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A survey on C1,1 functions: theory,
numerical methods and applications∗

Davide La Torre† Matteo Rocca‡

22nd April 2002

Abstract

In this paper we survey some notions of generalized derivative for C1,1 func-
tions. Furthermore some optimality conditions and numerical methods for
nonlinear minimization problems involving C1,1 data are studied.

MSC 2000: 26A24, 26A16

1 Introduction

Characterizing the optimal solutions by means of second order conditions is a prob-
lem of continuous interest in the theory of mathematical programming problems
with twice continuously differentiable data. Recently, more attention has been paid
to problems which don’t involve C2 data. One possible way is to reduce C2 regularity
assumptions to C1,1 regularity (in the sense of the following definition).

Definition 1.1. A function f : Rn → Rm is said to be of class C1,1, or briefly a C1,1

function, when f is differentiable and ∇f is locally Lipschitzian.

The class of C1,1 functions was first brought to attention by Hiriart-Urruty in his
doctoral thesis [20] and studied by Hiriart-Urruty J.B., Strodiot J.J., Hien Nguyen V.
in [21]. The need for investigating such functions, as pointed out in [21, 23], comes
from the fact that several problems of applied mathematics including variational
inequalities, semi-infinite programming, penalty functions, augmented lagrangian,
proximal point methods, iterated local minimization by decomposition etc. involve
differentiable functions with no hope of being twice differentiable. In the following
some examples of problems involving C1,1 data are shown.

Example 1.1. Let g : Ω ⊂ Rn → R be twice continuously differentiable on Ω and
consider1 f(x) = [g+(x)]2 where g+(x) = max{g(x), 0}. Then f is C1,1 on Ω.

∗This work has been supportted by the F.A.R. 2001, of the University of Insubria.
†University of Milan, Department of Economics, Faculty of Political Sciences, via Conservato-

rio,7, 20122, Milano, Italy. e-mail: davide.latorre@unimi.it
‡University of Insubria, Department of Economics, Faculty of Economics, via Ravasi, 2, 21100,

Varese, Italy. e-mail: mrocca@eco.uninsubria.it
1This type of functions arises in some penalty methods.
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Example 1.2. In many problems in engineering applications and control theory
one has to study nonsmooth semi-infinite optimization problems as the following:

minimize f(x)

subject to max
t∈[a,b]

φj(x, t) ≤ 0, j = 1 . . . l

where f : Rn → R is C2 and φj : Rn → R is C2, j = 1 . . . l, −∞ < a < x < b < +∞.
One approach for solving this problem is to convert the functional constraints into
equality constraints of the form:

hj(x) =

∫ b

a

[max{φj(x, y), 0}]2 dt = 0, j = 1 . . . l

and apply the methods of nonlinear programming. Hence the problem becomes:

minimize f(x)

subject to hj(x) = 0, j = 1 . . . l.

Since φj is C2, it is easy see that the function hj is C1,1 with the gradient:

∇hj(x) = 2

∫ b

a

max{φj(x, t), 0}∇φj(x, t)dt, j = 1 . . . l.

Example 1.3. Consider the following minimization problem:

min f0(x)

over all x ∈ Rn such that f1(x) ≤ 0, . . . fm(x) ≤ 0. Letting r denote a positive
parameter, the augmented Lagrangian Lr (see [45] and references therein) is defined
on Rn × Rm as:

Lr(x, y) = f0(x) +
1

4r

m∑
i=1

{[yi + 2rfi(x)]+}2 − y2
i .

From the general theory of duality which yields Lr as a particular Lagrangian, we
know that Lr(x, ·) is concave and also that Lr(·, y) is convex whenever the minimiza-
tion problem is a convex minimization problem. By stating y = 0 in the previous
expression, we observe that:

Lr(x, 0) = f0(x) + r

m∑
i=1

[f+
i (x)]2

is the ordinary penalized version of the minimization problem. Lr is differentiable
everywhere on Rn × Rm with:

∇xLr(x, y) = ∇f0(x) +
m∑

j=1

[yj + 2rfj(x)]+∇fj(x),
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∂Lr

∂yi

(x, y) = max{fi(x),− yi

2r
}, i = 1 . . . m.

When the fi are C2 on Rn, Lr is C1,1 on Rn+m. The dual problem corresponding to
Lr is by definition:

max gr(y)

over y ∈ Rm, where gr(y) = infx∈Rn Lr(x, y). In the convex case with r > 0, gr is
again C1,1 concave function with the following uniform Lipschitz property on ∇g:

|∇gr(y)−∇gr(x)| ≤ 1

2r
|y − y′|, ∀y, y′ ∈ Rm.

In [29] the following characterization of C1,1 functions by divided differences is
proved.

Theorem 1.1. [31] Assume that the function f : Ω → R is bounded on a neigh-
borhood of the point x0 ∈ Ω. Then f is of class C1,1 at x0 if and only if there exist

neighborhoods U of x0 and V of 0 ∈ R such that
∆d

2f(x;t)

t2
is bounded on U × V \{0},

∀d ∈ S1 = {d ∈ Rn : ‖d‖ = 1} where

∆d
2f(x; t) = f(x + 2td)− 2f(x + td) + f(x).

Remark 1.1. A similar result can be proved by using the following divided differ-
ences:

δd
2f(x; t) = f(x + td)− 2f(x) + f(x− td).

It is known [55] that if a function f is of class C1,1 at x0 then it can be expressed
(in a neighborhood of x0) as difference of two convex functions. The following
corollary strenghtens the results in [55].

Corollary 1.1. [31] If f is of class C1,1, then f = f̃ + p where f̃ is convex and p
is a polynomial of degree at most two.

2 Second order generalized derivatives for C1,1 func-

tions

Many second order generalized derivatives have been introduced to obtain optimal-
ity conditions for optimization problems with C1,1 data. We will focus our attention
on the definitions due to Hiriart-Urruty [20], Liu [34, 35, 36], Yang-Jeyakumar [57],
Peano [44], Riemann [46]. Some of these definitions do not require the hypothesis
of C1,1 regularity; however, under this assumption, each derivative in the previous
list is bounded.

The definitions of Hiriart-Urruty and Yang-Jeyakumar extend to the second or-
der, respectively, the notions due to Clarke and Michel-Penot for the first order.
Peano and Riemann definitions are classical ones. Peano introduced his definition
while he was studying Taylor expansion formula for real functions. Peano deriva-
tives were studied and generalized in recent years by Ben-Tal and Zowe [2] and Liu,
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who also obtained optimality conditions. Riemann higher-order derivatives were in-
troduced in the theory of trigonometric series. Furthermore they were developed by
several authors (for instance De la Vallee-Poussin and Denjoy [11, 12]). Applications
of these notions to optimization problems were also given by Ginchev, Guerraggio
and Rocca [14, 15, 16, 18].

2.1 Clarke and Michel-Penot generalized derivatives

Let f : Ω ⊂ Rn → R be a Lipschitzian function, with Lipschitz constant K, and Ω
be an open subset of Rn. This means that the quantity:

∆d
1f(x, t)

t
=

f(x + td)− f(x)

t

is uniformly bounded with respect to d ∈ S1 (the unit sphere in Rn) by the constant
K. For this type of functions, Clarke generalized directional derivative and Michel-
Penot generalized directional derivatives are given, rispectively, by:

f
′
C(x; d) = lim sup

x′→x,t↓0

∆d
1f(x′, t)

t

f
′
M(x; d) = sup

z∈Rn

lim sup
t↓0

∆d
1f(x + tz, t)

t
.

Then it follows from the definitions that:

f
′
D(x; d) ≤ f

′
M(x; d) ≤ f

′
C(x; d)

where:

f
′
D(x; d) = lim sup

t↓0+

∆d
1f(x; t)

t
,

is the upper Dini derivative. The associate generalized subdifferentials are given by:

∂Cf(x) = {x∗ ∈ Rn : f ′C(x, d) ≥< x∗, d >,∀d ∈ Rn};

∂Mf(x) = {x∗ ∈ Rn : f ′M(x, d) ≥< x∗, d >,∀d ∈ Rn}.

Then it follows from the definitions that:

∂Mf(x) ⊆ ∂Cf(x)

and the above inequality and inclusion may hold strictly [41]. In fact if we consider
the function f(x) = x2 sin

(
1
x

)
we have ∂Cf(0) = [−1, 1] and ∂Mf(0) = {0}. For

properties of Clarke and Michel-Penot generalize derivatives we refer to [8, 41].

According to Rademacher’s theorem, a Lipschitz function f : Rn → R is differ-
entiable almost everywhere (a.e.) in the sense of Lebesgue measure. Let Ωf be the
set on which f fails to be differentiable. Then:

∂Cf(x) = co{lim∇f(xi) : xi → x, xi 6∈ Ωf},4



where co denotes the convex hull. That is if we consider any sequence xi → x such
that the sequence ∇f(xi) converges, then the convex hull of all such limit points is
∂Cf(x) (see [8]).

Now assume that f is of class C1,1. In Cominetti and Correa [9], a generalized
second order directional derivative of a C1,1 function in the directions (u, v) is defined
in the sense of Clarke as follows:

f
′′
C(x; u, v) = lim sup

y→x,t↓0

< ∇f(y + tu), v > − < ∇f(y), v >

t

and the generalized Hessian of f at x defined as for each u ∈ Rn,

∂2
Cf(x)(u) = {x∗ ∈ Rn : f ′′C(x; u, v) ≥< x∗, v >, ∀v ∈ Rn}.

In the following theorem some properties of f
′′
C are listed.

Theorem 2.1. [9]

• The map (u, v) → f
′′
C(x; u, v) is symmetric (f

′′
C(x; u, v) = f

′′
C(x; v, u)) and

bisublinear (sublinear on each variable separately).

• The map x → f
′′
C(x; u, v) is upper semicontinuous at x for every (u, v) and the

point-to-set map x → ∂2f(x)(u) is closed at x for each fixed u.

• f
′′
C(x; u,−v) = f

′′
C(x;−u, v) = −f

′′
C(x; u, v).

In Yang and Jeyakumar [55] a generalized second order directional derivative of
a C1,1 function in the directions (u, v) is defined in the sense of Michel-Penot as
follows:

f
′′
M(x; u, v) = sup

z∈Rn

lim sup
t↓0

< ∇f(x + tz + tu), v > − < ∇f(x + tz), v >

t

while the generalized Hessian is:

∂2
Mf(x)(u) = {x∗ ∈ Rn : f ′′M(x; u, v) ≥< x∗, v >, ∀v ∈ Rn}.

In the following result some properties of f
′′
M are listed.

Theorem 2.2. [55]

• The function f
′′
M(x; u, v) is bi-sublinear.

• f
′′
M(x; u,−v) = f

′′
M(x;−u, v) = −f

′′
M(x; u, v)

It is easy to see that f
′′
D(x; u) ≤ f

′′
M(x; u, u) ≤ f

′′
C(x; u, u), where:

f
′′
D(x; u) = lim sup

t↓0+

< ∇f(x + tu), u > − < ∇f(x), u >

t

and hence ∂2
Mf(x)(u) ⊆ ∂2

Cf(x)(u). In the following example is shown that the
inclusion may be strict.
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Example 2.1. Define:

f(x) =

∫ x

0

t2 sin

(
1

t

)
dt, x ∈ R.

The function f is differentiable everywhere on R and

f ′(x) =

 x2 sin
(

1
x

)
, if x 6= 0

0, if x = 0

Hence f is C1,1 and f is twice differentiable on R but not of class C2 and:

f
′′
M(0; 1, v) = 0, f

′′
C(0; 1, v) = |v|

∂2
Mf(0)(1) = {f ′′(0)} = {0}, ∂2

Cf(0)(1) = [−1, 1].

Furthermore the functions (x, u) → ∂2
Mf(x)(u) and f

′′
M(x; u, v) are not upper

semicontinuous. In [56] is proved the following result which gives a condition for the
upper semicontinuity.

Proposition 2.1. Let f : Rn → R be C1,1 and let x ∈ Rn. Then for each (x, u) ∈ Rn

the function y → f
′′
M(x; u, v) is upper semicontinuous at x ∈ Rn if and only if:

f
′′
M(x; u, v) = f

′′
C(x; u, v)

In particular:
f
′′
C(x; u, v) = lim sup

y→x
f
′′
M(x; u, v).

Furthermore the following characterizations of f
′′
C and f

′′
M hold:

f
′′
C(x; u, v) = lim sup

y→x,s,t↓0

∆
u,v

2 f(y; s, t)

st

where:

∆
u,v

2 f(y; s, t) = f(y + su + tv)− f(y + su)− f(y + tv) + f(y)

and:

f ′′M(x; u, v) = sup
z1,z2∈Rn

lim sup
s↓0

∆
u,v,z1,z2

2 f(x; s)

s3

where:

∆
u,v,z1,z2

2 f(x; s, u, v, z1, z2) = f(x + su + sz1 + s2v + s2z2)− f(x + su + sz1 + s2z2)

−f(x + sz1 + s2v + s2z2) + f(x + sz1 + s2z2).
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For a C1,1 function on Rn the generalized Hessian, defined in [21] is given by:

∂2
Hf(x0) := co{M : M = lim∇2f(xi) : xi → x0,∇2f(xi) exists}.

Now suppose that (u, v) → f
′′
H(x; u, v) is the support functional of the multifunction

x → ∂2
Hf(x). It is easy to see (see [9]) that ∂2

Mf(x)(u) ⊆ ∂2
Hf(x)u and f

′′
M(x; u, v) ≤

f
′′
H(x; u, v) and that ∂2

Cf(x)(u) = ∂2
Hf(x)u and f

′′
C(x; u, v) = f

′′
H(x; u, v). Hence

we have ∂2
Mf(x)(u) ⊆ ∂2

Hf(x)u = ∂2
Cf(x)(u) and f

′′
M(x; u, v) ≤ f

′′
H(x; u, v) =

f
′′
C(x; u, v).

Example 2.2. Let g : Ω ⊂ Rn → R be twice continuously differentiable on Ω and
consider f(x) = [g+(x)]2 where g+(x) = max{g(x), 0}. Clearly f is C1,1 on Ω and it
is easy to check that, for all x0 ∈ Ω, the ∂2

Hf(x0) is given by the following expression:

∂2
Hf(x0) =



{2g(x0)∇2g(x0) + 2∇g(x0)∇g(x0)
T} if g(x0) > 0

{0} if g(x0) = 0

{2α∇g(x0)∇g(x0)
T : α ∈ [0, 1]} if g(x0) < 0

The following result recalls a Taylor expansion for these types of generalized
derivatives.

Theorem 2.3. [55] Let f : Rn → R be C1,1. Then there exists ξ ∈ (x, y) such that:

f(y)− f(x)− < ∇f(x), y − x >∈ 1

2
< ∂2

Mf(ξ)(y − x), y − x >

⊆ 1

2
< ∂2

Cf(ξ)(y − x), y − x >

2.2 Peano and Riemann generalized derivatives

Peano [44], studying Taylor expansion formula for real functions, introduced a con-
cept of a higher order derivative of a function f at a point x known thereafter as
Peano derivative. The works of Oliver [42], Evans and Weil [13] are surveys of Peano
derivative. Further properties of Peano derivatives are given in [17]. Investigating
the convergence of trigonometric series, Riemann [46] introduced higher order deriva-
tives based on divided differences. Riemann derivatives are further developed and
modified in the works of other authors like De La Vallée-Poussin or Denjoy [11, 12].
They take a central place in the trigonometric series theory. In many works Peano
and Riemann derivatives are compared. Some further aspects in this direction are
presented by Guerraggio, Rocca [18] and Ginchev [16]. Recently comparison results
have been published by Ash [1], Humke and Laczkovich [22] and others. The use of
Peano derivative in C1,1 optimization problems is due to Liu [34, 35, 36, 37]. We
now recall the definitions and some properties which will be useful in the sequel.
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Definition 2.1. The second Riemann derivative of f at a point x ∈ Ω in the
direction d ∈ Rn is defined as:

f ′′R(x; d) = lim
t↓0+

∆d
2f(x; t)

t2
,

if this limit exists.

Similarly the upper and the lower Riemann derivatives are given by:

f
′′
R(x; d) = lim sup

t↓0+

∆d
2f(x; t)

t2
, f ′′

R
(x; d) = lim inf

t↓0+

∆d
2f(x; t)

t2
,

From the characterization of f
′′
C it is clear that f

′′
R(x; d) ≤ f

′′
C(x; d).

Definition 2.2. Let f be a differentiable function. If there exist a number L such
that:

lim
t↓0+

2
f(x + td)− f(x)− t < ∇f(x), d >

t2
= L,

then f is said to admit a second Peano derivative at x in the direction d. The
number L is said the second Peano derivative of f at x in the direction d and it will
be denoted by f ′′P (x; d).

Similarly the upper and lower Peano derivatives are given by:

f
′′
P (x; d) = lim sup

t↓0+

2
f(x + td)− f(x)− t < ∇f(x), d >

t2
,

and:

f ′′
P
(x; d) = lim inf

t↓0+
2
f(x + td)− f(x)− t < ∇f(x), d >

t2
.

In [34] is proved that f
′′
P (x; d) ≤ f

′′
C(x; d). It is well known that the existence of the

ordinary second directional derivative of f at x in the direction d, f ′′(x; d) implies the
existence of f ′′P (x; d) and this in turn implies the existence of f ′′R(x; d). However the
existence of f ′′P (x; d) does not imply the existence of the second ordinary directional
derivatives. In fact if we consider the function:

f(x) =

 x3 sin
(

1
x

)
, if x 6= 0

0, if x = 0

then f has first order usual derivative in a neighborhood of x = 0 and a second order
Peano derivative f ′′P (0) = 0 but does not possess the second order usual derivative
f ′′(0).

Now let f : Ω ⊂ Rn → R be a function of class C1,1. This hypothesis does not
imply the existence of Peano and Riemann derivatives at every point of Ω but, from
Rademacher’s theorem, we can assure the existence for almost everywhere x ∈ Ω.
However the upper and lower Peano and Riemann derivatives are well defined and
bounded ∀x ∈ Ω.
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3 Second order generalized derivatives and opti-

mality conditions

The aim of this section is to establish some relations among generalized deriva-
tives for C1,1 functions and to show some optimality conditions for constrained and
unconstrained optimization problems. The following result states two chains of in-
equalities among different definitions of generalized derivatives. Furthermore, the
smallness of Peano derivative makes the corresponding optimality conditions sharper
than those obtained by the other definitions.

Theorem 3.1. Let f be a function of class C1,1 at x0. Then:

i) f
′′
P (x0; d) ≤ f

′′
D(x0; d) ≤ f

′′
M(x0; d, d) ≤ f

′′
C(x0; d, d).

ii) f
′′
P (x0; d) ≤ f

′′
R(x0; d) ≤ f

′′
M(x0; d, d) ≤ f

′′
C(x0; d, d).

Proof. i) It is only necessary to prove the inequality f
′′
P (x0; d) ≤ f

′′
D(x0; d). If

we take the function φ1(t) = f(x0 + td) − t∇f(x0)d and φ2(t) = t2, applying
Cauchy’s theorem, we obtain:

2
f(x0 + td)− f(x0)− t < ∇f(x0), d >

t2
= 2

φ1(t)− φ1(0)

φ2(t)− φ2(0)
=

2
φ′1(ξ)

φ′2(ξ)
=
∇f(x0 + ξd)d−∇f(x0)d

ξ
,

where ξ = ξ(t) ∈ (0, t), and then2 f
′′
P (x0; d) ≤ f

′′
D(x0; d).

ii) It is only necessary to prove the inequalities f
′′
P (x0; d) ≤ f

′′
R(x0; d) ≤ f

′′
M(x0; d, d).

Concerning the first inequality, from the definition of f
′′
P (x0; d) we have:

f(x0 + td) = f(x0) + t∇f(x0)d +
t2

2
f
′′
P (x0; d) + g(t)

where lim supt→0+
g(t)
t2

= 0 and:

f(x0 + 2td) = f(x0) + 2t∇f(x0)d + 2t2f
′′
P (x0; d) + g(2t)

where lim supt→0+
g(2t)

t2
= 4 lim supt→0+

g(2t)
4t2

= 0. Then:

f(x0 + 2td)− 2f(x0 + td) + f(x0)

t2
=

t2f
′′
P (x0; d) + g(2t)− g(t)

t2
≥

f
′′
P (x0; d) + lim sup

t→0+

g(2t)

t2
− lim sup

t→0+

g(t)

t2
.

2If g(t) = h(ξ(t)), ξ(t) ↓ 0+ when t ↓ 0+, then lim supt↓0+ g(t) = lim supt↓0+ h(ξ(t)) ≤
lim supξ↓0+ h(ξ).
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Then f
′′
R(x0; d) ≥ f

′′
P (x0; d). For the second inequality, we define φ1(t) =

f(x0 + 2td) − 2f(x0 + td) and φ2(t) = t2. Then, by Cauchy’s theorem, we
obtain:

f(x0 + 2td)− 2f(x0 + td) + f(x0)

t2
=

φ1(t)− φ1(0)

φ2(t)− φ2(0)
=

φ′1(ξ)

φ′2(ξ)
=
∇f(x0 + 2ξd)d−∇f(x0 + tξ)

ξ
,

where ξ = ξ(t) ∈ (0, t), and then f
′′
R(x0; d) ≤ f

′′
M(x0; d, d).

Consider now the following unconstrained 3 optimization problem:

UP ) min
x∈A

f(x)

where A is an open subset of Rn.

Theorem 3.2. [35] If x0 ∈ A is a local minimum point for problem UP) then
∇f(x0) = 0 and f ′′

P
(x0; d) ≥ 0, ∀d ∈ S1.

Theorem 3.3. [35] Let x0 ∈ A. If ∇f(x0) = 0 and f ′′
P
(x0; d) > 0, ∀d ∈ Rn, d 6= 0,

then x0 is a strict local minimum point for problem UP).

Consider now the following inequality and equality constrained optimization
problem:

CP ) min f(x)

subject to x ∈ S = {x : hk(x) = 0, k = 1 . . . m, gj(x) ≤ 0, k = 1 . . . l}
where f , hk, k = 1 . . . m and gj, j = 1 . . . l, are C1,1 functions. Suppose that S is
nonempty and let x0 be a local minimum point for problem CP). Moreover, assume
the following constraint qualification:

H) ∇gj(x0), j ∈ J(x0),∇hk(x0), k = 1 . . . m, are linearly independent,

where J(x0) = {j : gj(x0) = 0}, is satisfied. Then there exists a vector (λ1, . . . , λl,
µ1, . . . µm) ∈ Rl+m such that the Kuhn-Tucker optimality conditions:

1) ∇f(x0) +
l∑

j=1

λj∇gj(x0) +
m∑

k=1

µk∇hk(x0) = 0,

2) λj ≥ 0, λjgj(x0) = 0, j = 1 . . . l,

are satisfied. To get the second order condition, we associate with each multiplier
λ = (λ1, . . . , λl), a set G(λ) defined as follows:

G(λ) = {x ∈ Rn : gj(x) = 0 when λj > 0, gj(x) ≤ 0 when

3The following optimality conditions are obtained by the notion of Peano’s derivative and due
to Liu[34, 35, 36, 37]. Further conditions can be found in [21, 55].
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λj = 0, hk(x) = 0, k = 1 . . . m}
and denote the cone of feasible directions to G(λ) at x0 by:

F (G(λ), x0) = {d : ∃δ > 0 s.t.∀θ ∈ (0, δ], x = x0 + θd ∈ G(λ)}.

If we express the usual Lagrangian function by:

L(x; λ) = f(x) +
l∑

j=1

λjgj(x) +
m∑

k=1

µkhk(x)

where λ = (λ1, . . . , λl) and µ = (µ1, . . . µk) and denote the lower generalized second
order Peano’s derivative of L(·, λ, µ) at x0 by L′′

x(x0, λ, µ; d). The following result
states a necessary optimality condition for problem CP).

Theorem 3.4. [35] Let x0 a local minimum point of CP) and let H) hold. Then
for each Lagrangian multiplier vector (λ, µ) satisfying 1) and 2) at x0, for each
d ∈ F (G(λ), x0) we have L′′

x(x0, λ, µ; d) ≥ 0.

If we define the tangent cone to S at x0 by:

T (S, x0) = {d : ∃ti, ti ↓ 0+, di → d : x0 + tid ∈ S,∀i}

then we have the second order sufficient condition for the problem CP).

Theorem 3.5. [35] Let f, gj, j = 1 . . . l, and hk, k = 1 . . . m, be C1,1 functions at
x0 ∈ S. If there exists a Kuhn-Tucker multiplier vector (λ, µ) satisfying 1) and 2)
at x0 and if for each d ∈ T (S, x0), d 6= 0, and L′′

x(x0, λ, µ; d) > 0, then x0 is a strict
local minimum point of problem CP).

4 Numerical methods for C1,1 optimization prob-

lems

The aim of this section is to show some numerical methods, based on a generalized
Newton’s method, for solving C1,1 unconstrained optimization problems. So we
consider the following optimization problem:

min
x∈Rn

f(x)

where f : Rn → R is a function of class C1,1. The generalized Newton’s method for
this problem is:

xk+1 = xk − V −1
k ∇f(xk)

where Vk ∈ ∂2
Cf(xk). We will use this procedure to approximate the solutions of

the nonsmooth equation ∇f(x) = 0 and we will recall convergence results under the
semismoothness property. According to the above definition, ∇f : D ⊂ Rn → R is
said to be semismooth at x if ∇ is locally Lipschitzian at x and:

lim
V ∈∂2

Cf(x+th′),h′→h,t→0
V h′

11



exists for any h ∈ Rn. Clearly if ∇f is semismooth at x, then ∇f is directionally
differentiable at x ([53]) and for any V ∈ ∂2

Cf(x + h),

V h− (∇f)′(x) = o(‖h‖).

Similarly, we have:
htV h− f ′′(x; h) = o(‖h‖2).

The local convergence result of the previous procedure is the following:

Theorem 4.1. [53] Suppose that f is of class C1,1 and ∇f is semismooth at x∗,
xk is sufficiently closed to x∗, where x∗ is a local minimizer of the optimization
problem, V ∈ ∂2

Cf(x∗) is positive definite. Then the generalized Newton’s iteration
is well defined and converges to x∗ with a superlinear rate.

Now let us give the global convergence theorem of the generalized Newton’s
method with the exact line search. Consider the generalized Newton’s iteration:

xk+1 = xk − αkV
−1
k ∇f(xk)

where αk is a steplenght factor from the exact line search.

Theorem 4.2. [53] Suppose that f is a C1,1 function on the level set

L(x0) = {x ∈ Rn : ‖x− x0‖ ≤ r}

and ∇f is semismooth at x∗. Also suppose that V ∈ ∂2
Cf(x), V is positive definite,

∀x ∈ L(x0), and satisfies:

hT V (x)h ≥ m‖h‖2,∀x ∈ L(x0), h ∈ Rn

where the constant m > 0. Then the sequence xk generated by the above generalized
iteration with the exact line search satisfies:

• either xk is a finite sequence and ∇f(xk) = 0 for some k

• or xk is an infinite sequence and ∇f(xk) → 0, hence xk converge to the unique
minimizer x∗ of f .
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