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Abstract 

 

Subcompositional coherence is a fundamental property of Aitchison’s approach to 

compositional data analysis, and is the principal justification for using ratios of 

components.  We maintain, however, that lack of subcompositional coherence, that is 

incoherence, can be measured in an attempt to evaluate whether any given technique is 

close enough, for all practical purposes, to being subcompositionally coherent.  This 

opens up the field to alternative methods, which might be better suited to cope with 

problems such as data zeros and outliers, while being only slightly incoherent.  The 

measure that we propose is based on the distance measure between components.   We 

show that the two-part subcompositions, which appear to be the most sensitive to 

subcompositional incoherence, can be used to establish a distance matrix which can be 

directly compared with the pairwise distances in the full composition.  The closeness of 

these two matrices can be quantified using a stress measure that is common in 

multidimensional scaling, providing a measure of subcompositional incoherence.  The 

approach is illustrated using power-transformed correspondence analysis, which has 

already been shown to converge to log-ratio analysis as the power transform tends to 

zero. 

 

Keywords: correspondence analysis, compositional data, chi-square distance, log-ratio 

distance, multidimensional scaling, stress, subcompositional coherence 



2 

1.   Introduction 

 

In his seminal Biometrika paper John Aitchison (1983) stated:  

“A desirable feature of any form of compositional data analysis is an ability to 

study subcompositions, that is subvectors rescaled to give unit sum.  One important 

requirement is an ability to quantify the extent to which a subcomposition retains a 

picture of the variability of the whole composition.”   

The property of subcompositional coherence is indeed one of the cornerstones of Aitchison’s 

approach to compositional data analysis: results should be the same for components in a full 

composition as in any subcomposition, where the subcomposition has been closed again to give 

unit sum, or “reclosed” (Pawlowsky–Glahn et al. 2007).  An example that is often given of 

subcompositional incoherence is that the correlation coefficient between two components in a 

(reclosed) subcomposition is not the same as that for the same two components in the full 

composition.  Using ratios as the basic input data for analysis solves this paradox and the log-

ratio transformation has become a standard approach to guarantee subcompositional coherence.  

For ease of exposition we shall often refer to subcompositional coherence simply as 

coherence.  Coherence is an absolute property which a procedure either possesses or not.  But if 

it does not, that is if it is incoherent, we maintain that there are levels of incoherence that can be 

usefully measured and exploited.  For example, what if our method was ‘close’ to being 

coherent – would that not be useful if in the process we fixed up other problems, such as the 

treatment of zeros in the data?   As a context for our investigation, we have chosen the area of 

visualization of compositional data in the form of maps, in the style of principal component 

analysis (PCA) and multidimensional scaling (MDS), because these are based on the concept of 

distance and distance is one of the most fundamental aspects of multivariate analysis.   

The log-ratio approach to PCA of compositional data originates in the papers of 

Aitchison (1983, 1986, 1990), which we call log-ratio analysis, abbreviated as LRA.   Simply 

stated, LRA can be defined as the principal component analysis (PCA) of a matrix of strictly 
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positive compositional data – assumed to be closed row-wise – after logarithmically 

transforming the data and centring each row of the log-transformed values by its respective row 

mean.  Since the first step of the ensuing PCA is to centre the columns of the table, it is said that 

the log-transformed table is double-centred – the dimension-reduction step is then performed 

using the singular value decomposition.  Interestingly, even though the rows and columns are 

different entities (samples and components) LRA treats them totally symmetrically and the 

results would be identical if the matrix were transposed. 

 A different approach, also symmetric with respect to rows and columns, is to use 

correspondence analysis (CA), a method applicable to any table of nonnegative numbers, as 

long as they are all on the same ratio-scale of measurement, and hence suitable for 

compositional data as well, even with zeros (see, for example, Greenacre, 1984, 2007). In fact, it 

is its ability to handle zeros, even lots of zeros in very sparse tables, that has made CA so 

popular in environmental and archaeological research.   The table is first centred with respect to 

the ‘expected values’ based on the row and column margins of the table, a term that is borrowed 

from contingency table analysis.  The rows and columns are weighted proportional to these 

marginal values – in the case of compositional data samples (rows) would have the same 

weights but components (columns) would be weighted proportionally to their average in the 

data set.  The subsequent dimension-reduction step is similar to that of PCA apart from the row 

and column weighting factors (for a recent account of CA, see Greenacre 2007, 2008).   

Greenacre (2009) has shown that LRA and CA are actually part of a common family 

parameterized by a power transformation – a summary of these findings aimed at compositional 

data analysts is given by Greenacre (2010).  Putting this result simply, if compositional data are 

powered up by a power , reclosed row-wise and then a regular CA is performed on the 

transformed data, with a rescaling of the solution by 1/, then this procedure converges exactly 

at the LRA solution as the power parameter   tends to 0.   In fact, this is nothing else but the 

Box-Cox transformation in disguise (Box and Cox, 1964) – see Greenacre (2009).   This means 

that we can come arbitrarily close to Aitchison’s LRA by performing a CA: numerically, there 
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is hardly any difference between the CA just described using  = 0.001, for example, and LRA.  

Now while LRA is coherent, CA is not.  But it follows intuitively from the limiting result 

mentioned above, and we shall indeed show this to be true, that CA comes closer and closer to 

being coherent as the power parameter approaches 0.   

Since CA can handle zeros in a completely natural way, whereas LRA can not, an 

alternative approach to the zero-value problem is to use power-transformed CA instead of LRA,  

coming as “close” as possible to coherence.  This is the background to our need to be able to 

measure coherence and study its behaviour in different scenarios.     

 

 

2.   Log-ratio and chi-square distances for compositions and subcompositions 

 

As intimated in the introduction we adopt a distance-based approach where the concept of 

between-component distance will be fundamental.  Notice that we are not interested here in 

between-sample distance since the property of coherence applies to the relationships between 

components.  For our purposes coherence will mean that distances calculated between the 

components in the full composition will be identical in the subcomposition.  Since we will be 

generally concerned with Euclidean type distances, which are embeddable in an inner product 

space, this distance-based property of coherence will mean that all the classical statistics such as 

variance, correlation and covariance will also be coherent. 

Suppose that the compositional data table of I samples (rows) and J components 

(columns) is denoted by X (I  J).  The two equivalent definitions of what we call the “log-ratio 

distance” between two components j and j' are as follows (following Aitchison, 1983, 1986), 

expressed in squared distance form: 
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where  g(x j)  is the geometric mean of the j-th column corresponding to the j-th component (i.e., 

log(g(x j)) is the arithmetic average of log(xij), i=1,…,I).  The alternative definition is in terms of 

all pairwise ‘odds-ratios’ across all pairs of samples: 
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Notice that, compared to Aitchison’s original definition, we have averaged the squared terms 

over the samples, so that the distance does not depend on sample size – this form of the distance 

is compatible with the chi-square distance in CA, which is also averaged over samples.   

Although definition (1) involves centring each log(xij) with respect to the average  

(1/I)i log(xij), definition (2) shows that the distance is actually independent of this centring – 

this is another reason for using distance as the fundamental concept for judging and measuring 

coherence. Definition (2) also shows quite clearly that the log-ratio distance is coherent: if any 

subcomposition involving components j and j'  is considered and reclosed row-wise, the ratios 

row-wise xij/xij' remain identical, and so (2) remains the same. 

 In CA it is the chi-square distance that defines distance between columns.  First the 

column profiles are calculated by dividing the elements of each column j by their sum x+j .  Then 

the sum of squared distances between profile elements is calculated, weighted inversely by the 

profile of the row sums.  Since for X these row sums are all 1, the marginal row profile has 

constant values (1/I), hence the squared chi-square distance between columns j and j' is: 
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Clearly, the chi-square distance is incoherent, but from the results of Greenacre (2009, 2010) 

mentioned previously it follows that the chi-square distance on the power-transformed data 

tends to the log-ratio distance as the power parameter   tends to 0.  The convergence of CA to 

LRA is a direct result of the Box-Cox transformation:  
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where (1/)(x – 1) tends to log(x) as  tends to 0.  To illustrate this convergence empirically in 

the case of the chi-square distance, Table 1 shows four versions of a subset of distances 

calculated on the 11 components (mostly oxides) of the 4711 compositional data set on Roman 

glass cups published by Baxter, Cool and Heyworth (1990), reproduced by Greenacre and Lewi 

(2009: Table 2).  The chi-square distances are at top right, then reading clockwise the chi-square 

distances based on a double square root transformation ( = ¼), then a power transformation 

close to zero ( = 0.001) and finally the log-ratio distances.  In order to show the rate of 

convergence in this example, Figure 1 shows the maximum absolute difference between the chi-

square distances and the log-ratio distances for 1000 different CAs, starting with  = 1 

(untransformed CA) and descending in steps of 0.001, i.e., 0.999, 0.998, and so on, until  = 

0.001.   This shows a steady almost linear rate of convergence, and demonstrates graphically 

that one can get as close as one likes to the log-ratio distance, and thus to coherence, by 

lowering the value of  towards 0.  To show convergence to coherence, however,  is more than 

just showing that the chi-square distance converges to the log-ratio distance – it actually 

concerns the behaviour of subcompositions, as treated in the next section. 

 

 

3.   A measure of subcompositional incoherence 

 

Coherence is the invariance of the statistical procedure when applied to subsets of components 

that are reclosed.  Since our particular interest here is in dimension reduction, we focus on the 

effect on the distances, since they affect all our subsequent analyses.  Since CA is incoherent 

because the chi-square distances clearly change when computed on subcompositions, let us see 

the extent of its incoherence by calculating the chi-square distances for different subsets of the 

components of the Roman glass cup data set.  The chi-square distances for the full 11-part 
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composition serve as a reference to which we will compare the chi-square distances for every 

relevant subset of components: the subsets of size 2, the subsets of size 

3, and so on, until the subsets of size 10.  For example, the top left table of Table 1 

shows the chi-square distances between the first five components of the full composition.  If we 

select these five components and then reclose then to form a five-part subcomposition, the chi-

square distances turn out as the first table in Table 2.  This table is remarkably similar to the 

original chi-square distances in Table 1, and their maximum absolute difference is only 

0.00066.  This is because we have included in the subcomposition some of the highest 

components, so that the reclosure does not affect the values too much.  However, if we consider 

the last five elements, which happen to be amongst the rarest, the second distance table in Table 

2 is obtained, which is much further away from the original ones (maximum absolute difference 

= 0.0368).     

55
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 So far, to compare two distance matrices we have used the maximum absolute 

difference, but this quantity depends on the scale of the distance in the particular application.  In 

the multidimensional scaling literature there are several well-known normalized measures for 

quantifying the fit of one distance matrix to another, called measures of ‘stress’.  Of these we 

have selected the so-called ‘stress formula 1’ (see, for example, Borg and Groenen 2005):  
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where d denotes the target distances in the full composition and   the distances in the 

subcomposition.  The denominator serves to normalize the sum of squared differences in the 

numerator, and the stress value is often multiplied by 100 and thought of as a percentage of 

badness of fit.  For the two subcompositions analyzed in Table 2, the stress values are reported 

as 0.00245 (i.e., 0.245%) and 0.06574 (i.e., 6.574%).  To get an idea how this deviation from 

coherence varies across subsets of different sizes, Figure 2 plots the average stress against 
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subset size (where stresses are averaged over all subcompositions of the particular size) for 

regular CA and repeats this for chi-square distances from two power-transformed CAs.  This 

illustrates again, but in a way more directly related to the notion of coherence, how CA comes 

closer and closer to coherence as the power parameter decreases.   

In addition, this shows what might have been suspected from the start: subcompositions 

of size 2 appear to be the ‘worst case scenario’ for deviation from coherence, at least in this 

application, since they are the most affected by reclosure.  In other words, if we can bring the 

stress of subcompositions of size 2 acceptably low enough, then we are guaranteeing that all 

other subcompositions will be at least less incoherent on average.  This is a very convenient 

result, but we should stress that it is an empirical observation in this particular case, and not a 

general result.   

All the pairwise distances from two-part subcompositions can be placed in a square 

distance matrix, which can then be compared directly with the pairwise distances in the full 

composition using the same stress measure (4).  Table 3 gives three examples, showing just the 

last five out of the 11 components, for  = 1, 0.25 and 0.001 – the distances on the left are 

computed in the full composition, and the distances on the right are those obtained by forming 

each subcomposition corresponding to the row-column pairs.  Again we witness the 

convergence as  decreases.  Figure 4 shows a continuous version of the stress as a function of 

 .  If a 1% level of stress were acceptable as being a measure of incoherence that was ‘low 

enough’, then the power transform with   = 0.106 would be appropriate. 

 

 

4.  To weight or not to weight 

 

So far we have treated each component equally, as is general practice in compositional data 

analysis, even in the paper on log-ratio biplots by Aitchison and Greenacre (2002).  However, 

Greenacre and Lewi (2009) have brought to attention the necessity for and benefits of weighting 
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the components when doing LRA.  Convenient weights are the so-called “masses” in CA, 

namely the marginal averages of the components – thus a rare component with low average 

value in the data set is downweighted compared to the abundant components.  Although this 

appears to be an issue only when analyzing the data, for example visualizing the compositional 

distances in a subspace of reduced dimension, it is also an issue when measuring stress, as we 

now demonstrate. 

 We have just come to the conclusion that a power-transformed CA of the Baxter et al. 

(1990) data with power parameter  = 0.106 would reduce the incoherence of CA to 1% -- now 

we will study this 1% lack of coherence in a bit more detail.  The stress measure is a sum of 

positive numbers for each cell in an 1111 table – Figure 4 shows a graphical display where the 

contribution of each of these values is indicated by the area of a circle.  It is immediately 

obvious that this incoherence, albeit small, is almost totally due to the oxide of the element Mn 

(manganese).  In previous analyses of these data by Greenacre and Lewi (2009) Mn has already 

been singled out as a problem, because it takes on only three small values (by weight): 0.03%, 

0.02%  and 0.01% (i.e., 0.0003, 0.0002 and 0.0001 on a proportion scale), engendering large 

values on the ratio and log-ratio scale.  Greenacre and Lewi (2009) proposed weighting the 

components in proportion to their marginal averages, which eliminates the influence of this rare 

component.  Our stress measure of incoherence can also be easily modified to take the 

‘abundance’ of each component into account in the measure, in which case Mn would not 

feature so prominently.  Then the measure would be measuring incoherence weighted by the 

average level of each component, with incoherence in higher-abundance components being 

taken into account more than incoherence in rare components.  This weighted stress measure is 

then: 
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where cj denotes the weight of the j-th component, usually taken to be equal to its marginal 

average proportion.  The lower curve in Figure 3 traces out weighted stress as a function of the 
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power parameter – it is considerably lower than the unweighted curve at the top, and now even 

regular untransformed CA is seen to have less than 1% incoherence overall.  Figure 5 shows the 

contribution-to-weighted-stress plot for regular CA – Mn is no longer an important contributor, 

the highest contributions to incoherence come from two distances involving calcium, Ca to Si 

(silica) and Ca to Na (sodium).      
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5.  Comparison with principal component analysis 

 

As a comparison let us see how PCA, with or without standardization, fares on our measure of  

subcompositional incoherence for the present data set.  We used the Euclidean distance with and 

without standardization of the components.  The weighted stress measures are very high: 0.3442 

(34.42%) and 0.1828 (18.28%) respectively – if one compares these values with those for CA 

shown in Figure 3, one realizes how high these measures are and how far away from coherence 

PCA is.   

 There is also a quirk in the two-part compositions in PCA, due to the centring with 

respect to component means.  Since the pair of closed values has the property xij' = 1 – xij, the 

two centred values have the property yij' = – yij, and thus also have the same variance, sj say.  It 

can be easily deduced that the unstandardized Euclidean distance between components j and j' 

in the two-part composition is a constant multiple of the standard deviation, jsn 12  , while 

the standardized Euclidean distance is a constant 12 n for all two-part subcompositions.  

The correlation between the components of any two-part subcomposition is –1, independent of 

the data.  It seems that PCA on unstandardized or standardized data is out of the question for 

compositional data analysis if one places importance on the principle of subcompositional 

coherence. 

 In this 11-part compositional data set, the performance of 10-part subcompositions 

should be the most favourable for evaluating PCA, but the incoherence is large even for these. 

The average stress for all 10-part subcompositions was calculated as 0.1371 (13.71%) for 

unstandardized PCA and 0.0425 (4.25%) for standardized PCA. Average weighted stresses are 

0.1906 (19.06%) and 0.0940 (9.40%) respectively.  Compare these to regular (untransformed) 

CA, which for the 11 10-part subcompositions of these data has average unweighted and 

weighted stresses of 0.0029 (0.29%) and 0.0021 (0.21%) respectively. 
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6.  Discussion and conclusions 

 

The main aim of this paper is to propose a measure of subcompositional incoherence (i.e., the 

lack of subcompositional coherence), defined as the stress between the inter-component distance 

matrix calculated using the full composition and the matrix of pairwise component distances 

computed from all the two-part subcompositions.  Having such a measure allows different 

multivariate approaches to compositional data analysis that rely on distance measures to be 

evaluated in terms of their closeness to subcompositional coherence.  Our approach assumes 

that the two-part subcompositions are the worst case for measuring subcompositional 

incoherence – this has been empirically demonstrated in a specific data set and for a specific 

distance function, but the general result remains an open problem. 

 From the results of the previous section and from the discussion of Greenacre and Lewi 

(2009), we strongly advise to include the weighting of the components proportional to their 

average value in the data set.   We have seen in the example of the Roman glass compositional 

data set that regular CA, for example, owes most of its incoherence (when measured without 

weights) to one problematic component that is rare.   Weighting eliminates this problem and 

then we see that CA is, in fact, only slightly incoherent.    

 Application of this idea to a wider spectrum of compositional data sets will show to 

what extent CA, with or without power transformations, can be used as an alternative to LRA. 

Greenacre and Lewi (2009) have already showed that a regular CA of the Roman glass data set 

and a weighted LRA gave almost the same two-dimensional biplot, so the fact that CA is almost 

coherent (using weighted stress) fits in with this result.  It is already known that CA gives 

similar results to association modelling of contingency tables when the variance in the data is 

low (for example, see Cuadras et al. 2006) and that weighted LRA has strong theoretical 

similarities to association modelling (see Greenacre and Lewi 2009).  Here low variance means 

that the observed data are close to their expected values based on the table margins.  It follows 

that CA and weighted LRA will give similar results in such a low variance situation where the 
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samples are very similar to one another, which is the case of the present example and often the 

case in archaeological data.  But when the variance is high, which is often the case for 

geological and geochemical data where there can be many data zeros, the power family of CAs 

will show greater differences across the range of power transformations.   

CA has the obvious benefit of being able to cope with data zeros, and we have shown 

that we can reduce incoherence by applying nonzero power transformations – hence this holds 

promise for the analysis of compositional data with zeros, which is a perennial problem with the 

log-ratio transformation (see, for example, Martín-Fernández et al. 2003).   It remains to be 

shown whether we can use a power transformation to come acceptably close to coherence while 

being able to analyze zeros as actual zeros, without having to resort to replacing them artificially 

with some small positive number.  But, at least, a tool is now available to measure 

subcompositional incoherence in order to be able to judge how close we are to coherence in 

different situations. 

 

 

 

Acknowledgments    

 

This research was supported by the Fundación BBVA in Madrid, Spain. Partial support by the 

Spanish Ministry of Science, grants MTM2008-00642 and MTM2009-09063, is also hereby 

acknowledged.  The paper has benefitted considerably by the very careful reading and 

comments by a reviewer.  



14 

References 

 

Aitchison J (1983) Principal component analysis of compositional data. Biometrika 70: 57–65 

Aitchison J (1986) The statistical analysis of compositional data. Chapman & Hall, London 

(Reprinted in 2003 with additional material by Blackburn Press) 

Aitchison J (1990) Relative variation diagrams for describing patterns of compositional 

variability. Math Geol 22: 487–511 

Aitchison J, Greenacre M (2002) Biplots for compositional data. Appl Statist 51: 375–392 

Baxter MJ, Cool HEM, Heyworth MP (1990) Principal component and correspondence analysis 

of compositional data: some similarities. J Appl Statist 17: 229–235 

Borg I, Groenen P (2005) Modern multidimensional scaling, second edition. Springer, New 

York 

Box GEP, Cox DR (1964) An analysis of transformations (with discussion). J R Statist Soc B 

35: 473–479 

Chayes F (1960) On correlation between variables of constant sum. J Geophys Res 65: 4185–

4193. 

Cuadras C, Cuadras D, Greenacre M (2006) A comparison of methods for analyzing 

contingency tables. Comm Statist – Simul Comput 35: 447–459 

Greenacre M (1984) Theory and applications of correspondence analysis. Academic Press, 

London. 

Greenacre M (2007) Correspondence analysis in practice, second edition. Chapman and Hall / 

CRC Press, London 

Greenacre M (2008) La práctica del análisis de correspondencias. Fundación BBVA, Madrid 

Greenacre M (2009) Power transformations in correspondence analysis. Comput Statist Data 

Anal 53: 3107–3116 

Greenacre M (2010) Log-ratio analysis is a limiting case of correspondence analysis. Math 

Geosc 42: 129–134 



15 

Greenacre M, Lewi P (2009) Distributional equivalence and subcompositional coherence in the 

analysis of compositional data, contingency tables and ratio-scale measurements. J Classif 

26: 29–54 

 Martín-Fernández JA, Barceló-Vidal C, Pawlowsky-Glahn V (2003) Dealing with zeros and 

missing values in compositional data sets. Math Geol 35: 253–278 

Pawlowsky–Glahn,V, Egozcue J, Tolosana–Delgado R (2007) Lecture notes on compositional 

data analysis. URL: http://dugi-doc.udg.edu/handle/10256/297. Accessed 7 August 2010. 

Thioulouse J, Dray S (2007) Interactive multivariate data analysis in R with the ade4 and 

ade4TkGUI packages.  J Stat Soft. URL: http://www.jstatsoft.org/v22/i05/paper. Accessed 7 

August 2010. 

 



16 

 Figure 1: Rate of convergence of chi-square distances in power-transformed CA to log-ratio 

distances, for powers from 1 to 0.001 (calculations made for 1000 values of the power  = 1, 

0.999, 0.998, …, 0.001).  
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Figure 2: Average stress between chi-square distances calculated in subcompositions of 

different sizes and corresponding chi-square distances in the full composition, for regular CA 

and two power-transformed CAs,  = 0.25 and  = 0.001.  In the last case there is almost no 

subcompositional incoherence.  Subcompositions of size 2 are seen to be the ‘worst case’.  
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Figure 3: Stress between chi-square distances calculated in two-part subcompositions and the 

corresponding chi-square distances in the full composition for the Roman glass cup data, for 

power transformations  = 1, 0.999, 0.998, …, 0.001. The power parameter corresponding to a 

stress of 0.01 (1%) has value 0.106, as indicated.  The weighted stress takes into account the 

average level of the components, discussed later. 
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Figure 4: Values that constitute the stress measure for measuring incoherence in the CA with 

power transformation  = 0.106.   The area of the circles is proportional to the contribution to 

stress (function table.dist in the R package ade4 – by Thioulouse and Dray, 2007).  The 

lack of coherence is concentrated almost entirely in the Mn (manganese) oxide component.  

Notice that the diagonal of the symmetric table underlying this graphic, which contains zeros, 

runs from bottom left to top right. 
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Figure 5: Values that constitute the weighted stress measure for measuring incoherence in a 

regular CA.   The area of the circles is proportional to the contribution to weighted stress.   
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Table 1: Three sets of chi-square distances based on CAs with different power transformations 

(starting at top right with power  = 1, the regular untransformed CA), and finally at bottom 

left, the log-ratio distances from LRA (read the tables clock-wise).  Parts of each 1111 table of 

distances are shown, as well as the maximum absolute difference between the distances in the 

full table and their corresponding log-ratio distances. The oxides are labelled by their major 

elements, for example Si stands for silicon oxide,SiO2. 

  

 

 
 
 
 
 
 
 
 

  

 = 1 (untransformed CA) 

      Si     Al     Fe     Mg     Ca  ... 
Si 0.0000 0.0920 0.2259 0.1850 0.1241 ... 
Al 0.0920 0.0000 0.1441 0.1261 0.0855 ... 
Fe 0.2259 0.1441 0.0000 0.1280 0.1472 ... 
Mg 0.1850 0.1261 0.1280 0.0000 0.1387 ... 
Ca 0.1241 0.0855 0.1472 0.1387 0.0000 ...  
 .    .      .      .      .      .   ...  
 .    .      .      .      .      .   ...  
 .    .      .      .      .      .   ...  

         Max abs diff = 0.0797 

 = 0.25 

      Si     Al     Fe     Mg     Ca  ... 
Si 0.0000 0.0909 0.2207 0.1878 0.1209 ... 
Al 0.0909 0.0000 0.1404 0.1282 0.0850 ... 
Fe 0.2207 0.1404 0.0000 0.1190 0.1468 ... 
Mg 0.1878 0.1282 0.1190 0.0000 0.1404 ... 
Ca 0.1209 0.0850 0.1468 0.1404 0.0000 ...  
 .    .      .      .      .      .   ...  
 .    .      .      .      .      .   ...  
 .    .      .      .      .      .   ...  

         Max abs diff = 0.0142 

 = 0 (LRA) 

      Si     Al     Fe     Mg     Ca  ... 
Si 0.0000 0.0913 0.2209 0.1882 0.1213 ... 
Al 0.0913 0.0000 0.1403 0.1279 0.0849 ... 
Fe 0.2209 0.1403 0.0000 0.1168 0.1471 ... 
Mg 0.1882 0.1279 0.1168 0.0000 0.1404 ... 
Ca 0.1213 0.0849 0.1471 0.1404 0.0000 ...  
 .    .      .      .      .      .   ...  
 .    .      .      .      .      .   ...  
 .    .      .      .      .      .   ...  

         Max abs diff = 0 

 = 0.001 

      Si     Al     Fe     Mg     Ca  ... 
Si 0.0000 0.0913 0.2209 0.1882 0.1213 ... 
Al 0.0913 0.0000 0.1403 0.1280 0.0849 ... 
Fe 0.2209 0.1403 0.0000 0.1168 0.1471 ... 
Mg 0.1882 0.1280 0.1168 0.0000 0.1404 ... 
Ca 0.1213 0.0849 0.1471 0.1404 0.0000 ...  
 .    .      .      .      .      .   ...  
 .    .      .      .      .      .   ...  
 .    .      .      .      .      .   ...  

         Max abs diff = 0.000042 
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Table 2: Two sets of chi-square distances based on CAs of subcompositions of size 5.  

 

 

 
 
 
 

  

Subset 1 

      Si     Al     Fe     Mg     Ca  
Si 0.0000 0.0922 0.2264 0.1849 0.1247 
Al 0.0922 0.0000 0.1445 0.1256 0.0857 
Fe 0.2264 0.1445 0.0000 0.1280 0.1472 
Mg 0.1849 0.1256 0.1280 0.0000 0.1385 
Ca 0.1247 0.0857 0.1472 0.1385 0.0000  
   

         Max abs diff = 0.00066 

         Stress = 0.00245 

Subset 2 

       K     Ti      P     Mn     Sb   
K  0.0000 0.1562 0.1235 0.3396 0.2648 
Ti 0.1562 0.0000 0.1505 0.3339 0.3152 
P  0.1235 0.1505 0.0000 0.3407 0.2527 
Mn 0.3396 0.3339 0.3407 0.0000 0.4351 
Sb 0.2648 0.3152 0.2527 0.4351 0.0000  
  

         Max abs diff = 0.03682 

         Stress = 0.06574 
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 Table 3: Inter-component chi-square distances for the regular CA and two power-transformed 

CAs ( = 0.25 and 0.001), showing on the left the distances computed in the full composition 

and on the right the corresponding distances obtained by forming each two-part subcomposition 

corresponding to the row-column pairs.  Only the last five components are shown, but the 

maximum absolute differences and the stress values are computed for the whole 1111 matrix 

of distances in each case.  

 

 

 
 
 
 

  

 

 

Full composition, untransformed CA( = 1) 
          K     Ti      P     Mn     Sb 
          .      .      .      .      .           .      .      .      .      .           .      .      .      .      . 
K  ... 0.0000 0.1573 0.1217 0.3704 0.2611 
Ti ... 0.1573 0.0000 0.1615 0.3500 0.3191 
P  ... 0.1217 0.1615 0.0000 0.3739 0.2407 
Mn ... 0.3704 0.3500 0.3739 0.0000 0.4719 
Sb ... 0.2611 0.3191 0.2407 0.4719 0.0000  
  

         
 

Two part subcompns, untransformed CA( = 1) 
          K     Ti      P     Mn     Sb 
          .      .      .      .      .           .      .      .      .      .           .      .      .      .      . 
K  ... 0.0000 0.1586 0.1274 0.3358 0.2647 
Ti ... 0.1586 0.0000 0.1527 0.3030 0.3182 
P  ... 0.1274 0.1527 0.0000 0.3095 0.2677 
Mn ... 0.3358 0.3030 0.3095 0.0000 0.4196 
Sb ... 0.2647 0.3182 0.2677 0.4196 0.0000  
  

         Max abs diff = 0.07415 

         Stress = 0.06441 

 

 

 
 
 
 

  

 

Full composition, transformed CA( = 0.25) 
          K     Ti      P     Mn     Sb 
          .      .      .      .      .           .      .      .      .      .           .      .      .      .      . 
K  ... 0.0000 0.1534 0.1242 0.3072 0.2678 
Ti ... 0.1534 0.0000 0.1543 0.2957 0.3206 
P  ... 0.1242 0.1543 0.0000 0.3142 0.2531 
Mn ... 0.3072 0.2957 0.3142 0.0000 0.4178 
Sb ... 0.2678 0.3206 0.2531 0.4178 0.0000  
  

         
 

Two part subcompns, transformed CA( = 0.25) 

          K     Ti      P     Mn     Sb 
          .      .      .      .      .           .      .      .      .      .           .      .      .      .      . 
K  ... 0.0000 0.1534 0.1248 0.2946 0.2699 
Ti ... 0.1534 0.0000 0.1526 0.2830 0.3213 
P  ... 0.1248 0.1526 0.0000 0.2991 0.2581 
Mn ... 0.2946 0.2830 0.2991 0.0000 0.4053 
Sb ... 0.2699 0.3213 0.2581 0.4053 0.0000  
  

         Max abs diff = 0.01514 

         Stress = 0.02114 

 

 

 
 
 
 

  

 

Full composition, transformed CA( = 0.001) 
          K     Ti      P     Mn     Sb 
          .      .      .      .      .           .      .      .      .      .           .      .      .      .      . 
K  ... 0.0000 0.1530 0.1246 0.2907 0.2703 
Ti ... 0.1530 0.0000 0.1526 0.2816 0.3218 
P  ... 0.1246 0.1526 0.0000 0.2985 0.2574 
Mn ... 0.2907 0.2816 0.2985 0.0000 0.4047 
Sb ... 0.2703 0.3218 0.2574 0.4047 0.0000  
  

         
 

Two part subcompns, transformed CA( = 0.001) 
          K     Ti      P     Mn     Sb 
          .      .      .      .      .           .      .      .      .      .           .      .      .      .      . 
K  ... 0.0000 0.1530 0.1246 0.2906 0.2703 
Ti ... 0.1530 0.0000 0.1526 0.2815 0.3218 
P  ... 0.1246 0.1526 0.0000 0.2985 0.2575 
Mn ... 0.2906 0.2815 0.2985 0.0000 0.4046 
Sb ... 0.2703 0.3218 0.2575 0.4046 0.0000  
  

         Max abs diff = 0.000059 

         Stress = 0.000108 


