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1. Introduction 

  

It is well known fact that time series have their own frequency behaviour. This is a 

very common phenomenon in practise, especially in financial time series data. As 

Mandelbrot points out that, “large changes tend to be followed by large changes, of 

either sign, and small changes tend to be followed by small changes”. This feature is 

known as volatility clustering. Modeling the volatility of stock returns is an essential 

key for pricing financial assets and derivatives. Observations of volatility clustering in 

time series has given a way to the use of ARCH and GARCH models in financial 

forecasting and asset and derivatives pricing.  

 

Time-varying volatility was firstly introduced by Engle (1982) as an autoregressive 

conditioal heteroskedasticity (ARCH) model. A volatility model can be referred as a 

mean and variance equation. 

Mean equation: 
t t ty σ ε=  

Variance equation: 2 2

1t tyσ µ −= + Φ  

Where ty  is the asset returns and 2

tσ  is the volatility of these returns. Volatility can 

be described as a measure of risk on returns. Each observed data point ty  has a 

standard deviation tσ  and the error term is Gaussian (0,1)t iidNε ≈ . 

This model of Engle was extended by Bollerslev (1982) to become a generalized 

autoregressive conditional heteroskedasticity (GARCH) model. 

t t ty σ ε=  

2 2 2

1 1t t tyσ µ α βσ− −= + +  

 

Since the introduction of the ARCH model, there has been a massive amount of 

studies conducted on volatility modeling. As Bollerslev, Chou and Kroner (1992) 

state that more than 100 papers exist on this subject. In the various forms of GARCH 

models, the volatility is not only a deterministic function of the squares of past return 

but also squares of past volatility. A GARCH model also captures part of the excess 

kurtosis of the financial time series along with volatility clustering. These models 

have been widely used in finance literature examining the various types of financial 

data such as stock return data, interest rate data, foreign exchange data etc. 



 

In this paper, I will examine the different volatility models and their ability to deliver 

volatility forecasts. The different aspects of volatility models such as GARCH, 

EGARCH and TGARCH are useful not only for modeling the historical volatility but  

also provide us multi-period future forecasts.  

 

The rest of this paper is organized as follows, data used and methodology are briefly 

discussed in section 2, section 3 deals with tests and empirical results, and conclusion 

is drawn in section 4.   

 

2. Methodology 

 

The data used in this paper are the monthly data of the FTSE All Share Index traded 

on London Stock Exchange from January 1965 to November 2002. During this period 

average monthly return was 0.64% with a maximum of 42% and a minimum of -32%. 

Standard deviation of returns during the period was 5.7%. The historical returns of the 

index will be plotted and examined graphically in order to have some general idea 

about the structure of the series.Data are also tested in order to see whether it presents 

the January effect or not. The model designed to test this calender effect is a test of 

the average January effect in the returns of FTSE All Share Index. The model for 

testing the January effect can be expressed as, 

 

ititit MR εββ ++= 10  

Where 

itR = return on stocks in month i in year t and 

itM = 1 if the month is January, 0 otherwise 

PcGive is employed to conduct the OLS regression to test the January effect. 

 

In order to estimate goodness of fit of the model Akaike’s Information Criterion 

(AIC) which was developed by Hirotsgu Akaike in 1971 is choosen. AIC has been 

employed by using PcGive to determine the correct lag lenght for the estimation.  

 



For testing the misspecification of the conditional mean, error autocorrelation and the 

Durbin-Watson tests are employed. Durbin-Watson test is the simplest form of test 

that used to identify the presence of autocorrelation. When DW is close to zero, it 

implies positive autocorrelation, when DW is close to 4, there is a negative 

autocorrelation and if it is close to 2, there is no autocorrelation.  

 

The effects of ARCH errors on the performance of lag length selection criteria are 

also tested. The most important outcome of this test is to demonstrate the relevance of 

the lag length selection criterion. We have to test if the criterion applicable to 

autoregressive process that exhibits ARCH effects. 

 

Finally, various GARCH models in terms of their performance on volatility clustering 

are evaluated. Their robustness and forecasting abilities are also presented. 

 

3. Empirical Results 

 

This section briefly discusses the some empirical results associated with volatility 

clustering models.  Graph 1 exhibits the historical tendency of the stock returns during 

the period of February 1965 and October 2002.  As clearly seen in the graph that 

stock returns have the structure of volatility clustering small changes tend to be 

followed by small changes and large changes come after large changes. There are two 

big shocks in the series one in 1975 and second is in 1987. These large changes in the 

graph reflect the positive and negative effects of the market. For example, negative 

movement in 1987 is a product of the stock crash in October 1987 known as Black 

Monday. 

 

Table 1 shows the normality test and descriptive statistics of the data during the 

sample period. During this period average of the monthly returns is 0.64% with a 

maximum of 42.13% and a minimum of -32.71%. These maximum and minimum 

returns are the results for big negative and positive effects in 1975 and in 1987. The 

standard deviations of these returns during the period is 5.77%.  The skewness of the 

sample period is 0.159. Skewness measure the asymmetry of the probabiity 

distribution of the random variable. The positive skewness means the mass of the 



distribution is laid on the left side of the distribution which is called “right skewed”.  

High level of skewness can cause a skewness risk. Skewness risk indicates that the if 

the variables are too skewed the student t-test is not an appopriate method in testing 

hypothesis. The excess kurtosis of the series is 8.0985. Kurtosis describes the 

peakedness of the series. Positive kurtosis indicates a ‘peaked’ distribution and 

negative kurtosis indicates a ‘flat’ distribution.  

 

Substantial evidence of  a January effect in the stock market has well documented 

eveidences in the financial literature (Wilson and Jones 1990). According to the 

financial literature, stocks show consistently higher average returns in January, 

although this effect seems to be generally related to the small firms effect. The 

purpose of this test is to test specifically for a January effect in the returns of FTSE 

All Share Index. By regressing stock return series on dummy variable which is 1 in 

January and 0 in other months, we were able to show whether there is a January effect 

on our sample data during the sample period. Table 2 exhibits the results from 

regression for January effect. The average monthly return for months other than 

January (the constant) is 0.5167%, and premium for January over other months is 

1.61%. The calculated t-value and r^2 for the period are 1.63 and 0.0059 respectively. 

The t-value for the period suggests the acceptance of the null hypothesis that there is 

no January effect on stock returns for our sample period. 

 

The key element in the model is to determine the correct lag length. Several studies in 

this area demonstrate the importance of selecting a correct lag length. Estimates of the 

model would be inconsistent if selected lag length is different than the true lag length. 

Selecting a higher order lag length than the true one increases the forecasting errors 

and selecting a lower lag length usually generates autocorrelation errors. Therefore, 

accuracy of forecasts heavily depends on selecting the true lag lengths. There are 

several statistical methods that help us to select a lag length. Akakike’s Information 

Criterion (AIC) is considered to be nearly unbiased estimator of the selecting lag 

order. Therefore, AIC has been chooen to determine the correct lag length. In this 

paper, OLS regression is run with using different lag orders starting from 10 to 1. The 

table 3 shows the results from the progress of 10 equations. The equation which has 

the minimum AIC is determined as correct lag length for our model. The values of the 



AIC from the table suggest that equation 8 which has 3 lags has the lowest AIC of -

2.8741, therefore correct lag length appropriate for our model is 3. 

 

In order the test misspecification of the conditional mean autocorrelation test are 

needed. Firstly, Durbin-Watson which is a simplest form of autocorrelation test of 

first-order is applied. DW is a test for autocorrelated residuals and can be calculated 

as,  

2
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Since 1 1ρ− ≤ ≤
⌢

, then 0 4.DW≤ ≤  If DW is closer to zero , there is evidence of 

positive autocorrelation, if it is closer 4, there is a evidence of negative 

autocorrelation, and DW is closer to 2 there is zero autocorrelation. Table 4 shows the 

results from OLS regression at lag length 3. As seen from the table that result for the 

DW test is 1.99 which indicates that there is no autocorrelation. Although significance 

of DW is widely accepted in the literature, it can be biased towards 2 if the model 

includes a lagged dependent variable. Therefore, it is essential to conduct another 

error autocorrelation test for misspecification of the conditional mean. Table 5 shows 

the results of the error autocorrelation test performed by using PcGive. From the 

results Chi^2(3) =   3.4197 [0.3313]   and F-form F(3,443) =   1.1308 [0.3362] we 

can conclude that the null hypothesis of there is no autocorrelation is accepted at both 

significance levels. 

 

Table 6 presents the results of ARCH test. The ARCH test is conducted at lag order 3 

in order to test ARCH effects of the regression. The results of F-form of the test 

ARCH 1-3 test:    F(3,440) =   3.9032 [0.0090]** indicate that null hypothesis H=0 of 

there is no ARCH effect has been rejected at both significance levels of 1% and 5%.  

 

In this part of the assignment, different asymmetric and symmetric volatility models 

are estimated. These models are respectively GARCH, TGARCH, EGARCH, and 



AGARCH. Their ability to capture the volatility clustering and forecasting future 

volatility is determined. Misspecification tests for the volatility models are also 

presented. 

 

Firstly, we begin by evaluating the traditional GARCH model first introduced by 

Bollerslev (1986) and have the following specification 2

0 1 1 1 1t t th hα α ε β− −= + + .  The 

results of the estimation are presented in Table 7 suggest a consistent volatility 

presence with extremely significant t-statistics. The results are for the most part as 

expected with 0 1 10.000243602, 0.107739, 0.823097α α β= = = positive and 1 1α β+   

less than one which means the process is covariance stationary. As 1 1α β+  is close to 

one (but not equal) which indicates that the volatility process might be integrated. 

Table 11 presents the some diagnostic information about the estimation. While, the 

standard deviation of the residuals is close 1 as expected, other descriptive statistics 

demonstrate some of the weaknesses of the GARCH model. Even statistically 

insignificant, the mean of the residuals is negative. Also residuals have statistically 

significant negative skewness and excess kurtosis. 

 

Now, we move on to examine other models of volatility process. Three of the most 

popular specifications of the volatility process are explored. The first one is 

exponential GARCH (EGARCH) which was initially proposed by Nelson (1991) 

which parameterizes the volatility process as 

0 1 1 1 1 1 1ln( ) ln( )t t t th hα α η ψ η β− − −= + + +    where t t thη ε=  represents the 

normalized error process. This specification has two main advantages. First, it allows 

th responding asymptotically good news and bad news. Second, because of the 

logarithmic form there are no non-negativity constraints of the parameters.  

 

Secondly, we analyze the asymmetric GARCH (AGARCH) model of Engle and Ng 

(1993). The volatility equation is 2

0 1 1 1 1 1( )t t th hα α β ε ψ− −= + + + . “The parameter 1ψ  is 

typically negative and thus AGARCH model also allows for asymmetric response of 

volatility to positive and negative shocks” (Goyal, 2000). Finally, threshold GARCH 

(TGARCH) model is explored. This model is similar to GJRGARCH model which 

volatility is measured by the conditional variance.  



 

The estimation results of these three models of volatility are given in tables 8,9, and 

10 respectively. In Table 8, eps[-1] is -0.0355325 and |eps[-1]| is significantly 

positive with a value of 0.192435. Moreover, the likelihood value is 680.891084 

which is higher than that of GARCH model. These findings indicate that there is an 

obvious asymmetric response of shocks to volatility and the EGARCH model has 

been successful of capturing this asymmetry. On the other hand AGARCH model is 

not proved as expected with a positive asymmetric value and lower likelihood value 

than EGARCH model. TGARCH model presents some surprising results. The 

coefficient threshold is lower and close to zero suggests that negative shocks have 

more impact on volatility than the positive ones. Table 11 presents some diagnostics 

about all 4 models. We see again that all models produce negatively skewed residuals 

and positive excess kurtosis. EGARCH model seems to be superior to the other 

models in terms of log likelihood value.  

 

4. Conclusion 

 

In this study, different variations of volatility models have been analyzed. Their 

ability to capture volatility clustering, responding negative and positive shocks of the 

market and delivering adequate future forecasts of volatility has been tested. We have 

been tested and compared these models by using monthly returns of the FTSE All 

Share Index. Generally, GARCH models have been tested successful on modelling 

volatility clustering. But, frequency of data used for testing the models is a vital 

problem at this stage. Volatility estimated from daily data could be more precise than 

GARCH volatility estimated from monthly data because of the higher frequency of 

daily data. 

 

Another question for this paper is that if GARCH forecasts are not fully capture the 

whole aspects of volatility forecasting, which alternative methods can be used? An 

extended study on simpler ARMA models or implied volatility embedded on option 

prices would help us to predict future volatility better. 
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Appendix: Tables And Graphs 

 

Graph 1: Stock Returns 
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Table 1: Normality tests and descriptive statistics 
 

Normality test for DLPRICES 

Observations             453 

Mean               0.0064842 

Std.Devn.           0.057702 

Skewness             0.15934 

Excess Kurtosis       8.0985 

Minimum             -0.32711 

Maximum              0.42133 

Asymptotic test:  Chi^2(2) =   1239.8 [0.0000]** 

Normality test:   Chi^2(2) =   377.99 [0.0000]** 

 

 

Table 2: January Effect 
 

                  Coefficient            Std.Error   t-value  t-prob Part.R^2 

Constant           0.00516693   0.002827     1.83    0.068   0.0074 

Dummy_Var     0.0161274     0.009892     1.63    0.104   0.0059 

 

sigma               0.0576601  RSS                1.49943324 

R^2                 000585928  F(1,451) =      2.658 [0.104] 

log-likelihood        650.718  DW                       1.78 

no. of observations       453  no. of parameters           2 

mean(DLPRICES)     0.00648418  var(DLPRICES)      0.00332952 

 

 

 



Table 3: Specification for Conditional Mean 

 

Progress to date             

Model T p   log-

likelihood 

SC HQ AIC 

EQ( 1) 443 11 OLS 642.05641 -2.7474 -2.8089 -2.849 

EQ( 2) 444 10 OLS 643.79725 -2.7627 -2.8186 -2.8549 

EQ( 3) 445 9 OLS 643.4544 -2.7686 -2.8188 -2.8515 

EQ( 4) 446 8 OLS 645.38159 -2.7847 -2.8292 -2.8582 

EQ( 5) 447 7 OLS 647.22941 -2.8003 -2.8392 -2.8646 

EQ( 6) 448 6 OLS 648.68402 -2.8142 -2.8475 -2.8691 

EQ( 7) 449 5 OLS 648.79561 -2.822 -2.8497 -2.8677 

EQ( 8) 450 4 OLS 650.67227 -2.8376 -2.8597 -2.8741 

EQ( 9) 451 3 OLS 650.67789 -2.8448 -2.8614 -2.8722 

EQ(10) 452 2 OLS 650.69118 -2.8521 -2.8631 -2.8703 

 

Table 4: OLS regression at lag 3 
 

  Coefficient Std.Error t-value t-prob Part.R^2 

DLPRICES_1 0.138186 0.0474 2.92 0.004   0.0187 

DLPRICES_2 -0.102951 0.04759 -2.16 0.031   0.0104 

DLPRICES_3 0.0934248 0.04779 1.95 0.051   0.0085 

Constant 0.00559993 0.00275 2.04 0.042   0.0092 

          

sigma 0.0572451   RSS 1.46154451 

R^2 0.0300758   F(3,446) = 4.61 [0.003]** 

log-likelihood 650.672   DW 1.99 

 

Table 5: Error Autocorrelation Test 
 

Error autocorrelation coefficients in auxiliary regression: 

  Lag Coefficient  Std.Error 

    1      0.6011     0.7062 

    2      1.0002     0.6828 

    3     0.12721     0.4922 

RSS = 1.45044  sigma = 0.00327413 

 

Testing for error autocorrelation from lags 1 to 3 

 Chi^2(3) =   3.4197 [0.3313]   and F-form F(3,443) =   1.1308 [0.3362] 

 

 

 

 

 

 

 

 

 

 



Table 6: ARCH Effects 
 

ARCH coefficients: 

  Lag Coefficient  Std.Error 

    1    0.062731     0.0476 

    2    0.11586       0.04739 

    3    0.0709         0.04772 

RSS = 0.0456707  sigma = 0.0101881 

 

Testing for error ARCH from lags 1 to 3 

ARCH 1-3 test:    F(3,440) =   3.9032 [0.0090]** 

 

Table 7: GARCH Results 
  

    Coefficient Std.Error robust-SE t-value t-prob 

DLPRICES_1 Y 0.0541023 0.05362 0.05356 1.01 0.313 

DLPRICES_2 Y -0.118102 0.05319 0.06564 -1.8 0.073 

DLPRICES_3 Y 0.0104494 0.05284 0.05545 0.188 0.851 

Constant X 0.00730119 0.002509 0.003312 2.2 0.028 

alpha_0 H 0.000243602 0.0001065 9.61E-05 2.54 0.012 

alpha_1 H 0.107739 0.0369 0.04616 2.33 0.02 

beta_1 H 0.823097 0.05434 0.04314 19.1 0 

 

log-likelihood 674.7844 HMSE 6.98908 

mean(h_t) 0.003353 var(h_t) 6.82E-06 

no of observations 450 no. of parameters 7 

AIC.T -1335.56 AIC -2.9679308 

mean(DLPRICES) 0.006501 var(DLPRICES) 0.00334859 

alpha(1)+beta(1) 0.930836 alpha_i+beta_i>=0, alpha(1)+beta(1)<1 

       

 

Table 8: EGARCH Results 
 

    Coefficient Std.Error robust-SE t-value t-prob 

DLPRICES_1 Y 0.0659065 0.01898 0.00708 9.31 0 

DLPRICES_2 Y -0.104656 0.01524 0.005892 -17.8 0 

DLPRICES_3 Y 0.0314604 0.01276 0.003882 8.1 0 

Constant X 0.00711716 0.001703 0.001143 6.23 0 

alpha_0 H -0.291188 0.1377 0.1824 -1.6 0.111 

eps[-1] H -0.0355325 0.02667 0.05558 -0.639 0.523 

|eps[-1]| H 0.192435 0.05204 0.06447 2.98 0.003 

beta_1 H 0.948291 0.02357 0.02956 32.1 0 

 

log-likelihood 680.891084 HMSE 6.64097 

mean(h_t) 0.0031957 var(h_t) 3.54E-06 

observations 450 no. of parameters 8 

AIC.T -1345.78217 AIC -2.99062704 

mean(DLPRICES) 0.00650123 var(DLPRICES) 0.00334859 

 



Table 9: AGARCH Results 

 

    Coefficient Std.Error robust-SE t-value t-prob 

DLPRICES_1 Y 0.0575385 0.05562 0.05227 1.1 0.272 

DLPRICES_2 Y -0.107753 0.05176 0.06595 -1.63 0.103 

DLPRICES_3 Y 0.0362125 0.05349 0.06248 0.58 0.563 

Constant X 0.00625743 0.002698 0.00293 2.14 0.033 

alpha_0 H 0.000613839 0.0002278 0.0003481 1.76 0.078 

alpha_1 H 0.124965 0.05881 0.08268 1.51 0.131 

beta_1 H 0.644969 0.1152 0.1112 5.8 0 

asymmetry H 0.0319304 0.02391 0.04656 0.686 0.493 

 

log-likelihood 676.232528 HMSE 8.85607 

mean(h_t) 0.00321014 var(h_t) 4.23E-06 

observations 450 no. of parameters 8 

AIC.T -1336.46506 AIC -2.96992235 

mean(DLPRICES) 0.00650123 var(DLPRICES) 0.00334859 

alpha(1)+beta(1) 0.769934 alpha_i+beta_i>=0, alpha(1)+beta(1)<1 

 

Table 10: TGARCH Results 

 

    Coefficient Std.Error robust-SE t-value t-prob 

DLPRICES_1 Y 0.0685472 0.05653 0.05321 1.29 0.198 

DLPRICES_2 Y -0.106473 0.05224 0.05982 -1.78 0.076 

DLPRICES_3 Y 0.0444284 0.0556 0.05658 0.785 0.433 

Constant X 0.00651058 0.00265 0.002799 2.33 0.02 

alpha_0 H 0.00066836 0.0003157 0.000442 1.51 0.131 

alpha_1 H 0.0524821 0.04595 0.04955 1.06 0.29 

beta_1 H 0.64541 0.1514 0.1875 3.44 0.001 

threshold H 0.183297 0.1371 0.1664 1.1 0.271 

 

log-likelihood 676.804515 HMSE 8.0371 

mean(h_t) 0.00324166 var(h_t) 5.35E-06 

no of observations 450 no. of parameters 8 

AIC.T -1337.60903 AIC -2.97246451 

mean(DLPRICES) 0.00650123 var(DLPRICES) 0.00334859 

alpha(1)+beta(1) 0.697892 alpha_i+beta_i>=0, alpha(1)+beta(1)<1 

 

 

 

 

 

 

 

 

 

 

 

 



Table 11: Diagnostic Tests 

 

GARCH       

Asymptotic test: Chi^2(2) = 539.8 [0.0000]** 

Normality test: Chi^2(2) = 106.4 [0.0000]** 

TGARCH       

Asymptotic test: Chi^2(2) = 766.45 [0.0000]** 

Normality test: Chi^2(2) = 131.36 [0.0000]** 

EGARCH       

Asymptotic test: Chi^2(2) = 471.93 [0.0000]** 

Normality test: Chi^2(2) = 99.769 [0.0000]** 

AGARCH       

Asymptotic test: Chi^2(2) = 975.26 [0.0000]** 

Normality test: Chi^2(2) = 161.65 [0.0000]** 

 

  GARCH TGARCH EGARCH AGARCH 

          

Mean -0.014646 -0.0047027 -0.013801 0.0014857 

Std.Devn. 0.99612 0.99823 0.99587 0.99831 

Skewness -0.91491 -0.99607 -0.87408 -1.012 

Excess Kurtosis 5.0439 6.0752 4.7025 6.9223 

Minimum -6.6554 -7.117 -6.5853 -7.304 

Maximum 4.3095 4.2083 4.1995 4.6279 

 

Graph 2: GARCH Conditional Standard Deviation 

 

1965 1970 1975 1980 1985 1990 1995 2000

0.04

0.06

0.08

0.10

0.12

0.14

CondSD 

 
 

 

 

 

 

 



Graph 3: EGARCH Conditional Standard Deviation 
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Graph 4: AGARCH Conditional Standard Deviation 
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Graph 5: TGARCH Conditional Standard Deviation 
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