are reported to the insurer. The under-reporting 

of accidents appears to be relatively unrelated to years of driving experience. In the bottom 

panel, we report the median, the 75th and 95th percentiles of the bonus-malus distribution 

by experience. Among beginners, the median bonus-malus is 0.75. It is well documented 

that many new drivers start with a favorable bonus, potentially inherited from their parents. 

Very few respondents have a bonus-malus greater than one (less than 3%). The vast 

majority of drivers with more than 20 years of experience have the maximum bonus of 0.5.    

 

2.4.2. Calibration 
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We chose a baseline calibration such that both moral hazard and asymmetric learning are 

present. This is our baseline scenario. As mentioned above, we do not claim to be able to 

estimate all parameters, such as risk aversion, from the data. That full exercise, although 

interesting, is fairly ambitious and has been left for further research. We use parameter 

values that provide reasonable profiles comparable to those in the data. We have omitted 

the introduction of non-stationarity, which would be required to fit the model to the data. 

For example, premiums are likely to be a function of years of experience, as is the 

probability of having an accident. This could explain the declining accident profile 

observed in the data. Nevertheless our calibration exercise is likely sufficient for our 

purposes. Table 1 shows the parameters we use in the baseline scenario. All monetary 

amounts are in 2009 euros (thousands). 

 
Preference Parameters:  We use a coefficient of relative risk aversion equal to 

1.5. We calibrate this parameter so that it matches the fraction of policyholders with 

comprehensive coverage in the SOFRES panel. The value of 1.5 is at the low-end of the 

values reported in Attanasio and Weber (1995) [1.49-3.39] but larger than the values found 

in Hurd (1989) [0.7,1.12]. Because the average loss and premiums are small relative to 

income in our application, a value of 1.5 is likely reasonable for our purposes. The 

marginal disutility cost of effort is difficult to calibrate. We have assumed a value of  

-0.0005. The discount factor was assumed to be 0.985. The main results of the simulation 

exercise are not affected by these three values. 

Accident Process: We calibrate the intercepts of the accident process such that it 

matches the fraction of accidents in the data. However, we do not observe at-fault claims in 

the SOFRES panel, only total claims, which include accidents where another party is at 
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fault. Abbring et al. (2003) report that the annual rate of at-fault claims is 6.4% in their 

sample, which is also from France. We use this figure to calibrate the intercepts. We 

assume the effort coefficient is -0.5 for both types of accident probabilities (at-fault or not). 

This yields a sizeable effect on the probability of having an accident. Finally we assume 

arbitrarily that the factor coefficient of the high risk-type   µ12
 is 0.75 in the accident 

probability equation. The parameter   µ22
 is set to 1.6 in the at-fault accident probability 

equation. Hence, we assume that high-risk types are more likely to have at-fault accidents 

than low-risk types. We assume, quite arbitrarily, that 30% of the population is high-risk. 

Market Data: The SOFRES data set contains little information on premiums and 

deductibles, so we use aggregate information obtained from the FFSA for the year 1997.9 

The average deductible ( f ) in France was quite low, 192 euros. The average loss (L) was 

2,439 euros. The average premium for the LL coverage was 184 euros. The coefficient   ρ1  

is set at 0.7 for the CC contract. The CC premium is 370 euros, which is double that of the 

LL premium. The bonus factor is 0.95 and the malus factor 1.25. We assume the switching 

cost is 50 euros, which given a median annual household income (adjusted using an 

equivalence scale) of roughly 14,000 euros, represents roughly one full day’s pay 

(assuming 2000 hours of work annually). 

Income Process: The SOFRES panel contains information on income but the 

information is categorical, and the bins are not necessarily natural ones. Instead, we use 

data from the French subsample of the European Community Household Panel (ECHP) for 

the years 1995-1997. We use household net income along with OECD equivalence scales 

                                                 
9 Information for 1995, 1996 was similar. 
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to adjust for household composition.10 We discretize income into 10 categories (deciles) 

and use the midpoint within each category as the approximate value in the simulations.  

We then compute the transition matrix across these deciles to obtain an estimate of 

   F(y
t+1

| y
t
) . We use ECHP-provided weights when computing this matrix. The resulting 

median net income is 14,319 euros and there is a fair amount of persistence in income over 

time.  

 

2.4.3. Simulation of the Baseline Scenario 
 
We solve the model for the optimal decision rules given this choice of parameters. We use 

T=40 as the maximum experience level. We then simulate 2000 drivers until they reach 25 

years of experience. When simulating individuals, we randomly draw the initial bonus-

malus, subjective probability of being high risk, risk type and income. We draw the bonus-

malus from the SOFRES empirical distribution for drivers with less than 2 years of 

experience. The average bonus-malus is roughly 0.75. The initial subjective probability is 

drawn from    Φ(a +c)  where c is the normal standard and  a  is such that the average 

subjective probability is 0.3. This is a natural average prior given that 30% of the 

population is high risk. The risk type is drawn independently of all other variables.  Since 

we know each driver’s type, either low- or high-risk, we compute statistics by risk type and 

experience.  

 We report the results of the simulations in Figure 3. As one would expect, there is a 

clear distinction between the behavior of high and low risk drivers. Differences grow larger 

                                                 
10 The OECD equivalence scale used in the ECHP is the sum of weighted household members where the 
weight is one for the first adult member, 0.5 for subsequent adults (over 18 years old) and 0.3 for each child 
(under 18 years old). 
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with experience as both types learn what type of driver they are. This can be seen from the 

first panel reporting the subjective probability of being high type. As the high risk 

individuals have more accidents, they slowly become more convinced that they are high 

risk. The opposite occurs for low-risk types. Since the low risk types have less accidents, 

particularly at-fault accidents, their bonus-malus coefficient falls more rapidly towards 0.5. 

The bonus-malus coefficient of the high risk types remains high. In our model, the bonus-

malus coefficient is an excellent indicator of risk. Because we did not introduce any non-

stationarity in the accident process, the fraction with accidents and at-fault accidents is 

fairly stable over time. The gap between the two groups is important. Hence, an 

econometrician analyzing those data would find large unobserved heterogeneity in 

accidents.  

 The portion with CC coverage is initially very similar between the two groups. This 

is because both risk types do not know yet what kind of driver they are likely to be. As 

they become more convinced, the high-risk types purchase the CC coverage more rapidly 

than those who learn they are likely low-risk. Over time, a positive correlation emerges 

between risk and coverage, which leads to adverse selection, as predicted by asymmetric 

learning. The rank correlation between accidents and CC coverage increases from zero to 

0.05 by the time drivers reach 15 years of experience. A substantial proportion of the 

population exerts effort, and high risk drivers eventually make a greater effort to reduce 

their probability of having an accident. In terms of the joint distribution of effort and 

coverage, we find that very few drivers choose not to make an effort and forgo CC 

coverage (less than 5%). Most drivers choose either one or both options.    
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3. Empirical Tests 
 
To derive empirical tests that allow us to separate moral hazard from asymmetric learning 

and adverse selection, we first look at the form of the optimal decision rules and how they 

depend on state-variables. We then focus on how to apply these tests to the SOFRES 

Panel. 

3.1. Optimal Decisions 

 Denote by    Vt
jk(s

t
,n

t−1
,y

t
)   the option specific utilities at time t for each combination 

of contract  j  and effort  k  given the state    st
,n

t−1
,y

t
. To derive tests for moral hazard and 

asymmetric learning, we will focus on the dependence of decision rules on the state-space 

variables.   

 The optimal effort level is a discrete function    et
*(s

t
,n

t−1
) . The decision rule can be 

written as   

    et
*(s

t
,n

t−1
) = I(max(V

t
11,V

t
01)−max(V

t
10,V

t
00) > 0)  

 
 It depends on the state     st

= (π
t−1

,b
t−1

,d
t−1

,e
t−1

)  and the realization of an accident in 

the previous period. This function is not easily tractable analytically. Hence, we resort to 

numerical solutions.  

 Moral hazard is present if effort depends on contract parameters. The two contract 

parameters that vary between individuals are coverage choice and the bonus-malus 

coefficient that affects the premium. There is moral hazard if optimal effort depends on 

these characteristics.  

 Abbring et al. (2003) show within the context of their model that optimal effort  
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increases with the premium via the bonus-malus coefficient. As the coefficient increases, 

due to an accident where the driver is at fault, the marginal cost of a future accident 

increases. Hence, effort is greater when the premium is higher, or alternatively when the 

bonus-malus coefficient is higher. This can be seen in the first graph in Figure 4. We plot 

the net utility of exerting effort,    max(V
t
11,V

t
01)−max(V

t
10,V

t
00)  against the bonus-malus at 

the beginning of the period. The dotted line denotes the case where the individual just had 

an at-fault accident (change in the bonus-malus factor) while the solid line denotes the case 

where no accident occurred. It is clear that incentives to exert effort are higher when an at-

fault accident occurs. The incentive generally increases as the bonus-malus coefficient 

increases up to a    bt−1
 of roughly 1.4. 

 The optimal effort level may also depend on the last contract choice    dt−1
.  This first 

occurs because the presence of switching costs implies that drivers who already have CC 

coverage are more likely to prefer staying with this coverage than to reduce their coverage 

and exert more effort on the margin. This type of state-dependence implies that the 

previous contract choice should be predictive of current accidents. A complementary 

mechanism to the bonus-malus is at work. Those who had an at-fault accident at    t −1  

incurred different losses depending on whether they were covered or not. This affects 

disposable income and the marginal utility of consumption. Thus, the trade-off between 

coverage and effort. Because an uncovered loss will lead to a larger marginal utility of 

consumption than a covered one, the uncovered driver will exert more effort at t. These 

two effects together create a situation where current accident probabilities depend on past 

contract choice.   

 This can be seen in the second graph in Figure 4. The solid line represents a case 
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where the driver had only LL coverage at t-1 while the dotted line represents the case 

where he/she also had CC coverage. In both these circumstances we consider the case 

where the individual had an at-fault claim (   nt−1
= 2 ). For most of the bonus-malus range 

that matters in the data (bonus < 1.25), effort is less likely when CC coverage was 

purchased at t-1. This occurs because the marginal utility of consumption is higher when 

only the LL contract was purchased, because the loss was absorbed entirely by the 

policyholder. This form of moral hazard is in the spirit of Lambert (1983). 

 Finally, optimal effort may depend on past accidents through the updating of the 

subjective belief from      πt−1
 to   πt

 following the occurrence of    nt−1
.  If the  occurrence of 

   nt−1
 leads to an upward shift in   πt

, a driver may exert more effort to lower his probability 

of having an accident at t.  The driver is essentially learning about his level of risk and 

modifies his behavior accordingly. Thus, learning induces a negative relationship between 

current accidents and past ones.  

 The optimal contract choice is a discrete function of the same variables. With 

asymmetric learning, those who have more accidents and learn that they are more likely to 

be high risks may choose to purchase more coverage for a given premium. Note however 

that if the driver is at fault, the premium will increase due to the bonus-malus. Thus, the 

effect is ambiguous in the case of at-fault accidents. For a given bonus-malus, the 

prediction is clear for other accidents.  This can be contrasted with the case where there is 

symmetric learning. Assume that no-fault accidents are not informative for the risk type 

and that at fault accidents are equally observable by both parties. In that case, the insurer 

will propose an insurance pricing scheme (with and without commitment) that will 

generate full information coverage in each period at different prices for the different risk 
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types (Boyer, Dionne and Kihlstrom, 1989; de Garidel-Thoron, 2005).  Therefore, a new 

at-fault accident under symmetric learning should not trigger an increase in insurance 

coverage. However, it is unlikely that full symmetric learning can be obtained under moral 

hazard because the insured observes his effort and the link between at-fault claims and 

effort.  In the third graph of Figure 3, we plot the net utility of buying CC coverage as a 

function of the subjective prior     πt−1
. We distinguish between two cases: one where the 

individual has an accident    nt
= 1  and one where he does not    nt

= 0 . It is clear from 

Figure 3 that the net utility of purchasing CC coverage is greater when an accident occurs 

than when it does not. 

  

3.2. Empirical Predictions 

The SOFRES panel contains the following data on individuals i=1,…,N and t=1,2,3.  

 
   

n
it
,b

it
,d

it
,x

it{ }
t=1,2,3{ }

i=1,...,N
 

where  nit
 is equal to 1 if any accident occurs, and zero otherwise (it includes both at-fault 

and other accidents, either declared or not). The SOFRES panel does not contain 

information that would allow us to identify at-fault claims; it only tells us whether or not 

there was a claim for an accident. Both   bit
,d

it
have the same definition as in the model and 

 xit
is a vector of policyholder-vehicle characteristics. The bonus-malus coefficient at  t  

does not include accidents since the last renewal of the contract.  

Substituting the solution for optimal effort in the accident process gives us the 

following equation for accident probability 
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     Pr(n
it

| n
it−1

,d
it−1

,b
it
,π

it−1
,e

it−1
,α

i
,x

it
)  (10) 

Let us first assume all right-hand side (conditioning) variables are observable. Two tests of 

moral hazard are possible based on the discussion in 3.1. The first test involves the bonus-

malus coefficient  bt
. This is analogous to the Abbring et al. (2003) test in a discrete time 

framework. If there is moral hazard, then the probability of an accident should be lower if 

the bonus-malus coefficient is higher, or if an at-fault claim occurred last period. 

Consequently, our first test is the following: 

 

Test MH1: There is no evidence of moral hazard if  bt
 has no effect on the accident 

distribution. A negative effect is consistent with the presence of moral hazard. 

Because     πit−1
 is not observed by the insurer, we cannot confirm the presence of 

moral hazard by finding a negative effect with the MH1 Test. Theory would predict that 

    πit−1
 would have a negative effect on  nt

 conditional on   αi
 . Furthermore, since     πit−1

 is 

positively correlated with  bit
, this would imply that the negative effect of  bit

 on  nit
 could 

be explained by learning rather than moral hazard. Finding evidence of a negative effect on 

MH1 is therefore consistent with moral hazard but does not establish its presence. This is 

essentially the conclusion of Abbring et al. (2003). They find a statistically insignificant 

negative occurrence dependence effect among inexperienced drivers that they tentatively 

attribute to learning. However, the absence of moral hazard and learning is found for more 

experienced drivers in their study.  The fact that   αi
is unobserved is problematic because 

by construction, it is positively correlated with the bonus-malus and with accidents. 

However, we can account for  α  as a random effect component provided we deal with the 
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left-censoring problem observed in the data. The problem arises in other tests as well and 

we will discuss it further in Section 3.3. 

The second test involves looking at the relationship between    dit−1
 and  nit

. Because 

of switching costs and the fact that optimal effort is higher when the driver was not 

covered and had an accident, moral hazard would predict a positive effect of past CC 

coverage on the occurrence of accidents. This leads to a second test for moral hazard: 

Test MH2: There is no evidence of moral hazard if    dit−1
 has no effect on accident 

probabilities. A positive effect is interpreted as evidence of moral hazard. 

The unobservability of     πit−1
 bias the effect of    dit−1

 on  nit
 towards zero. This is 

because     cov(d
it−1

,π
it−1

) > 0  but     πit−1
 has a negative effect on  nit

 conditional on   αi
. 

Accordingly, a positive effect under MH2 implies that moral hazard is present. A zero (or 

negative effect) does not allow us to confirm the presence of moral hazard. 

As mentioned in the previous section, we can test for asymmetric learning done by 

using the optimal contract choice equation. We can estimate the following contract choice 

probability from the data 

     Pr(d
it

| n
it−1

,d
it−1

,b
it
,π

it−1
,e

it−1
,x

it
)  (11) 

Given that we control for  bit
, the remaining effect of    nit−1

 on  dit
 should be positive under 

asymmetric learning.  At-fault claims may also have an effect on contract choice if the 

premium increases. This will generally not be the case when the driver is not at fault. The 

fact that     πit−1
 cannot be observed will only bias the coefficient on    nit−1

 upward. 

Symmetric learning leads to a non-positive effect of past accidents on contract choice.  

Thus, the following test: 
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Test AL: There is no evidence of asymmetric learning if    nit−1
 has no effect on  dit

. A 

positive effect can be interpreted as evidence of asymmetric learning.  

 The three tests together provide a strong framework for separating moral hazard from 

asymmetric learning.  Table 2 summarizes the tests and the conclusions. Only one 

ambiguous case emerges. It involves finding a negative effect on MH1, no effect on MH2 

and a positive effect on AL. From this, we can conclude that there is AL but not that there 

is MH. This is because rejection of MH1 is consistent with AL due to the fact that     πit−1
 is 

unobserved by the insurer.  Because MH2 is biased towards zero due to AL, we cannot 

detect the presence of moral hazard. 

3.3. Econometric Model 
 
We built an econometric model that allows us to conduct all three tests jointly. We 

consider a joint model of the probability functions in equations (10) and (11). We rely on 

parametric models. We specify each equation as a dynamic binary choice model with pre-

determined regressors and an error component structure. We let error terms be correlated 

between equation (10) and (11), as unobservability of     πt−1
 and   αi

would suggest.  The 

error component structure is appealing given the likelihood of serial correlation in contract 

and accident outcomes. For example, equation (10) shows that we condition on  α , which 

is unobserved. This type of bivariate dynamic choice model has been applied to stock and 

mutual fund ownership (Alessie et al., 2004) and female labor force participation (Michaud 

and Tatsiramos, 2009).  A key question is how to deal with the initial condition problem. 

Below we use the solution proposed by Wooldridge (2005). We will test the adequacy of 

the model on simulated data.  
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More specifically, we specify equation (10) as  

 
    

n
it

= I(x
it
β

n
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nd
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nn
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b
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+ ε
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i = 1,...,N ,t = 1,...,T
 (12) 

where 
   
ε

n,it
 has an error component structure 

    
ε

n,it
= α

ni
+ v

n,it
. We specify a similar 

equation  for contract choice 

 
    

d
it

= I(x
it
β

d
+ φ
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d
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+ φ
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n
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+ φ
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b

it
+ ε

d,it
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where again 
    
ε

d,it
= α

di
+ v

d,it
.  In both (12) and (13), all right-hand side variables are 

assumed to be predetermined such that they are independent of 
   
v

j ,it
, j = d,n . The bonus-

malus variable  bit
 is a deterministic function of past accidents   b(ni0

,...,n
it
) . We allow the 

pair of unobserved heterogeneity terms     αi
= (α

ni
,α

di
)  to be jointly normally distributed 

with correlation  ρα  and variances 
    
σ
αj
2 , j = n,d . We do the same for the residual error 

terms 
   
v

it
= (v

n,it
,v

d,it
) .  Conditional on the unobserved heterogeneity terms, omitting the 

conditioning on  xit
, and writing   (dit

,n
it
) = z

it
, we have  

 
    
Pr(z

i1
,...,z

iT
| α

i
,z

i0
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i1
) = Pr(z
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| z
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t
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∏ ,α
i
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which is the probability of the joint sequence of accident and contract choices given the 

initial bonus-malus, contract choice and accident outcome. The period    t = 1  will generally 

not be the start of the process. For example, the SOFRES panel does not follow individuals 

from the first year they have an insurance contract. Accordingly, we face a problem of left 

censoring. Equation (14) makes the problem clear. Integrating (14) over   αi
 implies that we 
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either need to assume that   αi
 is orthogonal to   zi0

,b
i1

, that   zi0
,b

i1
 have a degenerate 

distribution,  or that we know the joint distribution of    (αi
,z

i0
,b

i1
) . It is implausible to 

assume orthogonality and to assume a degenerate distribution. Even for beginners, the 

bonus-malus appears to vary substantially. Many beginners start with a bonus of 0.5. As a 

result, we need to specify features of the joint distribution of    (αi
,z

i0
,b

i1
) . Two solutions 

have been proposed, one by Heckman (1981) that consists of specifying    Pr(z
i0
,b

i1
| α

i
)  

and integrating over the marginal of   αi
. The other solution proposed by Wooldridge 

(2005) is to specify instead    Pr(α
i
| z

i0
,b

i1
)  and maximize likelihood using probabilities in 

(14) conditional on   zi0
,b

i1
. In particular, Wooldridge assumes that 
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)  as the residual 

term, one can substitute 
    
z
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π

j
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δ

j
 in the index of (12) and (13) and then integrate (14) 

over the distribution of     ηi = (η
di
,η

ni
) . We assume the distribution is bivariate normal. The 

maximum likelihood estimator for all parameters of the model becomes  
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We compute the two-dimensional integral in (15) by simulation, replacing the integral with 

the simulator   
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where 
     
η

ir{ }
r=1

R
 are draws from the bivariate normal distribution with parameters 

   
(σ
ηn
2 ,σ

ηd
2 ,ρ

η
) . The resulting estimator is the maximum simulated likelihood estimator. It is 

consistent for   N ,R  going to infinity and asymptotically equivalent to ML for   R / N  

tending to zero. We use 50 draws along each dimension. We use the BFGS numerical 

maximization algorithm and compute robust standard errors with the sandwich estimator. 

 The MH1 test translates into a test of whether     φnb
< 0 . A higher bonus-malus, 

conditional on dynamic selection due to unobserved heterogeneity, gives an incentive to 

exert more effort and thus reduce accident probabilities. The MH2 test translates into a test 

of whether coverage in the last period increases accident probabilities in this period; it is a 

test of whether     φnd
> 0  or not. Finally, a test of asymmetric learning is a test of whether an 

accident last period, conditional on the bonus-malus, leads to an increase in coverage this 

period. It is a test of whether     φdn
> 0  or not.  

 

3.4. Tests on Simulated Data 
 
The fact that the solution for effort and contract choice is assumed to be linear in the index 

of (13) and (14) may lead to misspecification. We verify the performance of each test 

(MH1, MH2 and AL) on simulated data using the model from Section 2.  This is 

particularly useful because some variables, like subjective beliefs and risk type, are 

unobserved in the data but observed in the simulated data set. We simulate a cohort of 

drivers and then keep observations from experience years 6 to 15 (10 years). We do not 

take observations from the start of the process precisely so that we have left-censoring, i.e. 
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initial outcomes at year 5 are correlated with risk type. This replicates what we have seen 

in the data. We stop at year 15 because few contract changes occur after this date and we 

already have 10 observations per driver in the estimate. We include income and experience 

(linear) as controls in the vector  xit
. 

 We consider four scenarios. First, we consider the case where both moral hazard and 

asymmetric learning are present. We estimate the econometric model presented in section 

3.3 using the simulated drivers. We then turn off each information problem sequentially to 

eventually reach a scenario where there is no asymmetric information. To turn off moral 

hazard, we set the productivity of effort in the accident and at-fault accident process equal 

to zero. This produces a solution where effort is zero. To reach a situation within the 

context of the model where we turn off asymmetric learning, we set the factor loading on 

the high-risk type in the accident process to zero. Hence, accidents where the driver is not 

at fault, which are not observed by the insurer in the model, do not convey information 

about the driver’s risk type. Consequently, the bonus-malus contains all the information 

regarding the risk type if there is no moral hazard. Two caveats are in order for this 

simulation. First, the bonus-malus coefficient is not necessarily as optimal as the actuarial 

forecast based on the claims history. Also, the driver remains slightly more informed since 

he observes his own effort. Note that when we consider the scenario where both 

information problems are disregarded, the insurer learns as fast as the driver. Table 3 

reports the results of the three tests for all four scenarios. 

 When we assume both moral hazard and asymmetric learning, all three tests capture 

the information problems. This is shown in column 1 of Table 3. Lag accidents have a 

positive and statistically significant effect on the procurement of CC coverage as predicted 
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by asymmetric learning conditional on the bonus-malus. Both moral hazard tests, MH1 and 

MH2, reveal the presence of moral hazard. The current bonus-malus has a negative effect 

on accidents while the lag of the contract choice has a positive effect. Column 2 reports 

what happens when we assume symmetric learning rather than asymmetric learning. In that 

case, the AL test does not pick up a residual effect of lag accidents on contract choice. This 

implies that within the context of the model the bonus-malus is as good as the subjective 

belief of the driver and corrects the premium such that no increase in coverage occurs.  

Both moral hazard tests still detect moral hazard. The third column shows what happens 

when we simulate data with asymmetric learning but no moral hazard. In that case the AL 

test picks up asymmetric learning while both MH tests do not identify moral hazard. The 

MH2 test even shows that lag contract choice is negatively correlated with accidents. The 

last column shows the results when we assume that there is no information problem; in that 

case, all tests yield negative conclusions. The AL test yields a negative effect of lagged 

accidents on current contract choice. Overall, the tests on simulated data appear to pick up 

the information problems assumed in the model despite the restrictive functional form 

assumed and the unobservability of some of the state variables.   

 Next, we verified whether our solution to control for unobserved heterogeneity and 

initial conditions is adequate. Although results in Table 3 are generally positive, we 

demonstrate what happens if we control directly for the risk type (because in the simulated 

data we know who is high risk) and if we do not control for the risk type. We do the same 

adding the lag subjective probability     πit−1
. Finally, we consider the case where we do not 

control for unobserved heterogeneity. We report the results of the tests in Table 4 using 

data generated with moral hazard and asymmetric learning. 
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 Results in the first column of Table 4 replicate those of column 1 of Table 3 using 

the Wooldridge initial condition solution with random effects. The second column reports 

results where we control for the risk type   αi
 directly. In this case, we do not need to 

control for the initial conditions   zi0
,b

i1
 either. The results are quite close to those in 

column 1, suggesting that our method for controlling for initial condition and unobserved 

heterogeneity is adequate. Because     πit−1
 is also unobserved, we produce results in column 

3 where we include it as a control. Again the conclusions do not change. The last column 

shows what happens if we do not account for initial conditions and unobserved 

heterogeneity. For the AL and MH2 tests, results are relatively robust. However, the MH1 

test reveals an insignificant effect of the bonus-malus on accidents despite the presence of 

moral hazard in the data. This is because the bonus-malus is significantly positively related 

to risk type. If the bonus-malus is omitted, we have an upward bias in the coefficient as 

suggested by Abbring et al. (2003). 

   

4. Results on SOFRES Panel 
 
We then apply our tests to the SOFRES panel. We estimate separate models for two 

groups: those with less than 15 years and more than 15 years of experience in the first 

survey year considered.11 We consider the first sample (less than 15 years) the 

“inexperienced” sample and the second (more than 15 years) the experienced sample. One 

might suspect that asymmetric learning is more likely among drivers with less 

                                                 
11 Abbring et al. (2003) split their sample based on year of birth (before or after 1980). Because their analysis 
takes place during the period 1987-1989, this means that their inexperienced sample is composed of 
individuals with less than seven years of experience. Due to the relatively small sample size in our analysis, 
we use a larger experience group (more or less than 15 years). 
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experience.12  This may be the result of the bonus-malus scheme because in the long-term 

the coefficient will capture unobserved risk types through at-fault accidents. Table A.3 in 

the Appendix gives descriptive statistics on transitions in the panel stratified by experience.  

 In Table 5, we report a summary of the estimate results for the two groups.13 We 

also consider a specification where we allow for a separate MH2 and AL effect for drivers 

with less than 5 years of experience (the beginners).  

 We do not find evidence of learning among the inexperienced group overall. The 

point estimate on lag accidents in the contract equation is positive but statistically 

insignificant (column 1). However, when we allow for a different asymmetric learning 

effect for the beginners, we find a large positive effect (0.863) that is barely statistically 

significant at the 5% level (p-value = 0.053, column 3).  We do not find evidence of 

asymmetric learning among more experienced drivers (column 2). The point estimate is 

negative (-0.223) and statistically insignificant (p-value=0.483). This suggests that 

asymmetric learning vanishes relatively quickly.  

 The MH1 and MH2 tests generally agree for both groups. We find evidence of 

moral hazard among inexperienced drivers (less than 15 years, column 1). The point 

estimate is strongly negative on the bonus-malus (-2.241, p-value=0.081). This suggests 

that accidents at fault at t-1 trigger incentives to exert caution, resulting in fewer accidents 

at t. The MH2 test tells a similar story. The point estimate is positive (0.651) and 

statistically significant (p-value=0.026), as the theory would predict. We do not find 

stronger evidence of moral hazard among beginners (column 2). The effect for those with 

                                                 
12 We do not exploit differences between claims and unreported accidents in this analysis. Although this 
decision could be endogenous, we do not have enough data on deductibles and losses to exploit this 
distinction effectively. 
13 Complete results are available upon request. 
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less than 5 years of experience is no different from that of the rest of the group (point 

estimate is 0.17, p-value=0.351). There is no evidence of moral hazard among the more 

experienced group. The point estimate is 0.096 on the MH1 test with a p-value of 0.892. 

The same conclusion is reached using the MH2 test. 

   

5. Discussion and Conclusion 
 

In this paper, we have analyzed the identification of moral hazard from asymmetric 

learning within the context of a structural dynamic insurance model. We extended the 

model developed by Abbring et al. (2003) to include learning and insurance coverage 

choice. We derived two tests in addition to the negative occurrence dependence test 

proposed in Abbring et al. (2003), which we have applied on longitudinal data from France 

for the period 1995-1997. 

Despite the short horizon of the panel, our results suggest the presence of moral 

hazard among inexperienced drivers with less than 15 years of experience. We do not find 

evidence of asymmetric learning for the vast majority of drivers. We find some evidence of 

asymmetric learning for those with less than 5 years of experience, which disappears 

quickly as both drivers and insurers learn about the underlying risks.  

The results for the experienced group are largely consistent with the evidence 

presented in Abbring et al. (2003). For drivers with less experience, particularly those with 

less than 5 years of experience, we find evidence of both asymmetric learning and moral 

hazard, while they found only weak evidence of negative occurrence dependence. It is not 

clear what could explain the differences in our results for inexperienced drivers. On the 

one hand, we have used a longer horizon and more data concerning contracts, accidents 
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and the bonus-malus. On the other hand, our tests are highly parametric, which may lead to 

misspecification, whereas Abbring et al. (2003) constructed non-parametric tests, which 

may be less powerful when applied to rare events.  
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Tables and Figures 
 
 

Figure 1 Timing of the Model and Contract 

 
 Notes: The figure shows the timing assumed in the model. Periods and contract do not coincide. In the 
model, individuals start by observing whether they had an accident or not; damages are paid by the insurer if 
an accident occurred. This is for a pre-determined contract which they have chosen in the previous year. 
Based on the occurrence of the accident but before renewing their contract, they update their beliefs on 
whether they are high risk or not. Based on the information they have at that point, they choose to renew or 
change their insurance contract. They also choose the effort level for the following year. This is the start of 
the contract period t. The model period t ends when an accident based on the effort level and insurance 
contract chosen in t occurs. In t+1, a new period model starts with the damages paid depending on the 
insurance contract and the occurrence of an accident. Beliefs are then revised and the individual renews the 
contract. 
 



 40 

Figure 2 Profiles of Key Variables by Experience – SOFRES Panel 
 
 

 
 

 
 
Source: Authors’ calculations from the SOFRES panel. The top panel shows the prevalence of 
comprehensive coverage insurance contracts (CC), accidents (including claims) and claims by years of 
driving experience. The bottom panel reports the median, 75th percentile and 95th percentile of the bonus-
malus coefficient distribution. The minimum value is 0.5 and more than 50% of drivers have a bonus of 0.5 
after roughly 18 years.
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Figure 3 Simulated Profiles of Key Variables under the Baseline Scenario 
with Moral Hazard and Asymmetric Learning 

 
 

 
 

 
 

 
 
 

Notes: Statistics based on 2000 simulated individuals. Each profile is plotted by risk type.  
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Figure 4 Optimal Decision Rules, Moral Hazard and Asymmetric Learning 
 

 
 

 
 

 
 

Notes: based on the numerical solution of the model. The net value of effort is defined as 

   max(V 11,V 01)−max(V 10,V 00)  and similarly for contract choice. Other variables in the state are set to 
t=5, y=13,500, d(t-1)=0, e(t-1) =0 and p(t-1)=0.3 for the top two graphs and b(t-1)=0.75 for the last one. 
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Table 1 Parameter Values 

Parameter Definition Value Source
σ coefficient of relative risk aversion 1.5 literature
γ marginal disutility effort -5.00E-04 assumed
µ10 constant, accident probability -2.1 calibrated
µ11 productivity effort, accident probability -0.5 assumed
µ12 factor high risk type, accident probability 0.75 assumed
µ20 constant, at fault probability -3.2 calibrated
µ21 productivity effort, at fault probability -0.5 assumed
µ22 factor high risk, at fault probability 1.6 assumed
f deductible 0.192 FFSA
L loss 2.439 FFSA
ρ0 log premium LR -1.69 FFSA
ρ1 log % change in premium for CC contract 0.7 FFSA
β discount factor 0.985 assumed
δb bonus factor 0.95 FFSA
δm malus factor 1.25 FFSA
ψ switching or search cost (euros) 0.05 assumed
δ fraction of population high risk 0.3 assumed
Notes: parameters of the models along with the value used in the baseline simulations. 
The source for the value is also reported. Calibrated means that the parameter was 
chosen to match certain features of the data as defined in text. Assumed implies that 
values were chosen arbitrarely. FFSA stands for the "Federation Francaise des Societes 
d'Assurances".
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Table 2 Tests of Asymmetric Information: Moral Hazard and Asymmetric 
Learning 

 
 

MH1 MH2 no effect effect
no effect no effect No MH or AL AL

effect MH AL and MH
MH2

effect no effect MH AL
efffect MH AL and MH

AL

Notes: The MH1 test involves the effect of the bonus-malus 
on accidents. The MH2 tests involves the effect of the 
previous contract choice on accidents. Finally, the AL test 
looks at the effect of accidents on contract choice. The table 
shows the conclusions that can be reached based on the 
results of the tests. Abbring et al. (2003) find an effect under 
MH1 for young drivers but cannot attribute it to asymmetric 
learning or moral hazard (no MH or AL). The three tests 
together allow us to separate the two information problems.
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Table 3 Empirical Tests on Simulated Data: Information Problems 

 
 

AL No AL AL No AL
Test on Contract Choice
n(t-1) - AL 0.428 -0.062 0.684 -0.261

(0.001) (0.327) (0.001) (0.001)
Test on Accidents
b(t) - MH1 -0.575 -0.674 -0.063 -0.133

(0.001) (0.001) (0.537) (0.131)
d(t-1) - MH2 0.116 0.1344 -0.131 -0.0529

(0.003) (0.001) (0.013) -0.407

Underlying DGP
No MHMH

Notes: bivariate probit coefficient estimates along with p-values. Estimates obtained by
maximum simulated likelihood with 50 draws per respondent and equation. Different
specifications are based on simulated data from varying data generating processes (DGP).
The first column assumes both moral hazard (MH) and asymmetric learning (AL). The other
three specifications vary the presence of information problems. Each specification controls
for experience and income and deals with the initial condition problem as mentioned in the
text. Complete results available upon request.
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Table 4 Empirical Tests on Simulated Data: Initial Conditions and 
Unobserved Heterogeneity 

 

Wooldridge Control α
Control α and 

π(t-1) No control
Test on Contract Choice
n(t-1) - AL 0.428 0.421 0.894 0.456

(0.001) (0.001) (0.001) (0.001)
Test on Accidents
b(t) - MH1 -0.575 -0.424 -0.294 0.109

(0.001) (0.001) (0.001) (0.159)
d(t-1) - MH2 0.116 0.095 0.1577 0.176

(0.003) (0.001) (0.001) (0.001)

Specification

Notes: bivariate probit coefficient estimates along with p-values. Each column consists of a
different specification. The first column implements the Wooldridge solution to the initial
condition problem and integrates out remaining unobserved heterogeneity by simulation (50
draws). The second specification controls directly for the risk type. The third specification
adds the lag subjective probability of being high risk type. The specification in the last column 
does not control for unobserved heterogeneity nor corrects for left-censoring. Each
specification controls for experience and income. Complete results available upon request.
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Table 5 Tests on SOFRES Panel 

 
 
 

Test on Contract Choice
Less than 15 

years
Interaction 

< 5 yrs
More than 15 

years
n(t-1) - AL Test 0.152 0.034 -0.223

(0.729) (0.940) (0.483)
n(t-1) x exp<5 0.868

(0.053)
Test on Accidents
b(t-1) - MH1 Test -2.241 -2.216 0.096

(0.081) (0.080) (0.892)
d(t-1) - MH2 Test 0.651 0.622 -0.14

(0.026) (0.033) (0.661)
d(t-1) x exp<5 0.170

(0.351)

Sample Size (N x T) 1066 1066 1537

Years of Experience Group

Notes: bivariate probit coefficient estimates along with p-values
based on robust standard errors. Estimates obtained from maximum
simulated likelihood with 100 draws per respondent and equation.
The first column reports coefficients estimated on drivers with less
than 15 years of experience. The second column allows for different
AL and MH2 tests for those with less than 5 years of experience in
the contract choice equation. The last column presents the
coefficients estimated only on those with more than 15 years of
experience. Other controls include experience, income and age of
vehicle as well as initial conditions. Complete results available upon
request.



 48 

 

Appendix  
 

Data 
 

The survey conducted by SOFRES is called Parc Automobile.  It is part of a larger 
monthly consumer survey. Monthly surveys are targeted to a sub-sample of a stable pool of 
approximately 20,000 respondents. Each year since 1983, the January survey targets 
roughly 10,000 respondents to answer questions regarding the use of their vehicles. The 
sample used for the Parc Automobile survey is renewed each year so that it is 
representative of the French population. Each year, 1/3 of the respondents are not re-
interviewed, making the Parc Automobile survey is a rotating panel. Until 1995, the survey 
did not contain much information on accidents and insurance coverage, so we use data 
from 1995 to 1997 in our analysis. The respondent is the head of the household and 
questions pertaining to socio-demographic characteristics (i.e. gender) pertain only to the 
respondent. 

The dataset provided by SOFRES consists of three files containing data for each 
year (1995, 1996 and 1997) on policyholders and their vehicles. Each observation 
represents a vehicle-policyholder pair. We delete observations where the vehicle has not 
been used (zero kilometers reported) or where information is missing on key variables (e.g. 
accidents, bonus-malus, comprehensive coverage). For example, the potential sample from 
1997 consists of 8849 observations. Eliminating those with zero kilometers yields 7659 
observations. Finally, dropping observations where key variables are missing leaves us 
with 5279 observations for that year.   

Although the dataset contains an identifier for each respondent that is consistent 
across years, it does not contain a unique identifier for vehicles. However, we have access 
to the first 4 digits of the license plate number and the year the vehicle was built, which we 
use to merge the datasets for each year in combination with the respondents’ ID. In this 
process, we drop observations where the license plate and/or year of manufacturing are 
missing or incomplete. For 1997, we are left with 5121 observations. To validate our 
match, we have checked whether the characteristics of vehicles that should not change 
across years (such as make, vehicle class and fuel type) were indeed constant. When they 
changed, we classified the observation as an invalid match and dropped the entire record. 
In the end, we were left with 4960 observations for analysis. The same pattern of exclusion 
was applied to other years with a similar proportion of observations dropped. Table A.1 
reports the record number per year stratified by the number of years in the panel. Overall, 
1049 observations are present in all three years. Table A.2 reports descriptive statistics on 
some of the variables used in the analysis, including socio-demographic characteristics of 
respondents. 
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Table A.1 Structure of SOFRES Panel 

 
 

Table A.2 Descriptive Statistics on Panel 
 

 
 

 
 

Years in Panel 1995 1996 1997
1 year 3052 2454 2901
2 years 1342 2362 1010
3 years 1049 1049 1049
Total 5443 5855 4960

Year of Survey

Notes: Each cell gives the number of records stratified by how 
many years the policyholder-vehicle pair is in the panel.

% %
Gender (male) 62.9 Region
Age Paris 33.4

18-24 5.2 North 9.2
25-34 22.3 East 9.8
35-44 21.7 South 35.2
45-54 16.5 West 12.4
55-64 14.7 Primary Use
65+ 20 Rural 13.3

Occupation City 40.6
Retired 28.3 Mixed 46.6
Farmer 4.3 Age of vehicle
Manager 8.0 < 3 years 34.3
Professional 7.6 3-5 yrs 18.6
Teacher (active or retired) 19.4 5-10 yrs 33.4
Employee 29.1 10+ yrs 13.7
Student 3.2 Experience

Number of vehicles 25th pct. 14
1 45.8 Median 24
2 45.6 75th pct. 36
3+ 8.5 Mean 25.2

Notes: statistics for the 1995 wave of the survey.
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Table A.3 Transitions by Experience Level 

 
 

 

fraction <15 years > 15 years
Accidents

1 -> 1 0.295 0.192
1 -> 0 0.705 0.802
0 -> 1 0.147 0.123
0 -> 0 0.852 0.877
% accident 0.216 0.167

CC coverage
1 -> 1 0.916 0.944
1 -> 0 0.084 0.057
0 -> 1 0.030 0.066
0 -> 0 0.969 0.934
% CC 0.586 0.718

Years of Experience

Notes: Authors' calculations using all years
(1995-1997). Transition rates from origin x
at t-1 to y at t are reported as x -> y
where 0 denotes no accident or CC
coverage and 1 an accident or CC
coverage.




