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Abstract:

In this paper, we prove an existence theorem for equilibria in production economies
with increasing returns, which generalizes the classic results on this topic. In particular,
we eliminate both the free-disposal assumptions and any smoothness requirements on
the boundary of the production sets. For this purpose, we propose a new definition of
the topological degree for non-convex-valued correspondences defined on non-smooth
topological manifolds.

Résumé : On démontre l’existence d’un équilibre dans une économie de produc-
tion avec rendements croissants, qui généralise la plupart des résultats classiques con-
sacrés à cette question. En particulier, on élimine l’hypothèse de libre-disposition et
de différentiabilité des bords des ensembles de production. La preuve est fondée sur
une nouvelle construction du degré topologique adaptée aux correspondances à valeurs
non-convexes, définies sur des variétés non-lisses.
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2 Algebraic Index Theorem

1 Introduction

1.1. Since the middle of the 1970’s, many papers have addressed the question of exis-
tence of equilibria in economies with increasing returns in the production sector. Non-
convex producers are then assumed to follow various pricing set-valued maps which
formalize standard behavioural rules like the marginal pricing rule, the average cost
pricing, the voluntary trading pricing, etc. (see Cornet (1988) for a survey). In all
these papers, the production sets Yj are assumed to satisfy the free-disposal assump-
tion

∀yj ∈ Yj , yj − RL
+ ⊂ Yj ,

i.e. to be such that, given a feasible production plan, all the production plans with
larger or equal quantities of inputs and smaller or equal quantities of outputs are
also possible. As emphasized by Jouini (1992b) and Hamano (1994) however, this
assumption merely plays a technical role, and is not realistic. Already in the Theory of
Value, when ordering by decreasing plausibility the classical assumptions made on the
production sets, Debreu put the free-disposal hypothesis in the last position. Nuclear
technologies of production of electricity are an example of increasing returns to scales
technologies where, at a human scale, the destruction of undesirable by-products is
very hard and costly, if not impossible, hence, which do not satisfy the free-disposal
assumption. R & D and human capital are other examples of inputs for which the
free-disposal assumption is very disputable.

On a more technical level, there is also a need for droping the free-disposal assump-
tion due to purely mathematical reasons: existence problems are usually thought of as
topological problems related to some fixed point argument. In this kind of argument
(typically, Brouwer or Kakutani’s theorem), no assumption of differentiability plays a
role. Consequently, the tools of differential topology introduced by Debreu (1970) in
order to provide a rigorous formalization of Walras’ “counting equations and unknown-
s” should not be necessary as long as one is solely concerned with proving existence,
though they definitely provide powerful instruments for proving local determinacy. In
a similar vein, it is well-known that convexity is a geometric property which is not
intrinsically related to the question of existence, and can usually be replaced by some
(weaker) topological assumption, like acyclicity. But a careful reading of the existence
proofs available reveals that this is not so. It has indeed been proven by Bonnisseau &
Cornet (1988, Lemma 5.1) that the free-disposal assumption endows the boundary of
each production set with the structure of a smooth manifold. It is, in fact, this implicit
smoothness assumption on production sets which permits the usual existence proofs to
go through. This is made explicit in Jouini’s paper (1992b), where the free-disposal
assumption is replaced by the weak free elimination hypothesis

∃y ∈ Yj : y − RL
+ ⊂ Yj

and by the assumption that each boundary ∂Yj be a differentiable manifold. On the
other hand, when returns to scale are not increasing, the free-disposal assumption is
not necessary in order to prove existence, but then production sets are of course convex.
Clearly, none of these two requirements — convexity or smoothness of the boundary —
should be necessary for just an existence proof, and both look rather like artifacts of
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Non-smooth Economies 3

the way we usually prove existence than a property intrinsically needed for the model
to make sense.

This paper is devoted to obtaining a degree formula analogous to the one obtained
by Jouini (1992b) for a broad class of economies with non-convex production sets,
without free-disposal and without any smoothness assumption. As a by-product, we get
an existence result which seems to be weaker than all the previous ones (the unique
exception being the paper by Hamano (1994) which is discussed below). The advantage
of the degree-like approach, as opposed to an existence proof in terms of fixed-point, is
that, as already alluded to, degree theory is the key for the subsequent study of issues
related to local uniqueness. The virtue of our topological viewpoint is that it enables to
investigate these issues in categories for which the differentiable point of view is helpless,
such as the class of piecewise-linear economies. The formula obtained here is indeed
applied, in a companion paper, in order to prove that finitely-subanalytic economies
(to which belong, e.g., the piecewise-linear ones) generically have a uniformly bounded,
odd number of equilibria (Giraud (1999)).

1.2. Most of the recent work devoted to proving existence in non-convex production
economies relies on an extension, due to Cellina & Lasota (1969), of the standard
topological degree theory from smooth maps to correspondences. They prove, lato
sensu, that, given an upper semi-continuous correspondence with convex and compact
values F , for every ε > 0, there exists a continuous map fε whose graph belongs to an
ε-ball around the graph of F . After having approximated fε itself by a smooth function,
this property allows to define the degree of F as that of any smooth approximation for
ε small enough. Although it constitutes a significant progress for set-valued analysis,
this approach heavily rests on the smoothness of the domain of the correspondences
at hand and the convex-valuedness of these set-valued maps, hence does not fit our
purposes. We therefore have to propose a new construction of the topological degree
of a correspondence. In comparison with the route taken by Cellina and Lasotta, the
point of view adopted in this paper is purely topological and intrinsic, in the sense that
it does not rely upon any approximation property by any smooth object.

The analogy with fixed-point theory may help the reader in understanding the dif-
ferences between our standpoint and the previous one. Some versions of Kakutani’s
fixed point theorem can be deduced from Brouwer’s theorem by using the kind of (con-
tinuous) approximation techniques mentioned above. Mas-Colell (1974) and McLennan
(1991) extend these approximation tools to the case of upper semi-continuous corre-
spondences with compact, contractible values, defined on compact sources, and deduce
from it several generalizations of Kakutani’s fixed point theorem. Of course, one could
be tempted to try to generalize Cellina & Lasota’s degree theory along the same line
of proof as the one used by McLennan in order to generalize Kakutani’s theorem.
However, whether this can solve our problem is unclear to us. It ultimately requires
that the domain of the correspondence under study (typically, the boundary of a pro-
duction set) be a smooth manifold, which is precisely what we want to avoid in this
paper. Therefore, not only is the correspondence to be approximated by a smooth
function, but also the domain, in a sense to be made precise, by a smooth manifold.
We know, however, since the late seventies, that there exist C0-manifolds (of dimension
greater than 4) which cannot have any differentiable structure (see Kirby & Sieben-
mann (1977)). Moreover, even the fact that we actually focus on the boundary ∂Yj of
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4 Algebraic Index Theorem

each production set Yj does not facilitate the task of endowing it with a differentiable
structure, since there exist subsets X of RL−1 (e.g. the continuum of Whitehaed) which
are such that X ×R is a smooth submanifold of RL, without X being a manifold1. On
the other hand, the theory of approximation of non-smooth and non-convex sets by
smooth manifolds is still burgeoning (e.g., Czarnecki (1996)), and seems to hold water
only for the class of epi-lipschitzian sets. Fortunately, an alternative approach to fixed
point theory can be taken, using the (homological) Lefschetz fixed point theorem for
continuous map. When extended to set-valued maps, this leads to the more powerful
Eilenberg-Montgomery’s fixed-point theorem. It is the analogue of this last viewpoint
that we follow here, when extending the definition of the topological degree from maps
to correspondences.

The strength of our angle of attack is illustrated by the extension of Jouini’s (1992b)
existence result to the case where production sets are topological manifolds with non-
smooth boundary while pricing rules and demand correspondences may fail to take
convex values. In addition, we replace the assumption of weak free elimination by the
following (hopefully more natural) hypothesis: for each firm j, there exist a compact
Kj ⊂ RL and a convex, pointed cone Γj ⊂ RL

+ containing the unit vector in its interior,
and such that:

(a)
(
∂Yj \Kj

)
∩ (−RL

++) =
(
∂Yj \Kj

)
∩ (+RL

++) = ∅,
(b) ∃yj ∈ Yj : yj − Γj ⊂ Yj .

The price to pay is that we now need to assume that the graphs of the set-valued
maps we are dealing with be Euclidean Neighborhood Retracts. This is, however, a
very weak condition, and it is a priori hardly conceivable that correspondences whose
graph would not satisfy such a property could be of any economic relevance. It is in any
case sufficient for the applications we have in mind (see Giraud (1999)). As far as we
know, this is the first time the need for such an hypothesis is felt in general equilibrium
theory.

The existence result given in this paper is not directly comparable with Hamano
(1994), though an existence theorem for non-convex economies without free-disposal
is also obtained there. Indeed, in Hamano’s paper, traders’ demand correspondences
are not assumed to “tend to infinity” as the price vector tends to the boundary of
the simplex. Consequently, Hamano must allow for negative equilibrium prices, which
forces him to assume that production sets are “strictly star-shaped.” Here, we follow a
well-established tradition by imposing the classical boundary behavior on demands, so
that, even if firms are able to quote negative prices, equilibrium prices must be positive.
As a consequence, we can deal with non-convex production sets without free-disposal,
which are not strictly star-shaped, so that, to our knowledge, the existence obtained
in this paper is the strongest, available theorem for economies satisfying the boundary
condition mentioned above.

1.3. As our (purely topological) approach of the degree of a correspondence may be
useful in many other contexts (for instance, in incomplete markets, game-theoretical
study of the refinements of Nash equilibrium, etc.), we isolate the background material
needed for this approach in the second section. The third section is then devoted to
proving our main existence result.

1I owe this remark to Stefano de Michelis.
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Non-smooth Economies 5

2 The topological degree of a correspondence

In this section, we provide the mathematical background needed for proving the
existence of equilibria in non-convex and non-smooth production economies.

2.1 From maps...

Before embarking in the construction of the topological degree of a correspondence,
let us recall some facts borrowed from the homological degree theory of a continuous
map. (For details, see Dold (1972, p. 267, ff.)).2

Consider M, N two topological n-dimensional, oriented submanifolds (without bound-
ary) of some Euclidean space RL, and a continuous, surjective, proper map f : M → N .

For any compact subset C ⊂M , the relative (singular) homology group Hn(M, M−
C) is called the local homology group of M at C. (All the absolute homology groups we
consider are reduced homology groups, taken with integral coefficients.) It is a “local”
invariant in the sense that it depends only on the behavior of X in a neighborhood
of C. Indeed, for any neighborhood V of C, we have the following: Hn(V, V − C) �
Hn(M, M − C) (Dold (1972, Prop. 3.2, p. 59)). Moreover, when C is a point, say
P ∈ M , the local homology groups Hk(M, M − P ) are easy to compute: they are
trivial for k �= n and isomorphic to Z for k = n. A generator oP of Hn(M, M − P ) is
called an orientation of M at P . There are exactly two possible orientations at a given
point P , say OP and −OP . We associate with M a new manifold, denoted by M̃ ⊗ Z,
and a map γ : M̃ ⊗ Z→M s.t. γ−1(P ) = Hn(M, M − P ) for every P ∈M . Hence, as
a set, M̃ ⊗Z is defined by: M̃ ⊗Z := ∪P∈MHn(M, M −P,Z) = ∪P∈MHn(M, M −P ).
We topologize M̃ ⊗ Z by defining a base as the set of all the Vz defined by:

Vz = {[z]P ∈ Hn(M, M − P ), P ∈ V },
where V is any open subset of M and z ∈ Zn(M, M − V ) is any cycle modulo M − V .
With respect to this topology, the map γ is locally homeomorphic and the next map:

β : M̃ ⊗ Z→ Z β(u) = |u|,∀u ∈ Hn(M, M − P ) � Z,

is continuous. (Here, |u| is the absolute value of u, viewed as an element of Z.) Let
A ⊂ M and s : A → M̃ ⊗ Z a (continuous) map. If γ ◦ s(P ) = P for all P ∈ A, s is
called a section of γ over A. The sections form an abelian group, denoted Γ(A).

A section O : A → M̃ ⊗ Z is called an orientation of M along A if β ◦ O(P ) = 1
for all P ∈ A, i.e., if O(P ) is a generator of Hn(M, M −P ). M is orientable along A if

2Notations: Throughout this paper, coX [resp. coX] denotes the convex hull [closed convex
hull] of X, FrX its topological frontier, intX its interior, clX its closure, and 2X its power set.
If M is a manifold with boundary (for short, a ∂-manifold), ∂M denotes its boundary. For
any map g and any subset F of its domain, g|F is the restriction of g to F . We denote
by proj|K the projection operator over K. e is the vector of RN whose coordinates are all
equal to 1 and, for any i = 1, ..., N , ei is the ith vector ei = (0, ..., 1, ..., 0) of the basis of
R

L. For any positive integer n, Nn designates the set {1, ..., n}. If S is a subset of NL,
we write RS = {x ∈ R

L : xh = 0,∀h /∈ S}. If y ∈ R
L, then yS = projRS (y) ∈ R

S .
Finally, ∆L = {p ∈ RL :

∑
|pk| = 1}, ∆L

+ = ∆L ∩ RL
+, BL = {x ∈ RL : ||x|| ≤ 1}, and

SL = {x ∈ RL : ||x|| = 1}, where ||.|| is the Euclidean norm.
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6 Algebraic Index Theorem

such an orientation exists. If A = M , M is orientable. If O ∈ Γ(M) is an orientation
of M and K ⊂ M is a compact set, then the restriction O|K provides an orientation
of K. It turns out that Γ(K) is then isomorphic to Hn(M, M −K) (see Dold, op. cit.,
p. 260, Prop. 3.3). Thus, for M oriented, O its orientation and K ⊂ M compact,
there exists a unique element oK ∈ Hn(M, M−K) corresponding to O|K ∈ Γ(K). The
element oK is called the fundamental class around K which allows for generalizing the
orientation of M around sets K which are not connected. Of course, if K is connected
and non-empty, then Hn(M, M −K) � Z and oK is a generator.

Then, for each non-empty, connected, compact subset K ⊂ N , the homomorphism
in homology f∗ : Hn(M, M − f−1(K)) → Hn(N, N − K) induced by f takes the
fundamental class of−1K of Hn(M, M − f−1K) around K into an integral multiple of
oK . This multiple is called the degree of f over K and is denoted degKf . By convention,
if K = ∅, then degKf = Z.

For instance, if M is a compact, connected, oriented, n-dimensional, differentiable
manifold, Y = R

n, f is smooth, and K = {y} ∈ Im(f) a regular value of f , then
degK reduces to the familiar definition of the degree in terms of Jacobians (Dold (op.
cit., Ex. 5.13, p.71)). If f−1(K) = ∅, then degKf = 0. If f is the inclusion map
of an open subset M ⊂ N into N , then degKf = 1 for every K ⊂ M . The two
next properties will also be helpful: if K ′ ⊂M is any compact set containing f−1(K),
then H(f)K′ : Hn(M, M −K ′)→ Hn(N, N −K) takes the fundamental class oK′ into
(degfK)oK (Dold (op. cit., p.267, Prop. 4.3)). In other words, we can safely replace
f−1K by any larger compact set without affecting the degree of f over K. On the
other hand, if N is connected, the equality f∗(of−1K) = (degK(f))oK still holds for all
non-empty compacts K ⊂ N , whether they are connected or not.

2.2 ...to correspondences

Before going any further, let us recall the following result, which is the crux of the
matter when generalizing topological properties of maps to correspondences (see Vi-
etoris (1950) for a treatment in the language of Čech-homology with compact supports
or, for a Čech-cohomological treatment, Spanier (1966, p. 344)).3

Theorem 2.1 (A variant of Vietoris-Begle mapping theorem)
If X, Y are non-empty, compact, topological spaces, f : X → Y is surjective and

such that f−1(y) is connected, and if there exists some integer n with Hk(f−1(y)) = 0,
for every n ≥ k ≥ 0 and every y ∈ N , then the homology homomorphism fk : Hk(M)→
Hk(N) is an isomorphism for every n ≥ k ≥ 0.

We will apply this result to the class of Euclidean Neighborhood Retracts (ENRs),
i.e., to subsets M ⊂ RL such that there exists a subset N ⊂ RK which is homeomorphic
with X and admits a neighborhood V and a continuous map (the retract) r : V → N
whose restriction to M , r|M , is the identity over M .

3The variant given here can be deduced from Vietoris (1950) by using the fact that any
compact manifold is a Euclidean Neighborhood Retract, so that, in our context, Čech-homology
with compact supports reduces to (reudced) singular homology (Dold (op. cit., p. 340, Prop.
13.17)).
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Non-smooth Economies 7

Any compact, topological ∂-manifold is an ENR. Any locally compact and locally
contractible subset of RL is an ENR (see Dold (1980), Prop. 8.12, p. 83). Thus,
this class of sets potentially covers a great number of situations. Semi-algebraic and
finitely-sub-analytic sets are also ENRs (even if they are not compact), a fact which
will prove useful when studying the determinacy problem for non-smooth economies
(see Giraud (1999)).

Consider, now, X, Y two non-empty, closed ENRs of RL, a continuous and proper
map f : X → Y and a non-empty, compact K ⊂ Y . Since X and Y are ENRs,
there exist two compact subsets W, V of X and Y respectively, s.t. K ⊂ intV ⊂ Y ,
f−1(K) ⊂ intW ⊂ X, and f−1(V ) = W . Denote by g = f|W : W → V the restriction
of f on W . Suppose that Hk(f−1(y)) = 0 for any n ≥ k ≥ 0 and any y ∈ Y .
Then, Hk(g−1(y)) = 0 for any n ≥ k ≥ 0 and any y ∈ V . Take any non-empty,
compact connected subset K ⊂ N and apply Vietoris-Begle mapping theorem to g and
to g|W−g−1(K) : W − g−1(K) → V − K. The exact homology sequence of the pairs(
W, W − g−1(K)) and (V, V −K) provides the following commutative diagram:

Hk

(
W − g−1(K)

)
−−−→ Hk(W ) −−−→ Hk

(
W, W − g−1(K)

)
−−−→ Hk−1

(
W − g−1(K)

)

�
� �

�
�

��

Hk

(
V −K

)
−−−→ Hk(V ) −−−→ Hk

(
V, V −K

)
−−−→ Hk−1

(
V −K

)

which, together with the five-lemma (e.g., Spanier (1966, p. 185)) yields that the
relative homology homomorphism

g∗ : Hn

(
W, W − g−1(K)

)
→ Hn

(
V, V −K

)

is an isomorphism. Since

cl(X −W ) ⊂ int
(
X − f−1(K)

)
and cl(Y − V ) ⊂ int(Y −K),

the excision property (Dold (op. cit., p.44, Corollary 7.4)) leads now to the following
commutative diagram:

Hn

(
X, X − f−1(K)

) �−−−→ Hn

(
W, W − g−1(K)

)

f∗

�
�g∗

Hn

(
Y, Y −K

) �←−−− Hn

(
V, V −K

)

The vertical arrow on the left f∗ : Hn(X, X − f−1(K)) → Hn(Y, Y − K) therefore
represents an isomorphism.

We are now ready to deal with set-valued mappings. Consider F : X → Y a corre-
spondence with non-empty, compact values, X and Y two n-dimensional, topological
manifolds. The set-valued map F is said upper hemi-continuous (u.h.c.) if, for every
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8 Algebraic Index Theorem

p ∈ RL, the function x �→supy∈F (x)y · p is upper semi-continuous on X.4 F is said
acyclic if it takes acyclic values, i.e., if F (x) is non-empty and verifies Hk(F (x)) = 0
for every k ≥ 0 and every x ∈ X. (Non-empty convex or contractible sets are ex-
amples of acyclic sets.) It is said to be proper if, for every compact K ⊂ Y , the set
F−1(K) = {x ∈ X : F (x) ∩K �= ∅} is compact. Let G =Graph(F ) ⊂ X × Y denote
the graph of F . F is said G-closed if its graph is closed. A correspondence whose graph
is a ENR shall be called a ENR-correspondence.

Suppose, therefore, that F is an u.h.c., G-closed, proper, acyclic- and compact-
valued ENR-correspondence. Let p : G → X, and q : G → Y be the canonical
projections. Since p is a surjective, continuous and proper map between two ENRs, and
has acyclic preimages, we deduce from the preceding remarks that, for every non-empty,
compact C ⊂ X, p induces an isomorphism p∗ : Hn

(
G, G− p−1(C)

)
→ Hn(X, X −C).

Take, now, any non-empty, connected, compact K ⊂ Y and denote C = F−1(K).
Since F is proper, u.h.c. with bounded values, F (C) is bounded (Aubin & Cellina
(1984), Prop. 3, p. 64). Since the graph of F is closed, F (C) is, in fact, compact.
Hence, both sets q−1(K) and p−1(C) are compact. Moreover, q−1(K) ⊂ p−1(C). The
homomorphism H(q) : Hn

(
G, G − p−1(C)

)
→ Hn(Y, Y − K) has the same degree as

q∗ : Hn(G, G− q−1(K))→ Hn(Y, Y −K).
The homomorphism HK(F ) = H(q) ◦ p−1

∗ : Hn(X, X −C)→ Hn(Y, Y −K) will be
considered as the homomorphism of homology induced by F relative to K. The degree
of F relative to K, degKF , is then simply defined as the degree of HK(F ). Of course,
our definition does reduce to the familiar one when F turns out to be a function, but
we stress that, in general, it will not be possible to prove, in the contexts we have in
mind, that F admits any continuous selector.

Remarks. Notice that the restriction to acyclic correspondences (hence
the use of Vietoris-Begle mapping theorem) is made only for the sake of
emphasis, and in order, later on, to highlight the link with the usual convex-
valuedness hypothesis made on demand (or tarification) correspondences
in economic theory. Were we to strive for the utmost generality, we would
have pictured the preceding construction for the more general class of set-
valued maps for which only the conclusion of Vietoris-Begle mapping the-
orem applies on p∗ as defined above. I also would like to stress that, even
if the correspondence F admits a continuous selection f , it is not true, in
general, that F and f have the same degree. Moreover, in the contexts
we have in mind, most of the correspondences at hand do not admit any
continuous selector at all.

2.3 Properties of the degree

Let denote by C the set of 4-tuples (ϕ, X, Y, K) where X and Y are n-dimensional
topological manifolds, K ⊂ Y is non-empty, connected, compact, and ϕ : X → Y is an

4For convex-valued correspondences the change between semi- and hemi-continuity is nit-
picking, since every u.s.c correspondence is, in any case, u.h.c, while every convex- and compact-
valued u.h.c. correspondence is u.s.c. But this is not so for maps which may take non-convex
values.
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Non-smooth Economies 9

u.h.c., G-closed, proper, ENR-correspondence with compact and acyclic values. When
necessary, we write degK(F, X, Y ) in order to emphasize the target and the source of
F . One derives from Granas & Jaworowski (1958) and Jaworowski (1958) that the map
deg: C→ Z fulfills the next axioms:5

Normalization: If ϕ is a multivalued identity mapping (i.e. x ∈ ϕ(x),∀x), then
degK(ϕ) = 1.

Localization: If U and V are open subsets of X and Y respectively, with ϕ(U) ⊂ V
and ϕ−1(K) ⊂ U , then degK(F, X, Y ) = degK(F|U , U, V ).

The next property shows that the degree can be determined locally as “number of
counter-images of a point,” each counter-image counted with its multiplicity. (For a
definition of “local degrees” for maps, see e.g., Dold (1972), p. 66).

Additivity: If X1 and X2 are two connected disjoint open sets such that X =
X1 ∪ X2 and

(
ϕ|Xi

, Xi, Y, K
)
∈ C for each i = 1, 2, let denote by Ni = ϕ−1(K) ∩ Xi

for each i, 6 and ϕi = ϕ|Ni
. Then:

degK(ϕ, X, Y ) = degK(ϕ1, X1, Y ) + degK(ϕ2, X2, Y ).

Homotopy invariance: degK(H(t, .), X, Y ) is independent from t ∈ [0, 1], where
H : [0, 1] ×X → R

n is a compact- and acyclic-valued u.h.c., G-closed correspondence
s.t. ∪t∈[0,1]H

−1(t, K) ⊂ X is compact.

Put in other terms, two set-valued mappings F, G : X → Y are acyclically homo-
topic if there exists a correspondence H as above, such that, for each x ∈ X:

H(0, x) = F (x) and H(1, x) = G(x).

Hence, two acyclically homotopic correspondences have the same degree.

Independence from K: If Y is connected, degKF is the same for all compact
and non-empty parts K ⊂ Y , whether K is connected or not. It is written degF .

Chain rule: If (f, X, Y ) and (F, Y, Z) are in C, f is a function and Y is connected,
then degK(F ◦ f) =degKF ·degf .

The last property is the key which allows for deducing an existence proof from any
Index theorem.

Non-triviality: If degK(ϕ) �= 0, then ϕ−1(y) �= ∅ for every y ∈ K.

3 Existence of equilibria

In this section, we apply the preceding material to the problem of existence of an
equilibrium in production economies with increasing returns.

5The mentioned authors proved similar results for the Lefshetz index in the context of
absolute simplicial homology on the sphere. The material gathered in the previous section
makes the task of obtaining the next properties in the same vein rather easy.

6Note that each Ni is compact, since f−1(K) is the topological sum of the Ni’s.
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10 Algebraic Index Theorem

3.1 The economy

We consider economies with L ∈ N∗ commodities, m = #I ≥ 1 consumers and
n = #J ∈ N producers. For all j = 1, ..., n, Yj ⊂ R

L is the production set of the
jth producer. We formally define the possibly differing pricing rules of producers into
non-empty-valued pricing rule correspondences:

∀j, ϕj : ∂Yj → (∆L
+),

which assigns to each production plan yj ∈ ∂Yj the set of prices q ∈ ϕj(yj) ⊂ (∆L
+) for

outputs. (This is standard, for examples, see Cornet (1988) and Remark 3.1, infra.)

The price-taking behavior of the ith consumer is described by her demand corre-
spondence Di : ∆L

++ × R++, which assigns to a price vector p ∈ ∆L
++ and a wealth

wi ∈ R++ the set Di(p, wi) ⊂ RL
+ of desirable consumption plans for agent i.

The revenue function ri : ∆L
+ ×

∏m
j=1 Yj → R associates with every price vector

p and every n-tuple of production programs (yj) ∈
∏

j Yj an income ri

(
p, (yj)

)
∈ R

for trader i, whose wealth is then defined by: wi = p · ωi + ri(p, (yj)). An economy is
summarized by E = 〈((Di, ri)i, (Yj , ϕj)j〉).

Definition 3.1 (i) A production equilibrium of Ep = 〈(Yj , ϕj)j〉 is an element ((yj)j , p) ∈∏n
j=1 ∂Yj ×∆L

+ such that p �= 0 and ∀j, p ∈ ϕj(yj) (i.e., the pricing rule holds for each
firm).

(ii) A general equilibrium (GE) of E is a collection ((yj)j , (xi)i, p) ∈
∏n

j=1 Yj ×
R

Lm ×∆L
+ such that ((yj)j , p) is a production equilibrium of Ep and

(a)
∑n

i=1(xi − ωi) =
∑n

j=1 yj (market clearing),

(b) ∀i, xi ∈ Di(p, p · ωi + ri(p, (yj)) (individual optimization).

GE(E) (resp. PE(Ep)) is the set of general equilibria (production equilibria) of the
economy E (resp. Ep). For any vector z ∈ RL, we adopt the now classical convention
consisting in denoting by z the vector (z1 − zL, ..., zL−1 − zL) ∈ RL−1.

Assumption 3.2 (i) For each i, Di is an u.h.c., G-closed, ENR-correspondence with
compact values in RL

+. Moreover, for each (p, w) ∈ ∆L
++ × R++, Di(p, w) is acyclic.

(ii) For every i and every (p, w) ∈ ∆L
++ × R++, we have:

p ·Di(p, w) = w. (Walras’ law)

(iii) If (pn, wn)n is a sequence in ∆L
++ × R++ converging to (p, w) ∈ ∂∆L

+ × R++,
then d

(
0, Di(pn, wn)

)
→ +∞.

Assumption 3.3 (i) For each j, the set Yj is an L-dimensional, topological ∂-manifold
whose boundary ∂Yj is connected and orientable, and such that there exist a compact
Kj ⊂ RL and a convex, pointed cone Γj ⊂ RL

+ containing e in its interior, satisfying:
(a)

(
∂Yj \Kj

)
∩ (−RL

++) =
(
∂Yj \Kj

)
∩ (+RL

++) = ∅.
(b) ∃yj ∈ Yj : yj − Γj ⊂ Yj.
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Non-smooth Economies 11

(ii) For all z ∈ RL, the set
{
(yj) ∈

∏
j Yj :

∑
j yj ≥ z

}
is bounded.

(iii) For all j, ϕj is an u.h.c., G-closed, acyclic-, compact-valued ENR-correspondence.
Moreover, there exists a real number αj s.t. for all yj ∈ ∂Yj and all p ∈ ϕj(yj), we
have: p · yj ≥ αj.

(iv) ∀((yj), p) ∈
∏

j ∂Yj ×∆L
++,

∑
i ri((yj), p) = p ·

∑
j yj.

Remark 3.1. The first departure with Jouini’s framework is that the
convex-valuedness of each individual demand correspondence is replaced
by the (strictly) weaker assumption that Di(p, w) be acyclic. Notice that
this last hypothesis is not implied, in general, by the alternative assumption
that Di(., .) takes only acyclic values (think of an helicoidal curve in R3).
Secondly, the (weak) free elimination hypothesis is replaced by parts (a)
and (b) of (P)-(i). They are, of course, satisfied for pur-exchange economies
where Yj = −RL

+ for every j. The readers who feel uncomfortable with this
assumption should keep in mind that the (weak) free elimination hypothesis
and this one are interchangeable (though not comparable) for our purposes.
Notice, incidentally, that the boundary ∂Yj may be orientable without Yj

being orientable (Möbius strip). On the other hand, the bounded-losses
assumption (iii) is standard in the literature. It is compatible with the
profit maximization when Yj is convex. Pure-exchange economies can be
viewed as production economies whose tarification rules are all loss-free,
hence, have bounded losses. However, when the marginal pricing rule is
captured by Clarke’s normal cone, it has bounded losses if, and only if, the
set Yj is star-shaped (Bonnisseau & Cornet (1988)). Hence, this paper does
not incorporate the marginal pricing rule, except if each Yj is assumed, in
addition, to be star-shaped (j = 1, ..., n).

The next survival assumptions have been introduced by Bonnisseau & Cornet
(1988). A counter-example, due to Kamiya (1988), shows that some version of them is
indispensable if we are to prove existence. Roughly speaking, they say that, at certain
production equilibria, the economy can “survive”, in the sense that the total wealth
distributed among households is positive.

Assumption 3.4 ∀
(
(yj), p

)
∈ PE(Ep) s.t.

∑
j yj +

∑
i ωi ≥ 0, we have: p ·

(∑
j yj +∑

i ωi

)
> 0.

Assumption 3.5 The assumption 3.4 holds for all ω′ in a connected set W containing
ω +RLm

+ — where ω designates the “true” vector of initial endowments of the economy
at hand.

3.2 Preliminary constructions

If we want to apply degree theory to our economic model, we need a set-valued
map, whose zeroes, when translated in economic terms, can be interpreted as equilibria.
This subsection contains the material required for this “translation” for non-smooth
and non-convex production economies. For the details, we refer to Jouini (1992a,b).
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12 Algebraic Index Theorem

Let us consider the (connected and non-empty) set:

U :=
{(

(yj)j , p, (ω)i

)
i
∈

n∏
j=1

∂Yj ×∆L
++ × RLm : p ·

(∑
j

yj −
∑

i

ωi

)
> 0

}
,

and the next assumption, saying that, at some production equilibria, not only is the
aggegated wealth of the economy positive, but every individual stays above her subsis-
tence level:

Assumption 3.6 ∀
(
(uj), p

)
∈ PE(Ep) s.t. p >> 0 and p ·

(∑
j yj +

∑
i ωi

)
> 0, we

have: p · ωi + ri

(
(yj), p

)
> 0 for all i.

Assumption 3.6 should be viewed as a strengthening of the above stated “survival
assumptions”, obviously fulfilled in the private-ownership case with loss-free pricing
rules, hence in the pure-exchange case.

Since, except on the nice points focused on in assumptions 3.5 and 3.6, the revenue
of some consumer may be zero, so that her demand correspondence may fail to be
defined, we need to consider F : U → R

L the “modified excess demand”, defined by:

(
(yj)j , p, (ωi)i

)
�→

∑
i

Di

(
p, p · ωi + r̃i

(
(yj)j , p, (ωi))

))
−

∑
j

yj −
∑

i

ωi,

where each r̃i : U → R is a “modified” revenue function, given by:

r̃i := (1− θ(ρ))
( 1

m

(∑
i

ρi

))
+ θ(ρ)ρi − p · ωi, i ∈ I,

with ρ := (ρi)i := (p · ωi + ri((yj), p)) and θ(ρ) := 1 if ρi > 0 for all i, and

θ(ρ) :=
∑

i ρi∑
i ρi −minfkρk

otherwise.

The following correspondence Λ0 : U → (e⊥)n×RL−1×RLm will fit the bill, in the
sense that it will provide us the tool on which we shall apply our degree theory:

Λ0

(
(yj), p, (ωi)

)
:=

∏
j

(ϕj(yj)− {p})× F ((yj), p, (ωi))× {(ωi)}.

For the proof of the next Lemma can be easily adapted from Jouini (1992a).

Lemma 1 The correspondence Λ0 : U → e⊥×RL−1×RLm is u.h.c., G-closed, acyclic-,
and compact-valued, and verifies, for all ω ∈ RLm:

(
GE(ω)× {ω}

)
∩ U ⊂ Λ−1

0 (0, 0, ω),

and such that, if RR(ω) is in force, then the converse inclusion holds.
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Non-smooth Economies 13

The small twist between Jouini’s proof and this one is that, here, the correspon-
dences under study (1) are u.h.c. and G-closed, instead of being u.s.c, (2) fail to take
convex values. But the unique property of upper semi-continuity needed is that it is
preserved by any finite sum or product — a feature which is also shared by upper
hemi-continuity (Aubin & Cellina op. cit, Prop. 4, p. 64) and G-closedness. On the
other hand, 3.2-(i) and 3.3-(iii) provide exactly what is needed in order to insure that
Λ0 takes acyclic values.

3.3 The existence result

Theorem 3.7 Under 3.2, 3.3, and 3.5,

deg(0,0,ω)

(
Λ0

)
= (−1)L−1.

If, moreover, the assumption 3.6 holds, GE(E) �= ∅.

Since our definition of the degree of a correspondence shares properties identical to
that of the degree as defined by Cellina & Lasota (1969), the first steps of the proof
look very much like a combination of the original proofs of Jouini (1992c,d).

Proof: Assumption 3.3-(ii) ensures that the set of admissible production plans Λ−1
0 (0, 0, ω)

is bounded. On the other hand, the localization property makes the definition of the
degree local in the sense that degK(F ) does not depend upon the behavior of F outside
of a compact neighborhood of F−1(K). As a consequence, one can modify the pricing
rules out of a compact neighborhood of Λ−1

0 (0, 0, ω) without any modification of the
set of equilibria of E and without any modification of deg(0,0,ω)

(
Λ0

)
.

If we denote by sj =proje⊥(yj) and λj(yj) = −yj ·e
L , then yj = sj − λj(yj)e, and it

follows from part (a) of 3.3-(i) that, for every yj ∈
(
∂Yj \Kj

)
, one has:

λj(yj) ≤ ||sj ||.

Therefore, there also exists a real number Bj such that, for every yj ∈ ∂Yj :

λj(yj) ≤ max
{
||sj ||, Bj

}
.

On the other hand, the boundedness assumption (Pr)-(ii) insures that proje⊥ is proper.

Consider, now, a continuous function β : e⊥ → R, which is equal to zero on B(0, R)
and to one out of B(0, R + 1) for some sufficiently large R. Following Jouini (1992b),
we construct the following artificial pricing rule defined on e⊥ and taking values in
e⊥ + 1

Le:

ψj(yj) = (1− β(sj))ϕj(yj) + β(sj)
(
sj +

1
L

e
)
.

Denote by Ẽ the economy defined in the same way as E , but where the pricing rules ϕj

are replaced by ψj (j = 1, ..., n).
Mutatis mutandis, one can deduce from Jouini (1992a, proof of Thm. 5.1 together

with Thm. 4.1) the following Index formula for the auxiliary economy Ẽ :
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14 Algebraic Index Theorem

deg(0,0,ω)(Λ0) = (−1)L−1
∏
j

degψj .

Here, since each ψj takes values in a connected manifold, its degree does not depend
upon the choice of any connected, compact subset K ⊂ e⊥ + 1

Le. Furthermore, for
yj ∈ ∂Yj and ||yj || large enough, we have ψj(yj) =proje⊥(yj) + 1

Le. Thus, degψj =deg
proje⊥|∂Yj

.

Now, following 3.3-(iii), there exists µj ∈ R++ s.t.
(
∂RL

+ + µje
)
∩ Yj = ∅. Let Mj

be the connected, L-dimensional, topological ∂-submanifold of RL given by:

Mj := cl{y ∈ RL : y /∈ Yj and y �∈ µje + R
L
+}.

The boundary ∂Mj = ∂Yj ∪
(
∂RL

+ + µje
)

is a (L − 1)-dimensional submani-
fold of RL−1. The continuous map fj :=proje⊥|∂Mj

can be extended continuously
to gj :=proje⊥|Mj

. Moreover, following 3.3-(iii), it is proper. Therefore, the degrees
of its induced homomorphisms in relative homology are well-defined. Now, observe
that HL−1(∂Mj , ∂Mj − ak) � Z, so that there are exactly two possible orientations
at each point ak of ∂Mj , which are oak

and −oak
, where oak

is the generator of
HL−1(∂Mj , ∂Mj−ak) (cf. Dold op. cit Prop-def. 2.1 p. 252). Moreover, the boundary
of the orientation class of Mj (cf. Dold op. cit, Prop. 2.19, p. 257) is the difference
between the orientation class of ∂Yj and that of ∂RL

+ + µje. These two classes must be
mapped to cohomologous classes under fj , so that the degree of the restrictions of the
projection on these two components, f1

j := fj|∂Yj
and f2

j := fj|∂RL
++µje, must be equal.

But the restriction f2
j is a homeomorphism. Thus, we can choose the orientation of

this last boundary in such a way that

deg f2
j = 1.

Consequently, degΛ0 = (−1)L−1. Hence, by the non-triviality property of the degree,
there exists

(
(yj), p

)
∈

∏
j ∂Yj×S s.t. Λ0

(
(yj), p, ω

)
= (0, 0, ω). Together with assump-

tion (RR)(ω) and Lemma 3.1, we conclude that GE(Ẽ) �= ∅, hence that GE(E) �= ∅.
�

Remark 3.2. Apart from the use of a new topological degree, the move
from Jouini’s proof (1992b) to this one simply amounts to observing that
the conclusion of Milnor’s Lemma (see Milnor (1965, Lemma 1, p. 28))
does, in fact, not depend upon the differentiability of ∂Mj . Suppose
that ∂Yj were smooth. In homological terms, Milnor’s argument could be
stated as follows: For any generic point P in the connected manifold e⊥,
gj ’s properness implies that the counter-image g−1

j (P ) consists in finitely
many segments sk (k = 1, ..., νj,P ), such that g−1

j (P ) ∩ ∂Mj = f−1
j (P ) =

∪νj,P

k=1∂sk = ∪νj,P

k=1{ak, bk}. It is not difficult to see that, once an orienta-
tion of ∂Mj has been chosen, the orientations at ak and bk have to take
opposite signs (the segments are smooth submanifolds whose orientation
can be checked by the unit (tangent) vector). Taking the sum over all the
segments sk yields, by the additivity property of the degree of fj , that
degfj = 0.
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Non-smooth Economies 15

Remark 3.3. The definition of an economic equilibrium adopted in this
paper is standard, and follows, in particular, Jouini (1992a,b) and Hamano
(1994). It is, however, disputable on the following ground. When a pro-
duction set Yj no more satisfies the free-disposal assumption, the set of
efficient production plans

{
yj ∈ Yj :

(
yj + R

L
++

)
∩ Yj = {yj}

}

no more coincides with the boundary ∂Yj . Therefore, the definition of
a production equilibrium should require that yj belongs to the subset of
efficient production plans, instead of merely imposing that it be on the
boundary of the production set. Such a definition, however, would create
new difficulties — already in the smooth case —, as there is no obvious
topological property shared by the set of efficient production plans (which
may itself have a boundary, several connected components, etc.). By relax-
ing several assumptions on the production sets and their boundaries, this
paper, at least, partially paves the road towards such an inquiry.
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