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Abstract

Multifractal processes have recently been proposed as a new formalism
for modelling the time series of returns in finance. The major attraction of
these processes is their ability to generate various degrees of long memory
in different powers of returns - a feature that has been found in virtually
all financial data. Initial difficulties stemming from non-stationarity and
the combinatorial nature of the original model have been overcome by
the introduction of an iterative Markov-switching multifractal model in
Calvet and Fisher (2001) which allows for estimation of its parameters
via maximum likelihood and Bayesian forecasting of volatility. However,
applicability of MLE is restricted to cases with a discrete distribution
of volatility components. From a practical point of view, ML also be-
comes computationally unfeasible for large numbers of components even
if they are drawn from a discrete distribution. Here we propose an alter-
native GMM estimator together with linear forecasts which in principle is
applicable for any continuous distribution with any number of volatility
components. Monte Carlo studies show that GMM performs reasonably
well for the popular Binomial and Lognormal models and that the loss
incurred with linear compared to optimal forecasts is small. Extending
the number of volatility components beyond what is feasible with MLE
leads to gains in forecasting accuracy for some time series.
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1 Introduction

The recent proposal of multifractal models (Calvet et al., 1997; Calvet and
Fisher, 2001, 2002a) has added an interesting new entry to the rich variety
of volatility models available in financial econometrics (cf. Poon and Granger,
2003, for an up-to-date review). The essential new feature of this class of models
is its multiplicative, hierarchical structure of volatility components with hetero-
geneous frequencies. Research on multifractal models originated from statistical
physics where they had been proposed as models for turbulent flows (e.g. Man-
delbrot, 1974). The main attraction in the financial sphere is the ability of
these models to generate different degrees of long-term dependence in various
powers of returns - a feature pervasively found in all financial data (cf. Ding,
Engle and Granger, 1993; Andersen and Bollerslev, 1997; Lobato and Savin,
1999). Unfortunately, multifractal models used in physics were of a combina-
torial rather than causal nature and they suffered from non-stationarity due to
the limitation to a bounded interval and the non-convergence of moments in the
continuous-time limit. These major weaknesses were overcome by Calvet and
Fisher (2001) who introduced a Markov-switching multifractal model based on
Poisson arrival times for which weak convergence to the continuous-time limit
could be demonstrated. The interpretation as a Markov-switching process (al-
beit with a possibly huge number of states) also allowed maximum likelihood
estimation of the parameters for cases with a discrete distribution of volatility
components and forecasting based on the current conditional probabilities of
volatility states. The implementation of this procedure in Calvet and Fisher
(2004) showed that this new model provides gains in forecasting accuracy for
medium and long horizons (up to 50 days) over forecasts from GARCH and
FIGARCH models.

Our contribution to this emergent literature in this paper is twofold: (i) we
introduce an alternative GMM estimator of multifractal parameters which could
be used in cases in which ML is not applicable or computationally infeasible,
(ii) we propose linear forecasting which also is universally applicable and does
not require particular specifications of the distribution or restrictions on the
number of volatility components. We first explore the behavior of GMM plus
linear forecasting against the benchmark of ML and optimal forecasts for the
special case of the Binomial model used in Calvet and Fisher (2004). As it turns
out, GMM is, of course, less efficient than ML but it is nicely behaved in that it
has small biases and reasonable mean squared errors for the crucial multifractal
parameters. Monte Carlo results are in good harmony with T

1
2 consistency and

no problems of non-convergence or multiplicity of solutions are encountered in
our simulations. Furthermore, despite the sometimes sizable difference in Monte
Carlo MSEs between GMM and MLE, differences are less pronounced with
respect to forecasting performance: GMM with linear forecasts typically only
has a very slight disadvantage against ML-based optimal forecasts. Additional
Monte Carlo runs also show that the performance of GMM and linear forecasts
is not adversely affected by increasing the number of volatility components or
by replacing the discrete Binomial distribution of multipliers by a continuous
Lognormal distribution.

Our empirical application to various foreign exchange data shows that using
a larger state space indeed provides further scope for improvement of long-run
volatility predictions for some time series while the replacement of the Binomial
model by the Lognormal specification seems to make almost no difference at all.
The structure of the remainder is as follows: section 2 shortly reviews available
literature on multifractal models, section 3 introduces the GMM estimator and
compares its performance to MLE while section 4 deals with linear against
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optimal predictors. Section 5 presents our empirical findings before we provide
concluding remarks in section 6. Two appendices provide detailed derivations
of the moment conditions used for GMM estimation, and closed-form solutions
of autocovariances needed to construct best linear forecasts.

2 The Markov-Switching Multifractal Model

Multifractal measures have a long history in physics dating back at least to
the early seventies when Mandelbrot introduced them as models for the distri-
bution of energy in turbulent dissipation (e.g., Mandelbrot, 1974). The main
reason for considering multifractal processes in the financial context is that they
share certain properties which are known to be universal characteristics of asset
returns as well: they have hyperbolically decaying autocovariances (long mem-
ory) and fat tails. Multifractality, furthermore, implies that different powers
of the measure have different decay rates of their autocovariances. While early
empirical evidence of multifractality in financial data had already appeared in,
e.g., Vassilicos et al. (1993), Calvet et al. (1997) were the first to develop a
multifractal model for financial data. Their Multifractal Model of Asset Returns
(MMAR) assumes that returns follow a compound process in which an incre-
mental Brownian motion is subordinate to the cumulative distribution function
of a multifractal measure. Calvet and Fisher (2002a) develop estimators and
diagnostic tests for this model on the base of its scaling properties.

However, despite the attractiveness of its stochastic properties, practical
applicability of the MMAR suffered from its combinatorial nature and its non-
stationarity due to the restriction to a bounded interval. These limitations
have been overcome by the iterative time series models introduced by Calvet
and Fisher (2001, 2004). Calvet and Fisher (2001) define a continuous-time
multifractal model with random times for the changes of multipliers (Poisson
multifractal) and demonstrate weak convergence of a discretized version of this
process to its continuous-time limit. This approach preserves the hierarchy of
volatility components of MMAR but dispenses with its restriction to a bounded
interval. In the discretized version of the Poisson multifractal, the volatility dy-
namics can be interpreted as a Markov-switching process with a large number of
states. As long as the state space from which volatility components are drawn is
finite maximum likelihood can be used for parameter estimation and Bayesian
probability updating allows forecasting of future volatility. Forecasting algo-
rithms developed for this model have been successfully applied for forecasting
exchange rate volatility in Calvet and Fisher (2004).

In the following, we shortly review the building blocks of this Markov-
Switching Multifractal process (MSM). Returns are modelled as:

xt = σt · ut (1)

with innovations ut drawn from a standard Normal distribution N(0,1) and
instantaneous volatility being determined by the product of k volatility compo-
nents or multipliers M

(1)
t , M

(2)
t ..., M

(k)
t and a constant scale factor σ:

σ2
t = σ2

k∏

i=1

M
(i)
t . (2)

Each volatility component is renewed at time t with probability γi depending
on its rank within the hierarchy of multipliers and remains unchanged with
probability 1 − γi. The transition probabilities are specified by Calvet and
Fisher (2001) as:

γi = 1− (1− γk)(b
i−k), (3)
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with parameters γk ∈ [0, 1] and b ∈ (1,∞). Estimation of this model, then,
involves the parameters γk and b as well as those characterizing the distribution
of the components M

(i)
t . In the present paper, we explore two specifications

for the distribution of multipliers: the Binomial and Lognormal MSM mod-
els. Following Calvet and Fisher (2004) the Binomial MSM is characterized
by Binomial random draws taking the values m0 and 2 − m0 (1 ≤ m0 < 2)
with equal probability (thus, guaranteeing an expectation of unity for all M

(i)
t ).

The model, then, is a Markov switching process with 2k states whose parame-
ters can be estimated via maximum likelihood. Conditional state probabilities
can be used to compute forecasts of future volatility and these are shown to
outperform forecasts derived from GARCH, FIGARCH, and two-state Markov
switching GARCH models. While this approach is optimal for the Binomial
MSM as well as multinomial generalizations, its general applicability is limited
in two respects: First, it is not applicable for models with an infinite state space,
i.e. continuous distributions of the multipliers. Second, current computational
limitations make choices of k beyond 10 unfeasible even for the Binomial case
because of the implied evaluation of a 2k×2k transition matrix in each iteration.1

In the following we consider both specifications with a continuous distribu-
tion of multipliers and large numbers of multipliers, k > 10. As an example
of a multifractal model with a continuous state space we consider the Lognor-
mal MSM model with volatility components drawn from a Lognormal distri-
bution (cf. Calvet and Fisher (2002a) for the earlier non-stationary Lognormal
MMAR). In this model, multipliers are determined by random draws from a
Lognormal distribution with parameters λ and s, i.e.

M
(i)
t ∼ LN(−λ, s2). (4)

Normalisation via E[M (i)
t ] = 1 leads to

exp(−λ + 0.5s2) = 1, (5)

from which a restriction on the shape parameter can be inferred: s =
√

2λ.
Hence, the distribution of volatility components is parameterized by a one-
parameter family of Lognormals with the normalization restricting the choice
of the shape parameter.

Given the successful performance of the Binomial MSM withk ≤ 10 inves-
tigated in Calvet and Fisher (2004), it appears certainly worthwhile to explore
whether one would get similar or better results by increasing the number of
volatility components or adopting a continuous distribution of the multipliers.
To this end, we introduce a GMM estimator as a flexible and versatile estimation
method for multifractal parameters and compare its performance to that of ML
(where applicable), and we complement GMM estimation by linear forecasting
on the base of estimated parameter values which can be used as a substitute
for Calvet and Fisher’s Bayesian forecasts if conditional state probabilities are
not available. Both approaches are applicable to a wide variety of specifications
of (1) and (2). In order to concentrate on the estimation of the parameters of
the distribution of volatility components and to confine the overall number of
parameters to be estimated via GMM, we restrict the specification of transition
probabilities by fixing ex ante their parameters, b and γk, and focusing on esti-
mation of the parameters of the distribution of volatility components. Following
the recommendation of an anonymous referee, we imposed the restrictions b = 2
and γk = 0.5. Note that the later restriction implies that the volatility com-
ponent at the highest frequency has a probability of one-half to be replaced

1For multinomial specifications with more than two states, computational limitations would
restrict the choice of k to even smaller numbers.
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by a new draw. We have performed a limited sensitivity analysis by replacing
this second parameter by γk = 0.99 which would amount to replacement of the
component at the high-frequency end with a probability close to 1 (reminiscent
of the earlier MMAR model in which the high-frequency component is replaced
with certainty in every period).2 We found a certain trade-off between the re-
striction on γk and results for estimated distributional parameters (reported
below), but little overall difference in goodness-of-fit of the MSM model and its
forecasting performance.3

3 Estimation of Markov-Switching Multifractal
Models via GMM

Estimation of multifractal models has proceeded from adaption of the so-called
“scaling estimator” in Calvet et al. (1997) for the combinatorial MMAR – which
is still pervasively used in natural sciences – to the seminal proposal of maximum
likelihood estimation for the discretized MSM in Calvet and Fisher (2004). MLE
is optimal in those cases in which it can be applied and has the added advantage
of providing conditional probabilities of the unobserved volatility states which
can be exploited for optimal forecasts on the base of the transition matrix of
the model.

However, because of the restriction of MLE to discrete distributions of multi-
pliers and computationally feasible values of k, it appears worthwhile to explore
alternative ways of estimating MSM parameters. To this end, we follow some
earlier attempts at investigating method of moments estimation. However, in
contrast to the SMM (Simulated Method of Moments) approach in Calvet and
Fisher (2002b), we use a GMM (Generalized Method of Moments, cf. Hansen,
1982) approach with analytically solvable moment conditions. We shortly re-
view the basic GMM framework before turning to our particular set of moment
conditions. In GMM, the vector of parameter estimates of a model, say ϕ, is
obtained as:

ϕ̂T = arg min
ϕ∈Φ

fT (ϕ)′AT fT (ϕ) (6)

with Φ the parameter space, fT (ϕ) the vector of differences between sample
moments and analytical moments, and AT a positive definite and possibly ran-
dom weighting matrix. As is well-known, ϕ̂T is consistent and asymptotically
Normal if suitable ‘regularity conditions’ are fulfilled (sets of which are detailed,
for example, in Harris and Mátyás, 1999). ϕ̂T then converges to

T 1/2(ϕ̂T − ϕ0) ∼ N(0,Ξ) (7)

with covariance matrix Ξ = (F̄ ′T V̄ −1
T F̄T )−1 in which ϕ0 is the true parameter

vector, V̂ −1
T = TvarfT (ϕ̂T ) is the covariance matrix of the moment conditions,

F̂T (ϕ) = ∂fT (ϕ)
∂ϕ is the matrix of first derivatives of the moment conditions, and

V̄T and F̄T are the constant limiting matrices to which V̂T and F̂T converge.
Applicability of GMM would have been cumbersome for the MMAR ap-

proach of Calvet et al. (1997) and Calvet and Fisher (2002a) because of its

2Note that one could also assume additional stages of the cascade at non-observable fre-
quencies beyond the one at which data are available. Any assumption on the number of
unobservable submerged components could be used to compute their expected contribution
to the marginal distribution at the frequency of available data.

3We have also tried the simpler specification γi = 2−(k−i), also without much of an effect
on the overall outcome of our Monte Carlo simulations and empirical application.
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non-stationarity violating the required regularity conditions. This problem, for-
tunately, does not carry over to the MSM model which rather fits into the class
of Markov-switching models with standard asymptotic behavior. As has been
pointed out by Calvet and Fisher (2004), although models of this class are par-
tially motivated by empirical findings of long-term dependence of volatility, they
do not obey the traditional definition of long-memory, i.e. asymptotic power-
law behavior of autocovariance functions in the limit t → ∞ or divergence of
the spectral density at zero (cf. Beran, 1994). MSMs are rather characterized
by only ‘apparent’ long-memory with an asymptotic hyperbolic decline of the
auto-correlation of absolute powers over a finite horizon and exponential decline
thereafter. In the case of Markov-Switching multifractal processes, therefore,

Cov(|xq
t |, |xq

t+τ |) ∝ τ2d(q)−1 (8)

holds only over an interval 1 ¿ τ ¿ bk with b the number of states (i.e.
b = 2 in the binomial MSM) and k the number of multipliers.

Although applicability of regularity conditions is not hampered by this type
of “long memory on a bounded interval”, the proximity to ‘true’ long memory
might rise practical concerns. For example, note that with b = 2 and k = 15,
the extent of the power law scaling might exceed the size of most available data
for daily financial prices. In finite samples, application of GMM to Markov-
Switching multifractals could, then, yield poor results since usual estimates of
the covariance matrix VT might show large pre-asymptotic variation.

Our practical solution to this potential problem is using log differences of
absolute returns together with the pertinent analytical moment conditions, i.e.
to transform the observed data xt into:

ξt,T = ln |xt| − ln |xt−T |. (9)

As is shown in Appendix A, the transformed variable ξt,T , in fact, only has
non-zero auto-covariances over a limited number of lags. With non-overlapping
observations, we only observe non-zero auto-covariances at lag one, i.e. for ξt,T

and ξt+T,T , while for overlapping log differences ξt,T , ξt+1,T , ... auto-covariances
would be non-zero over T lags. In our applications below, overlapping obser-
vations are used. One may note that moments of ξt,T only depend on the pa-
rameters of the volatility process while the standard deviation of the Normally
distributed increments, σ, drops out when computing log differences:

ξt,T = ln
∣∣∣∣σut(

k∏
i=1

M
(i)
t )

1
2

∣∣∣∣− ln
∣∣∣∣σut−T (

k∏
i=1

M
(i)
t−T )

1
2

∣∣∣∣

= 0.5
k∑

i=1

(ε(i)
t − ε

(i)
t−T ) + ln |ut| − ln |ut−T |

with ε
(i)
t = ln(M (i)

t ).
The lack of inclusion of the scale parameter σ in the above parameter set

makes it necessary to add another moment condition such as the second moment
of xt that exactly identifies σ.

In order to exploit the temporal scaling properties of the multifractal model,
our GMM estimator uses moment conditions providing information over various
time horizons. In particular, we select covariances of the powers of ξt,T , i.e.
moments of the following type:

Mom (T, q) = E
[
ξq
t+T,T · ξq

t,T

]
(10)

6



for q = 1, 2 and T = 1, 5, 10, 20 together with E
[
x2

t

]
= σ2 for identification of

σ. Since the eight moment conditions for m0 or λ are not affected by σ, the
covariance matrix of the parameters should be block-diagonal and estimated
values of σ should be essentially identical to the sample standard deviation.

Note that our moment conditions differ from those used in previous litera-
ture. Calvet and Fisher (2002b) had used a variety of moment-scaling properties,
parameters of log-log regressions of the sample auto-covariogram, slope parame-
ters from log-periodogram regressions, high-frequency auto-covariances and tail
index estimates. They report that the covariogram and tail index estimates
showed the lowest mean squared errors. Earlier versions of this paper had also
applied high-frequency auto-covariances following the example of the stochastic
volatility literature (Andersen and Sørensen, 1996). However, experimentation
indicated that the performance of these moment conditions was quite sensitive
to the underlying parameter values of the multifractal model. In contrast, as
will be shown in our Monte Carlo simulations below, using log-moments leads to
relatively homogeneous behavior across the parameter values m0 and λ and even
more so across different choices of k. This nice behavior of log-moments might
be attributed to the resulting linear connection of (log) volatility components
instead of their multiplicative relationship in the raw data.

An alternative Simulated Method of Moments (SMM) approach has been
pursued recently by Calvet, Fisher and Thompson (2006) for estimation of the
parameters of a bi-variate MSM model. They use a particle filter to optimize
the simulated likelihood of the bivariate Binomial model within a two-step es-
timation approach that can be interpreted as a SMM estimator. In comparison
to this approach, our GMM estimator is based on analytical moments which
considerably reduces computational demands.

It might be worthwhile to also try various combinations of our moment
conditions for log increments and other moments used in previous research which
might provide additional scope for increasing the efficiency of GMM. However, a
comprehensive investigation into potential gains from various sets of alternative
moment conditions is beyond the scope of the present paper and might be left
for future research.

We proceed by reporting results of several Monte Carlo studies designed to
explore the performance of our new GMM estimator. Due to the moderate com-
putational demands of GMM, we were able to use an iterative GMM scheme in
which a new weighting matrix is computed and the whole estimation process is
repeated until convergence of both the parameter estimates and the weighting
matrix is obtained (cf. Hansen, Heaton and Yaron, 1996). Variance-covariance
matrices of moment conditions and, hence, the weighting matrices of the subse-
quent iteration are computed numerically. Inspection of the variance-covariance
matrices shows that both in our Monte Carlo simulations and in the empirical
application, the block-diagonal structure is apparent as the covariance between
the estimators of mo or λ and σ is close to zero.

We start with the Binomial Model with a limited number of multipliers,
k = 8, and subsequently increase the number of volatility components and also
switch to the Lognormal model as an example of a specification with continuous
state space.4 Our first experiments serve to establish the efficiency of the GMM

4Earlier versions of this paper also included comparisons with the traditional “scaling
estimator” as well as comparisons of GMM with varying numbers of moment conditions. These
results have been skipped to preserve space. As concerns the scaling estimator, its performance
typically is far worse than GMM, let alone MLE. Since the scaling estimator also exploits the
structure of various moments of the data, its poor performance can be explained by inefficient
use of information contained in moments compared to GMM. Calvet and Fisher (2002a),
in fact, deviced a “simulated method of moment” adaption of the original scaling approach
which should make more efficient use of the pertinent moments but was also discarded in their
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estimates vis-à-vis the ML approach of Calvet and Fisher (2004) for a setting
that is close to the Monte Carlo experiments reported in their paper. To this
end, we choose multipliers m0 = 1.3, 1.4 and 1.5 and sample sizes T1 = 2500,
T2 = 5000, and T3 = 10000. The only difference of our simulation set-up is that
we fixed the parameters of the transition probabilities (3) as b = 2 and γk = 0.5
so that we only have to estimate two parameters compared to four in Calvet
and Fisher’s somewhat more general approach. Results are displayed in Table 1.
Comparison with the pertinent table in Calvet and Fisher (2004) shows that in
the more parsimonious two-parameter model both m0 and σ can be estimated
somewhat more efficiently than with four parameters. Furthermore, Table 1
indicates that biases and root mean squared errors of the ML estimates of m0

are hardly affected at all by the choice of parameters, while RMSEs appear
to increase for σ for higher m0. This is plausible since with increasing m0

one generates enhanced fluctuations of the product of volatilities which might
interfere with the estimation of the constant scale factor.

Table 1 about here

Comparison of MLE and GMM estimates shows, of course, that the later
are less efficient.5 Obviously, variability of estimates for m0 with GMM is much
higher, ranging from 4 to 10 times that of the ML estimates. The relative
difference is the higher, the smaller the sample size and the lower the ‘true’
value m0. While biases and MSEs of ML estimates of m0 were essentially
independent of the true parameter, GMM estimates exhibit a decrease of both
the bias and MSEs when proceeding from m0 = 1.3 to m0 = 1.5. A closer
look reveals that the larger bias for smaller mo is caused by a certain number
of cases in which the estimator gets locked-in at the lower boundary (mo = 1)
of the admissible parameter space. The farther the true parameter is above
the boundary the fewer are these cases so that for mo = 1.4 or 1.5 practically
all estimates are located in the interior of the admissible parameter space and
the GMM estimators become essentially as unbiased as ML. In contrast, the
quality of the estimates of the scale parameter σ is almost identical under both
methods with only a very slight advantage for ML against GMM. Interestingly,
the average bias of the Monte Carlo estimates is moderate throughout and
quickly approaches zero for the larger sample sizes.6 It is also worthwhile to
point out that the GMM estimator is quite well-behaved in that we encounter
no problems of non-convergence or breakdown of the estimation in all our Monte
Carlo simulations. This is in contrast to GMM estimation of standard stochastic
volatility models which are plagued by a non-negligible frequency of ‘crashes’,
cf. Andersen and Sørensen (1996).

Now, we proceed into territory in which MLE becomes unpractical, at least
for the purpose of simulation studies. Table 2 shows GMM results for the
same set of parameters but with an increasing number of cascade components,

subsequent development of ML techniques. Experiments with varying numbers of moments in
our GMM approach indicated monotonic behavior with a steady reduction of simulated mean
squared errors when increasing the number of moments. Because of decreasing returns in
the gains in precision, using nine moment conditions appeared to yield a satisfactory balance
between computational speed and the quality of the estimates. One might, however, keep in
mind that the efficiency of GMM could still be increased at reasonable computational costs.

5However, one might note that obtaining our GMM estimates with nine moment conditions
requires only a small fraction of the time needed for ML estimation.

6In view of our concerns about the proximity of the MSM with its ‘long memory on a
bounded interval’ to processes with pure long-term dependence, it is also interesting to note

that our estimates are in harmony with T
1
2 consistency (with a slightly slower convergence

rate in the case m0 = 1.3 due to the influence of boundary solutions). This underscores that
the log transformation is useful in improving the quality of GMM estimates as compared to
earlier experiments using moments of the raw data.
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k = 10, 15 and 20. Here we restrict ourselves to only one sample size, T = 5000,
in order to conserve space. Comparison with the pertinent entries in Table
1 shows that the efficiency of multifractal parameter estimates is practically
insensitive with respect to the number of components. Inspection of our moment
conditions detailed in Appendix A reveals that this is probably so because high-
level multipliers are expected to change only very infrequently and, therefore,
would only contribute small increments to log differences. On the other hand,
these nearly constant entries should make estimation of the scale factor σ more
cumbersome as it would be hard to distinguish between long-lived high-level
multipliers and an entirely constant factor. This ambiguity is clearly reflected
in the blow-up of the FSSEs and RMSEs for σ with increasing k. However, the
almost complete insensitivity of the estimates of m0 with respect to the number
of components might be viewed as a very welcome feature as it implies that
estimation of m0 is hardly affected by potential misspecification of k.7

Table 2 about here

In the next step, we consider the Lognormal MSM, for which MLE is not
applicable at all because of its continuous state space of volatility components.
Moment conditions for this model are spelled out in Appendix B. Note that the
admissible parameter space for the location parameter λ is λ ∈ [0,∞) where in
the borderline case λ = 0 the volatility process collapses to a constant (the same
if m0 = 1 in the Binomial model). Simulations indicate that increasing λ leads
to increasing heterogeneity in volatility with 0 < λ < 0.2 giving roughly real-
istic appearances of the resulting time series. In our Monte Carlo simulations
reported in Table 3 we cover this interval by considering λ = 0.05, 0.10 and
0.15. Again, we only use one sample size, T = 5, 000 and numbers of multipliers
k equal to 10, 15 and 20. As can be seen, results are not too different from
those obtained with the Binomial model. Biases are negligible for all parameter
values of our Monte Carlo study. Interestingly, the danger of lock-in of estima-
tors for λ at the lower boundary λ = 0 seems to be non-existent so that the
performance of GMM is almost the same for the whole range of our λs. Again
results for λ are also almost insensitive with respect to k, but RMSEs for σ
increase monotonically with k. All in all, the picture from both the Binomial
and Lognormal Monte Carlo runs shows that GMM seems to work as well in
the continuous case as with a discrete distribution of volatility components.

Table 3 about here

4 Best Linear vs. Optimal Forecasts

ML estimation comes along with identification of conditional probabilities of the
current states of the volatility components. Together with the transition matrix
of the model, these conditional probabilities can be uses to compute one-step
and multi-step forecasts according to Bayes’ rule. Since ML is restricted to
discrete distributions, this elegant and optimal way of generating forecasts for
multifractal volatility is also restricted to the multi-nomial cases with a finite
state space. Again, it would be useful to have methods at hand for specifications
beyond the confines of multi-nomial models. One alternative for cases in which
MLE is not applicable is to use best linear forecasts. Since these do not require
state probabilities as an input, they could also be computed on the base of

7Note also that for m0 = 1.3 biases are even smaller for k ≥ 10 than for k = 8 due to a
reduced number of estimates at the boundary m0 = 1.
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GMM parameter estimates. The standard approach for construction of linear
forecasts is outlined, for example, in Brockwell and Davis (1991, c.5). Assuming
that the data of interest follow a stationary process {Xt} with mean zero, the
best linear h-step forecasts are obtained as

X̂n+h =
n∑

i=1

φ
(h)
ni Xn+1−i = φ(h)

n Xn, (11)

with the vectors of weights φ
(h)
n = (φ(h)

n1 , φ
(h)
n2 , ..., φ

(h)
nn )′ being any solution

of Γnφ
(h)
n =γ

(h)
n and γ

(h)
n = (γ(h), γ(h + 1), ..., γ(n + h − 1))′ denoting the

auto-covariances for the data-generating process of Xt at lags h and beyond,
and Γn = [γ(i − j)]i,j=1,...,n the pertinent variance-covariance matrix. It is
well-known, that this approach produces the best linear estimators under the
criterion of minimization of mean squared errors. It is also well known, that for
long-memory processes, one should use as much information as available, i.e.
the vector Xn should contain all past realizations of the process. One might
argue that for the MSM, its “long memory on a bounded interval” would lead
to an optimal choice of a number of 2k past observations (as auto-covariances
would rapidly drop to zero thereafter). However, in our application we simply
use all available data as with a ‘true’ long-memory process although very long
lags might have no practical influence on the resulting forecasts. The computa-
tional demands of these predictors is immensely reduced by using the general-
ized Levinson-Durbin algorithm developed recently by Brockwell and Dahlhaus
(2004, in particular their algorithm 6).

What is needed to implement linear forecasts is analytical solutions for the
auto-covariances of the quantity one wishes to predict. In our case, our aim is
to predict squared returns, x2

t , as a proxy of volatility which requires analytical
solutions for E[x2

t+nx2
t ]. These are also given for the Binomial and Lognormal

models in Appendices A and B, respectively. Implementing (11), we have to
consider the zero-mean time series:

Xt = x2
t − E[x2

t ] = x2
t − σ̂2 (12)

where σ̂ is the estimate of the scale factor σ in eq. (2).8

Again, our aim is to first explore how much is lost by using linear instead of
optimal forecasts and, then, to investigate the performance of linear forecasts
in cases in which optimal forecasting is infeasible or unpractical.

Our first example parallels the comparison of MLE and GMM for the Bi-
nomial model with k = 8 in Table 1. To conserve space, we restrict ourselves
to one sample size T = 10, 000 using half of the data for in-sample parameter
estimation and the remainder for assessment of the out-of-sample forecasting
performance in terms of mean-squared error (MSE) and mean absolute error
(MAE). Including MAEs seems interesting since the best linear estimators are
those among all linear forecasts which minimize mean squared errors. It, there-
fore, appears worthwhile to also explore their performance with respect to a
different criterion. Both MSE and MAE are standardized relative to the MSE
and MAE of the most naive forecast, i.e. the sample standard deviation or
‘historical volatility’ during the in-sample period, for the same sample, so that
values below 1 indicate an improvement against the constant variance forecast
by the pertinent model. Three different forecasting procedures are shown in
Table 4: “ML” uses Bayesian updating together with ML parameter estimates

8Note that σ̂ only appears in the mean value of eq. (12), but it drops from the coefficients

φ
(h)
ni where by construction it appears in both the denominator and the numerator.
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as detailed in Calvet and Fisher (2004), “BL1” uses best linear forecasts on
the base of GMM parameter estimates, and “BL2” uses best linear forecasts
together with ML parameter estimates. The later variant has been added to
see how much of a potential loss of efficiency might be due to the use of linear
forecasts vs. Bayesian updating and how much to GMM vs. ML. However, as
it turned out, we never observe much of a loss of efficiency anyway from using
either BL1 or BL2.

As can be seen from the average MSEs and MAEs in Table 4, as expected,
ML mostly comes out as the most efficient method but its advantage against
BL1 and BL2 is tiny, with the later on average reaching about 99 percent of
the efficiency of ML for most parameters and forecasting horizons. We also
illustrate the full distribution of Monte Carlo MSEs for one case (m0 = 1.3)
in Fig. 1. As can be seen from the box-plots, the entire distribution of MSEs
seems to be quite similar for our three different approaches. The only slight
difference between the three methods is that BL1 produces a number of outliers
with standardized MSE equal to one. These corresponds to those cases with
parameters estimates m̂0 = 1 for which multifractality vanishes and predicted
volatility is identical to historical volatility. However, the overall performance
(in terms of mean and median predictive performance) is hardly affected by these
cases and the boundary estimates do hardly occur any more for higher values
of m0. Although linear forecasts are geared towards minimization of MSE,
the difference between ML based Bayesian forecasting and linear forecasting
are practically the same with the MAE criterion. On the other hand, it also
appears worth mentioning that ML seems to come along with a somewhat higher
variability than BL1 and BL2 under MAE comparison so that one would have to
compare higher average gain with higher dispersion of forecasting quality when
choosing between these three methods. Table 4 also indicates that forecast
quality depends on the multifractal parameter m0: increasing m0 from 1.3 to
1.4, we observe decreasing MSEs and particularly MAEs. This might be a
consequence of the more pronounced volatility clustering with higher m0. Note,
however, that this trend continues for MAEs when proceeding to m0 = 1.5,
while MSEs rather deteriorate slightly at long time horizons.

Table 4 and Figure 1 about here

In parallel with our investigation of GMM estimation in sec. 3, we now
extend the scope of our Monte Carlo analysis to cases that can not (or only at
prohibitive computational cost) be dealed with on the base of ML based meth-
ods. To this end, Table 5 shows results for the Binomial model with numbers of
volatility components k = 10, 15 and 20 and similar experiments for the contin-
uous parameter case of the Lognormal MSM. In both cases, we only have one
method available, GMM estimation together with linear forecasts (the former
BL1).

The basic message of Table 5 is that with a higher number of volatility
components, squared returns have a larger predictable component. For example,
for one-day horizons and m0 = 1.3, the predictable component (the decrease of
our relative MSEs) increases from 6.5 percent at k = 8 to 15.1 percent with
k = 20. For the twenty day horizon we observe an increase from 2.0 percent
(k = 8) which probably is irrelevant in an applied context to 10.4 percent
(k = 20) which might be more interesting. We have also included long time
horizons of fifty and one hundred lags which still have improvements of about
8 to 9 percent compared to the MSE of the sample variance. Results are fairly
homogeneous across multifractal parameters as well as for both the MSE and
MAE criterion, but forecastability seems to be higher for higher values of m0.
It seems particularly worthwhile emphasizing that we have kept the in-sample
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period constant at T = 5000 in all these experiments. This means that the
information used to estimate the parameters has not been increased with k.
One might also note that the increase in biases and estimation variability of the
constant component σ with increasing k (cf. Tables 2 and 3) does not appear
to be a major obstacle to successful prediction of future volatility.

Pretty similar results are obtained with the Lognormal specification. Gains
in predictability are about the same as with the Binomial model for increasing
numbers of volatility components. Investigating a larger set of parameter values
(available upon request), we found that the variation of MSE and MAE for the
Lognormal model is often non-monotonic under variation of λ. In particular, we
observe a rather pronounced U shape in MSEs with forecastability improving
for λ = 0.10 against λ = 0.05 but decreasing again for λ = 0.15. We conjecture
that this variability is due to the lower degree of homogeneity in the volatility
clustering of the Lognormal process in which multipliers are drawn randomly
from an infinite support. Higher λ also leads to a higher dispersion of the
Lognormal variates via s =

√
2λ so that the volatility of volatility increases,

which might explain the deterioration of forecastability for higher λ.

Table 5 about here

5 Empirical Evidence

We now turn to empirical data in order to see whether using GMM plus linear
forecasting helps improve on previous ML estimates together with optimal fore-
casts. Potential gains could result from the accessability of richer specifications,
i.e. allowing for additional multipliers beyond the constraints of about k ≤ 10
and from using distributions with continuous rather than discrete state space
for the multipliers.

Our empirical analysis uses data from five different foreign exchange markets:
The Deutsche Mark exchange rate against the U.S.$ extended by the EURO
from 1999 (DEM/EUR) and the exchange rates of the British Pound (UKP),
the Canadian Dollar (CND), Japanese Yen (YEN) and Swiss Franc (CHF), all
against the U.S. Dollar. All time series start on 1 January 1979 and extend
until 31 December 2004. All data were obtained from Datastream. Most series
consist of buying rates computed at noon in New York (YEN, UKP, CND),
while the DEM/EURO - U.S. Dollar exchange rates are based on snapshots of
USD quotes from multi-contribution sources taken at 4 p.m. London time, and
the Swiss Franc exchange rate is the one compiled by the Swiss National Bank
at 11 a.m. GMT. Investigation of these foreign exchange rates is interesting as
these time series (with the exception of CHF) have also been used in the recent
study by Calvet and Fisher (2004) who found improvements of the MSM model
over GARCH type models in out-of-sample forecasts of volatility. We have
also studied the performance of our GMM approach for some other financial
data (the stock market indices DAX of the German stock market, the New
York Stock Exchange Composite Index, and the price of gold) and report on
pertinent results below (details are available upon request).

Our samples cover twenty-six years starting from 1 January 1979 and ending
on 31 December 2004. We use the data of the years 1979 to 1996 for in-sample
estimation and leave the eight remaining years for out-of-sample evaluation of
volatility forecasts. This gives about 4,600 in-sample observations and 2000 out-
of sample entries (with slight variations of the numbers across markets due to
differers in the number of active days). The empirical log-likelihood, AIC and
BIC criterion values for ML estimation are shown in Appendix C alongside with
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pertinent GARCH and FIGARCH results. Except for the Canadian Dollar, the
MSM model is preferred over the alternative models by these statistics, which
nicely confirms results reported in Calvet and Fisher (2004).

Table 6 reports in-sample parameter estimates for the multifractal param-
eters m0 or λ from both the Binomial and Lognormal specification. For the
sake of brevity we skip the second parameter σ in eq. (1) as there is less gen-
uine interest in this scale factor. For the Binomial model, results based on ML
estimation with k = 10 as well as GMM with k = 5, 10, 15 and 20 are shown,
whereas the lack of applicability of ML estimation only leaves us with the later
choice in the case of the Lognormal model.

Inspecting the results, a number of observations are remarkable9: in particu-
lar, for the GMM approach, parameter estimates for m0 and λ are practically the
same with different numbers of multipliers for both the Binomial and Lognormal
model. In fact, if one monitors the development of estimated parameters m0

and λ with increasing k, one finds strong variation initially with a pronounced
decrease of the estimates at small numbers for k which becomes slower and
slower until, eventually, a lock-in at a constant value can be found somewhere
between k = 10 and k = 15. As can be seen from Table 6 estimates still undergo
slight variations when proceeding from k = 5 to 10 but they remain practically
unchanged thereafter. It is not too difficult to see why this happens: inspection
of moment conditions in the Appendix (e.g. eq. (A7) and (A8) for the Bino-
mial model, and (B3) and (B4) for the Lognormal model) shows that additional
high-level multipliers make a smaller and smaller contribution to the moments
so that their numerical values would stay almost constant. This small influence
of additional elements in the hierarchy of multipliers also suggests that it should
be hard or impossible to distinguish between multifractal models with different
numbers of components once k increases beyond a certain threshold.

While GMM parameter estimates are very homogeneous over different spec-
ifications of k, the ML and GMM parameter estimates show no particular co-
herence across time series. Table 6 also shows the probability of Hansen’s test
statistics JT = fT (ϕ̂)′ÂT fT (ϕ̂), which apparently does not change at all beyond
k = 10. This observation also suggests that the similarity of models with a
different number of volatility components with respect to their moments ham-
pers model selection on the base of the objective function. We tried model
comparisons along the line of the SMM approach in Calvet and Fisher (2002b)
combining the minimized moment functions with simulated weighting matrices
for varying numbers k′, but results were practically constant across all choices
of k and k′ beyond some threshold. It is plausible that the lack of sensitivity
of moments on k beyond a certain value would carry over to the weighting ma-
trices as well so that the discriminatory power of such comparisons should be
extremely limited. We would expect a similar pattern to apply to likelihood
ratio tests for comparison of high k and k′ even if the true k is the larger one
if these tests were computationally feasible.10 Model selection among compet-
ing specifications of multifractal models with different numbers of multipliers,
therefore, remains a challenging task. In view of the inconclusive results, we
choose to take an agnostic approach and to investigate the performance of var-

9For the alternative setting with fixed parameters b = 2 and γk = 0.99 the multifrac-
tal parameters (m0 and λ) were typically slightly below those reported here, while overall
goodness-of-fit and forecasting capacity were almost the same. It appears plausible that a
higher frequency of replacement at the high-frequency end leads to more volatility and, there-
fore, gives rise to a compensatory reduction of the heterogeneity of the multipliers.

10Calvet and Fisher (2004) report results of a likelihood ratio test of models with 10 compo-
nents against models with k = 1 to 9 multipliers. Though they find monotonically increasing
p - values, at the 5 percent level only models with up to 4 or 5 components can be rejected
for various daily exchange rate series.
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ious specifications in predicting future volatility.

Table 7 about here

As another remarkable finding in Table 6, the similarity of the probability
of the J statistic (and therefore, also the optimized value of this statistic) for
the Binomial and Lognormal model stands out. The numbers are, in fact, prac-
tically identical for both time series under all specifications of the number of
volatility components. This shows that both the Binomial and Lognormal can
fit our selection of moments equally well. Therefore, allowing for a continu-
ous distribution of multipliers seems not to improve upon the performance of
the discrete case with two states only, where 2k possible combinations, for suffi-
ciently high k, seem to provide enough flexibility for capturing the heterogenous
volatility dynamics. Note also that estimated MSM models can fit our selection
of moments quite well: except for the case of the Swiss Franc the J-test statis-
tics would not allow to reject the MSM as the data-generating process on the
base of our chosen moment function.

Parsimony of model design might suggest to restrict oneself to a relatively
small number of multipliers, given the inconclusive results of specification tests
for high values k. Note, however, that increasing k does not come along
with additional parameters. On the other hand, higher k implies a larger re-
gion of apparent long memory. In empirical data, hyperbolic decline of the
auto-correlations of absolute and squared returns is observed over many or-
ders of magnitude without any apparent cut-off and significantly positive auto-
correlations have been found at extremely long lags. For the daily S&P 500
returns, Ding, Granger and Engle (1993) found significant auto-correlations at
over 2700 lags, i.e. about 10 years. Since higher k implies a longer power-law
range of the autocorrelations, the longer dependence in volatility might improve
forecasting performance. As has been shown in section 3, with the same num-
ber of in-sample observations, mean squared errors and absolute errors decline
at all forecasting horizons for increasing k while the quality of the estimates
of the multifractal parameters m0 and λ remains essentially unchanged. These
findings provide the perspective that higher choices of k could also improve
volatility forecasts for empirical data. Tables 7 and 8 explore this issue for our
selection of foreign exchange rates. For all five time series we compare forecasts
over horizons varying from one day over 5, 20, 50 to 100 days. The models
we use are: GARCH and FIGARCH as benchmarks from the traditional time
series literature, the Binomial MSM with k = 10 estimated by ML as well as the
Binomial and Lognormal MSM with k = 10, 15 and 20 estimated by GMM.11

MSEs and MAEs are again reported relative to those of historical volatility.
Results are not entirely homogenous, but are quite encouraging. First, in-

specting out-of-sample MSE (cf. Table 7), we see that in all cases but one some
or all versions of MSM do outperform GARCH and FIGARCH. The one excep-
tion is the Canadian Dollar where FIGARCH has a slight advantage over MSM
at most time horizons (which is in nice conformity with the in-sample domi-
nance of the FIGARCH model for this series). Multistage forecasts typically
exhibit an increasing advantage of MSM against GARCH/FIGARCH at longer

11Estimated GARCH and FIGARCH models can be found in Appendix C. Despite certain
recently emphasized ambiguities in the parametrization of FIGARCH models (cf. Chang,
2002; Zumbach, 2004), we stick to the original framework by Baillie et al. (1996) in order
to compare the multifractal model with a well-established benchmark. It is, however, worth
pointing out that evidence on the forecasting improvement of FIGARCH vis-à-vis simple
GARCH is surprisingly sparse. Vilasuso (2002) and Zumbach (2004) seem to be the only
available references on the subject and have somewhat divergent findings on this point.
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prediction horizons. The Diebold-Mariano test for differences in predictive ac-
curacy allows to reject GARCH in favor of MSM in the Canadian Dollar and
both, GARCH and FIGARCH in favor of MSM for the Deutsche Mark/EURO,
British Pound and Swiss Franc at long horizons. For the Japanese Yen, the
MSM’s relative mean squared errors are the lowest over all time horizons, but
differences are not significant at the 5 percent confidence level. For the MAE
criterion (cf. Table 8) results are very similar. We find an overall dominance of
MSM against (FI)GARCH in four time series: Deutsche Mark/EURO, Cana-
dian Dollar, British Pound and Swiss Franc. The one outlier here is the Japanese
Yen, for which the baseline GARCH model has the lowest MAE. Note, however,
that the best predictor for both the Canadian Dollar and Japanese Yen exchange
rate volatility under MAE is the historical average and all time series models
lead to a deterioration against this naive prediction (i.e. MAEs are larger than
one) in the two cases.

So far our results essentially confirm the findings reported in Calvet and
Fisher (2004). Now turn to a detailed assessment of the new linear forecasts
based on GMM parameter estimates for Binomial models with k > 10 and
Lognormal models with their continuous distribution of multipliers. The first
question on which we would let our data speak is whether a higher number of
components improves forecasting performance. Considering the development of
MSEs and MAEs with increasing numbers of multipliers in Table 7 and 8, we
find that the quality of forecasts improves in the majority of cases. Significant
differences between ML and GMM based forecasts are found at the 5 percent
confidence level for the Canadian Dollar, British Pound and Swiss Franc under
the MSE criterion and for all time series except the Canadian Dollar under the
MAE criterion. The effect of the number of multipliers on forecast quality is
underscored by Fig. 2 which depicts MSEs for the British Pound/U.S.Dollar
exchange rate obtained with linear forecasts on the base of ten multifractal
models with k ranging from 2 to 20. As can be seen, increasing k yields a
monotonic improvement which saturates at about k ≈ 15. The same behavior
can be found for other exchange rates. Note that we would normally not expect
GMM10 to dominate the optimal forecasts from ML10 because of the higher
sampling variability of GMM estimates and the suboptimality of linear forecasts.
Under this perspective, a somewhat inferior behavior of GMM10 against ML10
would not be surprising. However, in some cases, even at k = 10 GMM estimates
dominate those from maximum likelihood, while for other series increasing k
appears to amount to an overcompensation of the ‘natural’ disadvantage of
GMM versus ML.

Tables 7 and 8 about here

Turning to our second objective, it seems worthwhile to remark that the
Lognormal model has practically the same performance as the Binomial for each
choice of k at all time horizons so that the added flexibility of the continuous
distribution does not seem to provide an advantage over the simpler discrete
structure. This practically identical performance out-of-sample is in harmony
with their identical goodness-of-fit in-sample under the J statistic.

We have also investigated other asset prices along the above lines. For two
stock market indices (the German DAX and the New York Stock Exchange
Composite Index) and the price of gold we also estimated multifractal parame-
ters and investigated their forecasting performance for the same in-sample and
out-sample horizons. The in-sample fit of the multifractal model with k = 10
estimated via ML again outperformed the GARCH and FIGARCH models. In
contrast, however, the J test based on GMM parameters estimates rather sug-
gested that the underlying MSM model could be rejected with the pertinent
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moment conditions for all three series. Nevertheless, the comparison of forcast-
ing performance turned again out rather favorable for MSM: Under the MSE
criterion, we found the estimated MSM models to dominate over GARCH and
FIGARCH albeit with fewer significant cases (at the 5 percent level) than with
exchange rates. For the DAX and the price of gold, GMM with higher numbers
of multipliers also improved upon ML10 forecasts. For the NYSE index, in con-
trast, Bayesian forecasts were slightly better than GMM based ones. They also
dominated GARCH and FIGARCH forecasts but were not significant at the 5
percent level. The picture was less positive under the MAE criterion, however:
for both stock markets, all time series models performed worse than historical
volatilities, while in the case of gold, FIGARCH dominated over all other mod-
els under the MAE criterion. These somewhat more mixed results certainly call
for a more comprehensive analysis of the performance of multifractal models in
different types of financial markets.

Before concluding this section, it appears worthwhile to point out another
remarkable feature in Table 7 and 8: In quite a number of cases, we see a
U-shaped development of MSEs and MAEs at the lower end of our forecast
horizons, i.e. the performance increases when moving from the one-period hori-
zon to multi-step forecasts over five days and deteriorates thereafter. While
one could argue that such behaviour could be due to the lack of parameters
modulating short-run dependencies in the MSM framework, the observation of
a similar behaviour with FIGARCH in some cases (e.g. Canad. Dollar and UK
Pound) casts doubts on such an explanation. Theoretically, all of our candidate
models would, of course, lead to a monotonic decline of the quality of forecasts
with forecasting horizon as shown in the Monte Carlo simulations in sec. 5 for
MSM. While we do not have a ready explanation for this phenomenon at hand,
it seems worthwhile to explore in future research whether this is a pervasive
feature of financial data or whether it is a particularity of our data sets and the
choice of out-of-sample time horizon.

Fig. 2 about here

6 Conclusion

The recent proposal of multifractal models has added a new family of stochas-
tic models to the already abundant variety of candidate processes for financial
returns. Its attractiveness stems from its parsimony which with a very limited
number of parameters allows to capture the phenomenology of returns and their
fluctuations (i.e. volatility persistence, hyperbolic decay of autocorrelations and
heavy tails of returns). Some cumbersome properties of the multifractal ap-
proach inherited from the physics literature have meanwhile been overcome by
the introduction of Markov-switching multifractals which have nice asymptotic
properties and whose parameters can be estimated by standard econometric
methods. While maximum likelihood estimation has been explored in Calvet
and Fisher (2004) and simulated ML via a particle filter algorithm in Calvet,
Fisher, and Thompson (2006), we propose a GMM approach for estimating mul-
tifractal parameters, which is less computation intensive and which is still ap-
plicable in cases where ML becomes unfeasible. Monte Carlo experiments show
that this GMM estimator is nicely behaved for various settings with discrete
and continuous state space. Since Bayesian forecasting becomes unfeasible with
ML we combine our GMM approach with best linear forecasts instead. Monte
Carlo comparisons show that the loss in forecasting accuracy of GMM plus lin-
ear forecasts compared to ML plus optimal forecasts is, in fact, quite small (the
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percentage deviation being much smaller than that of mean squared errors of
estimated parameters). Extending the state space beyond what is practical with
ML (and probably simulated ML as well) could, in principle, lead to higher fore-
casting accuracy through the increase of the predictable component of volatility
with a higher number of multipliers.

Our empirical application shows, that at least for the majority of foreign ex-
change rates investigated, this promise indeed materializes itself. While better
performance of MF vis-à-vis (FI)GARCH had already been demonstrated by
Calvet and Fisher (2004), we show that specifications with a larger state space
could provide further improvements in forecasting accuracy. In contrast, re-
placing the simple discrete Binomial model by the continuous Lognormal MSM
had practically no effect at all: both goodness-of-fit as well as forecasting ca-
pability were almost exactly the same for both models. The confirmation of
the previous positive results and the further improvements by some alternative
specifications documented in this paper underline that multiplicative volatility
models with a hierarchy of components should be a promising area of further
empirical research.
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Appendix

A Moments of Binomial Model

In order to apply GMM and to compare its performance with that of the ML
approach, we have to compute closed-form solutions for selected moments of the
Binomial model. As pointed out in the main text, we use a selection of moments
of log increments together with the second moment of the raw data. In order
to apply GMM, we have to derive analytical solutions for this set of moment
conditions. Let

µt =
k∏

i=1

M
(i)
t (A1)

denote the volatility process and ηt,T its log increments:

ηt,T = ln(µt)− ln(µt−T ) =
k∑

i=1

ln(M (i)
t )−

k∑

i=1

ln(M (i)
t−T ). (A2)

It is readily apparent that E [ηt,T ] = 0 for all T. Let us now consider the first
auto-covariance of ηt,1:

E [ηt+1,1ηt,1] = E




(
k∑

i=1

(
ε
(i)
t+1 − ε

(i)
t

))


k∑

j=1

(
ε
(j)
t − ε

(j)
t−1

)




 (A3)

with ε
(i)
t = ln

(
M

(i)
t

)
.

Because of independence of any pair of volatility components i and j, only
summands with i = j give non-zero contributions to the term on the right-hand
side. Furthermore, it can easily be seen that these components, i.e.

E
[(

ε
(i)
t+1 − ε

(i)
t

)(
ε
(i)
t − ε

(i)
t−1

)]

are themselves different from zero only if the relevant multiplier changes two
times between t− 1 and t + 1.

In general,

E
[(

ε
(i)
t+1 − ε

(i)
t

)(
ε
(i)
t − ε

(i)
t−1

)]
=

E
[
ε
(i)
t+1ε

(i)
t

]
− E

[(
ε
(i)
t

)2
]
− E

[
ε
(i)
t+1ε

(i)
t−1

]
+ E

[
ε
(i)
t ε

(i)
t−1

]
.

(A4)

Since in order to get non-zero entries, we have to have: ε
(i)
t+1 = ε

(i)
t−1 6= ε

(i)
t and

this happens with probability ( 1
2γi)2 , the above expression becomes:

(
1
2
γi

)2 {
2 ln(m0) ln(2−m0)− ln2(m0)− ln2(2−m0)

}
. (A5)

We, therefore, arrive at

E [ηt+1,1ηt+1] =
{
2 ln (m0) ln (2−m0)− ln2 (m0)− ln2 (2−m0)

}

·
k∑

i=1

(
1
2
γi

)2

. (A6)
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In passing, we note that auto-covariances at higher lags τ > 1, i.e.

E [ηt+τ,1ηt,1] = E

[(
k∑

i=1

(
ε
(i)
t+τ − ε

(i)
t+τ−1

))(
k∑

i=1

(
ε
(i)
t − ε

(i)
t−1

))]

are all equal to zero because of the independence of changes between t− 1 and
t and between t + τ − 1 and t + τ (τ > 1), respectively.

Considering the autocovariances of the log changes over time intervals T > 1,
we have to replace the probabilities for renewal after one time step by the
pertinent probabilities for T steps which leads to:

E [ηt+T,T ηt,T ] =
{
2 ln (m0) ln (2−m0)− ln2 (m0)− ln2 (2−m0)

}

·
k∑

i=1

1
4

(
1− (

1− γi

)T
)2

. (A7)

The calculations become slightly more involved when considering the auto-
covariances of squared log increments:

E
[
η2

t+T,T η2
t,T

]
= E




(
k∑

i=1

(
ε
(i)
t+T − ε

(i)
t

))2



k∑

j=1

(
ε
(j)
t − ε

(j)
t−T

)



2

 . (A8)

Again, one can arrive at a relatively simple formula by identifying the non-
zero entries and their probabilities of occurrence. Let us start with T = 1.
Three cases are relevant here:

(1) i = j and ε
(i)
t+1 6= ε

(i)
t 6= ε

(i)
t−1:

This leads to entries of the form:

(ε(i)
t+1 − ε

(i)
t )2(ε(i)

t − ε
(i)
t−1)

2

= (ln (m0)− ln (2−m0))
2 (ln (2−m0)− ln (m0))

2

= ln4 (m0) + ln4 (2−m0) + 6 ln2 (m0) ln2 (2−m0)

−4 ln3 (m0) ln (2−m0)− 4 ln (m0) ln3 (2−m0) ≡ χ.

Note that the relevant sequences m0 → m1 → m0 or vice versa again
happen with probabilities ( 1

2γi)2.

(2) i 6= j and ε
(j)
t+1 6= ε

(j)
t and ε

(i)
t 6= ε

(i)
t−1.

It can easily be seen that for non-zero entries, this leads again to

(
ε
(j)
t+1 − ε

(j)
t

)2 (
ε
(i)
t − ε

(i)
t−1

)2

= (ln (m0)− ln (2−m0))
4 = χ

which is the same as in (1) and occurs for each pair i 6= j with probabilities
( 1
2γi)( 1

2γj).

(3) i 6= j and ε
(n)
t+1 6= ε

(n)
t 6= ε

(n)
t−1, n = i, j in entries of the form

(εj
t+1 − εj

t )(εi
t+1 − εi

t)(ε
j
t − εj

t−1)(ε
i
t − εi

t−1)
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which again is identical to (ln(m0)− ln(2−m0))4 = χ . The probability
of this to happen is ( 1

2γi)2( 1
2γj)2 but we also have to take into account

that each of these terms appears two times in the expansion of η2
t+1,1η

2
t,1

in (A8).

Putting cases (i) to (iii) together we arrive at:

E
[
η2

t+1,1η
2
t,1

]
=




k∑

i=1




(
1
2
γi

) k∑

j=1

(
1
2
γj

)
 + 2

k∑

i=1




(
1
2
γi

)2 k∑

j=1,j 6=i

(
1
2
γj

)2




 χ.

(A9)

For arbitrary T, we get:

E
[
η2

t+T,T η2
t,T

]
=

{
k∑

i=1

(
1
2

(
1− (1− γi)

T
) k∑

j=1

1
2

(
1− (1− γj)

T
))

+2
k∑

i=1

(
1
4

(
1− (1− γi)

T
)2 k∑

j=1,j 6=i

1
4

(
1− (1− γj)

T
)2

)}
χ.

(A10)

Turning to the log innovations of the compound process,

ξt,T = ln |xt| − ln |xt−T | ,
we find:

E [ξt+T,T ξt,T ] = E

{(
0.5

k∑
i=1

(
ε
(i)
t+T − ε

(i)
t

)
+ ln|ut+T | − ln|ut|

)

(
0.5

k∑
i=1

(
ε
(i)
t − ε

(i)
t−T

)
+ ln|ut| − ln|ut−T |

)}

= 0.25 · E [ηt+T,T ηt,T ] + (E [ln |ut|])2 − E
[
(ln |ut|)2

]
,

(A11)

and

E
[
ξ2
t+T,T ξ2

t,T

]
= E





(
0.5

k∑

i=1

(
ε
(i)
t+T − ε

(i)
t

)
+ ln|ut+T | − ln|ut|

)2

(
0.5

k∑

i=1

(
ε
(i)
t − ε

(i)
t−T

)
+ ln|ut| − ln|ut−T |

)2




= 0.252 · E [
η2

t+T,T η2
t,T

]− {
E

[
η2

t,T

]− E [ηt+T,T ηt,T ]
}

·
{

(E [ln |ut|])2 − E
[
(ln |ut|)2

]}
+ 3 · E

[
(ln |ut|)2

]2

−4 · E [ln |ut|]E
[
(ln |ut|)3

]
+ E

[
(ln |ut|)4

]
. (A12)

The log moments of the standard Normal variates ut in (A11) and (A12)
can be easily computed using the Gamma function and its derivatives.
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We also note that the expectation of the squared log increment of the volatil-
ity process is:

E
[
η2

t+T,T

]
=

k∑

i=1

1
2

(
1− (1− γi)

T
)
· (ln (m0)− ln (2−m0))

2
.

(A13)

Furthermore, for computing linear forecasts we also need the second moment
and the auto-covariances of the volatility process itself which are easily derived
as follows:

E
[
µ2

t

]
=

(
0.5(m2

0 + (2−m0)
2)

)k

(A14)

and

E [µt+T µt] =
k∏

i=1

{(
1− (1− γi)

T
)

0.5m0 (2−m0)+ (A15)

(
(1− γi)

T + 0.5
(
1− (1− γi)

T
)) (

0.5m2
0 + 0.5 (2−m0)

2
)}

.

In (A15), the first term on the right-hand side gives the probability of observ-
ing different multipliers times the two different values m0 and 2−m0, whereas
the second term gives the probability for observing the same multipliers at some
level i at t and t + T times the expectation of this common component.
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B Moments of Lognormal Model

We now consider the case of a cascade with multipliers drawn from a Lognormal
distribution with parameters λ and s, i.e. M

(i)
t ∼ LN

(−λ, s2
)
. In order to nor-

malize the product of the k volatility components, we assume that E
[
M

(i)
t

]
= 1.

This leads to:

exp
(−λ + 0.5s2

)
= 1 ⇔ s =

√
2λ.

Denoting the logs of the volatility components again by ε
(i)
t , we move on to

derive the moment conditions for this specification along the lines of Appendix
A:

E [ηt+1,1ηt,1] = E

{(
k∑

i=1

(
ε
(i)
t+1 − ε

(i)
t

))(
k∑

i=1

(
ε
(i)
t − ε

(i)
t−1

))}
. (B1)

Again we encounter non-zero contributions only if ε
(i)
t+1 6= ε

(i)
t 6= ε

(i)
t−1 which

leads to:

E [ηt+1,1ηt,1] =
k∑

i=1

(γi)
2 ·

{
E[ε(i)

t ]2 − E[(ε(i)
t )2]

}

=

{
k∑

i=1

(γi)
2

}
(
λ2 − λ2 − s2

)

= −
{

k∑

i=1

(γi)
2

}
s2. (B2)

For arbitrary lags T , one obtains accordingly:

E [ηt+T,T ηt,T ] = −
{

k∑

i=1

(
1− (1− γi)

T
)2

}
s2. (B3)

Turning to the auto-covariances of squared log increments, we can also take
stock of our previous derivations. We can again distinguish between three dif-
ferent types of entries in E

[
η2

t+1,1η
2
t,1

]
:

(1) entries of the form
(
ε
(i)
t+1 − ε

(i)
t

)2 (
ε
(i)
t − ε

(i)
t−1

)2

which have non-zero value

only if ε
(i)
t+1 6= ε

(i)
t 6= ε

(i)
t−1. Their probability of occurrence is (γi)2. Solving

the expectation in the non-zero case we obtain

E

[(
ε
(i)
t+1 − ε

(i)
t

)2 (
ε
(i)
t − ε

(i)
t−1

)2 ∣∣∣ ε(i)
t+1 6= ε

(i)
t 6= ε

(i)
t−1

]

= E[(ε(i)
t )4] + 3E[(ε(i)

t )2]2 − 4E[(ε(i)
t )3]E[ε(i)

t ] = 6s4.

The later result follows from the identities E[(ε(i)
t )3] = 3λs2 + λ3 and

E[(ε(i)
t )4] = 3s4 + 6λ2s2 + λ4. Overall, putting together the probabili-

ties of their occurrence and the non-zero value they give rise to yields a

contribution: κ1 =
{

k∑
i=1

(γi)
2

}
· 6s4
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(2) entries of the form
(
ε
(j)
t+1 − ε

(j)
t

)2 (
ε
(i)
t − ε

(i)
t−1

)2

which are non-zero for

i 6= j, ε
(j)
t+1 6= ε

(j)
t and ε

(i)
t 6= ε

(i)
t−1. Since

E

[(
ε
(j)
t+1 − ε

(j)
t

)2 (
ε
(i)
t − ε

(i)
t−1

)2

|ε(l)
t+1 6= ε

(l)
t 6= ε

(l)
t−1; l = i, j; i 6= j

]

= 4E[(ε(i)
t )2]2 − 8E[(ε(i)

t )2]E[ε(i)
t ]2 + 4E[ε(i)

t ]4 = 4s4,

their overall contribution is: κ2 =

{
k∑

i=1

(
γi

k∑
j=1,j 6=i

γj

)}
· 4s4.

(3) finally, entries of the form
(
ε
(j)
t+1 − ε

(j)
t

) (
ε
(i)
t+1 − ε

(i)
t

)(
ε
(j)
t − ε

(j)
t−1

)(
ε
(i)
t − ε

(i)
t−1

)

which for i 6= j and ε
(n)
t+1 6= ε

(n)
t 6= ε

(n)
t−1, n = i, j are non-zero.

Since
(
ε
(j)
t+1 − ε

(j)
t

)(
ε
(i)
t+1 − ε

(i)
t

)(
ε
(j)
t − ε

(j)
t−1

)(
ε
(i)
t − ε

(i)
t−1

)
= s4 in this

case, we obtain a contribution κ3 =

{
k∑

i=1

(
(γi)2

k∑
j=1,j 6=i

(γj)2
)}

2 · s4.

Putting all these components together, we end up with

E
[
η2

t+1,1η
2
t,1

]
= κ1 + κ2 + κ3 (B4)

and an appropriately modified analogous formula for E
[
η2

t+T,T η2
t,T

]
.

We also note that the second moment of ηt+T,T is

E
[
η2

t+T,T

]
= 2E

[(
ε
(i)
t

)2
]
−2

(
E

[
ε
(i)
t

])2

=
k∑

i=1

(
1− (1− γi)

T
)
·2s2.

(B5)

In order to compute the auto-covariances of the compound process, we only
have to insert (B3), (B4) and (B5) into (A11) and (A12) of Appendix A.

Now turn to the moments of the volatility process itself. For the second
moment of the product of volatility components we find:

E
[
µ2

t

]
= E




(
k∏

i=1

M
(i)
t

)2

 = E

[(
M

(i)
t

)2
]k

.

Since E
[
(Mi,t)

2
]

= exp
(−2λ + 2s2

)
= exp (2λ)

we arrive at

E
[
µ2

t

]
= exp (2λ · k) . (B6)
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Furthermore,

E [µt+1µt] = E

[
k∏

i=1

M
(i)
t+1

k∏

i=1

M
(i)
t

]

=
k∏

i=1

{
γi + (1− γi) E

[(
M

(i)
t

)2
]}

=
k∏

i=1

{γi + (1− γi) exp (2λ)}. (B7)

Note that the first term in the product stands for the probability of a change
of the pertinent multiplier times the expectation of the product M

(i)
t+1M

(i)
t which

is unity.
Analogously,

E [µt+T µt] =
k∏

i=1

{(
1− (1− γi)

T
)

+ (1− γi)
T exp (2 · λ)

}
.

(B8)
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Figure 1: Box plot of the distributions of MSEs for different forecasting horizons
over 400 Monte Carlo runs for the Binomial model with parameter m0 = 1.3
(corresponding to the results given in the upper left corner of Table 4). The
boxes show the median of the distribution surrounded by a box that spans the
center half of the data set (the inter-quartile range). The whiskers extend to
1.5 times the inter-quartile range with the values outside this range identified
as outliers. The appearance of the box plot is virtually identical for other
parameter values, except for the accumulation of a few cases of relative MSEs
equal to one for BL1 at small horizons (corresponding to an estimate m̂0 = 1
for which the multifractal model collapses with historical volatility).
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Figure 2: Mean squared errors over various time horizons of multifractal volatil-
ity forecasts of the British Pound / U.S. Dollar exchange rate. The underlying
model is the Lognormal MSM with k ranging from 2 to 20 (a plot of the Binomial
MSM results with the same numbers of multipliers would be undistinguishable
from the one displayed here).
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