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Abstract

We extend Meng and Wong (1996) identity from a fixed to a varying dimentional setting. The
identity is a very powerful tool to estimate ratios of normalizing constants and thus can be used
to evaluate Bayes factors. The extention is driven by the reversible jump algorithm so that the
output from the sampler can be directly used to efficiently estimate the required Bayes factor.
Two applications, involving linear and logistic regression models, illustrate the advantages of the

suggested approach with respect to alternatives previously proposed in the literature.
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1 1ntrodauction

The Bayes factor (BF), defined as the ratio of the marginal likelihoods for a pair of models (see
Jeffreys, 1935 and 1961, Kass and Raftery, 1995 and Lavine and Schervish, 1999), represents the
evidence provided by the data in favor of a certain model. This is the natural and most widespread
model choice criterion in a Bayesian context. Unfortunately, direct computation of the BF is almost
always infeasible and so its estimation has attracted considerable interest in the recent Markov chain
Monte Carlo (MCMC) literature; good reviews are Dellaportas et al. (2001), Han and Carlin (2001)
and Green (2003).

Among the numerical methods to estimate the BF proposed in the literature, two have had
great success: the Reversible jump (RJ) of Green (1995) and the method of Chib (1995), further
extended by Chib and Jelaizkov (2001), which will be indicated by M. The first method requires the
Markov chain to be defined over the model and parameter space jointly. This approach delivers the
posterior probabilities of each model, as frequency of visits, and an empirical posterior distribution
of the model parameters. The approach of Chib (1995), instead, aims at estimating the BF from the
output of separate MCMC simulations conducted within each model. Both methods present certain
drawbacks. The RJ method requires careful tuning of the proposal distributions to jump between
spaces of different dimensions and is very inefficient when one model is decisively better than the
others. On the other hand, the M method requires a fair amount of “bookkeeping” and becomes
impractical if the number of candidate models is very large.

In the literature on the estimation of the BF, a fundamental contribute is represented by the
identity of Meng and Wong (1996) on the basis of which it is possible to estimate the ratio between the
normalising constants of two distributions; the resulting estimator is referred to as Bridge estimator.
The natural use of this identity is when the two distributions are defined on state spaces with the
same dimension. The extension to the case of spaces with different dimension has been attempted
by Chen and Shao (1997b) and Mira and Nicholls (2003). The latter, in particular, proves that
the estimator of Chib (1996) is a particular instance of the Bridge estimator and shows how its
efficiency may be increased through the optimal criterion of Meng and Wong (1996); the resulting
estimator will be denoted by M-MW. Chen and Shao (1997b), instead, show how the identity at issue
may be used when the state space of one distribution is a subset of that of the other one (nested
models). However, their approach requires, ideally (to maximize efficiency), to know the conditional

distribution of one subset of the parameters given the rest and thus it is often difficult to implement



eficiently.

In this paper we introduce an approach based on the Meng and Wong (1996) identity to estimate
the ratio between the normalising constants of two distributions defined on state spaces with different
dimension (not necessarily nested). Our approach artificially enlarges, via auxiliary variables, the
state space of both distributions so that, at the end, the distributions of the original and the auxiliary
variables live on the same dimentional state space. To do this we adopt the strategy suggested by
Green (1995) to implement the RJ algorithm that is, the indirect specification of the MCMC proposal
distributions as deterministic functions of auxiliary underlying random variables. The same random
variables are used, in our setting, to enlarge the state spaces. So, in a way, we generalize the original
identity introduced by Meng and Wong (1996) just like the RJ acceptance probability generalizes
the original Metropolis-Hastings one.

The proposed approach is more general than that of Chen and Shao (1997b); it is also simpler
to use since we can exploit methods to find efficient proposal distributions already developed in the
literature on RJ (see Brooks, Giudici and Roberts, 2003, and the references therein). On the other
hand, the proposed idea, hereafter denoted by RJ-MW, represents an optimised version of the one
recently proposed by Bartolucci and Scaccia (2003) who did not realize that their estimator could be
seen as a particular case of the Bridge estimator.

The paper is organized as follows. In Section 2 we introduce some preliminary notation and briefly
describe the approaches of Green (1995), Chib and Jelaizkov (2001) and the identity of Meng and
Wong (1996). Our approach and its implementation are illustrated in Section 3, while, in Section
4, two applications are presented, involving linear and logistic models. The examples show the
advantages of the RJI-MW estimator: at least in the setting studied, the proposed estimator of the

BF is more efficient than the alternatives considered.

2 Preliminaries

Let M = {Mq,..., Mg} be a collection of K models, with model My, characterized by the parameter
vector 6 € Oy of dimension dy and let p(y|@, k) be the likelihood of model My. In a Bayesian
prospective, for each model My, we assign a prior distribution on 8y, p(6x|k), and denote by p(k)

the prior probability of the model. The BF between two models, say M; and My, is

By, =

w



where
pwlt) = [ o160 K)p(O:Ik)d6
k

is the marginal likelihood for model M. The larger is By, the greater is the evidence provided by

the data in favor of M; with respect to M. An alternative expression for the BF is

_ p(l\y)/p(l)

= plkly)/ plk) @

where

oyl
PR = S o ylnp() ®)

is the posterior probability of model Mj. In almost all real applications exact evaluation of the

marginal likelihood is impossible. The RJ method tries to estimate p(k|y) for any k& and then to
estimate the BF between pairs of models on the basis of (2). The M method, instead, aims at directly

estimating the marginal likelihood p(y|k) and the BF on the basis of (1).

2.1 Reversible Jump MCMC

The RJ algorithm (Green, 1995) is a natural evolution of the well known Metropolis-Hastings algo-
rithm, which generates observations from the posterior distribution p(8y, k|y). To ensure reversibil-
ity of the Markov chain running on the joint model and parameter space, for any pair of models
(My, M;), a bijection is defined, (0;,ur) = gki(Ok,u;), from Sk = {(Ok,w;)} to Sy, = {(01,ur)},
where Si; and Sy, have the same dimension. So, if the current state of the Markov chain is (k, 0y),
a new state, say ([, 8;), is proposed by generating auxiliary variables u; from a suitable proposal

distribution q(u;|60x). The proposed move is then accepted with probability

p(y,0:])p(1)q(k|l)q(uy|6;)
" p(y, Ok|k)p(k)q(l|k)q(w:|0k)

(0, u;) = min {1 Jri (O, 'U'l)} , (4)

where ¢(I|k) is the probability of proposing model M; when the current model is My, and Ji; is the
jacobian of the bijection from Si; to Sjx. After a suitable number of iterations, say N, p(k|y) is

estimated as
o Nng
kly) = —
where ny is the number of times the Markov chain visited model M. The algorithm also includes

“fixed-dimentional” moves, whereby the model remains the same, although values of the model

parameters may be changed.



The RJ algorithm ofiers a single logical and computational framework tfor joint inference about the
models and the parameters. On the other side, some authors have deemed RJ methods cumbersome
to construct and difficult to tune. Moreover, as shown by Bartolucci and Scaccia (2003) the expected
value of ay; under the distribution f(0x,w;) = p(0k|y, k)g(u;|0) is limited above by Byp(l)/p(k).
As a consequence, when a model is much more likely than the others, the algorithm gets stuck on
that particular model, never visiting the others; so, we are not able to estimate the BF with any
degree of accuracy through the RJ method. In principle, as a remedial measure, we could suitably
change the priors of the models, but this would require a preliminary estimation of the BFs (for
further comments on this technique see Richardson and Green, 1997 and Han and Carlin, 2001, sec.

4.2).

2.2 Meng-Wong identity

Meng and Wong (1996) consider a class of estimators of the ratio of the normalizing constants of
two distributions and give the estimator which, under certain conditions, is the most efficient in the
class. They begin with an identity. For 1 = 1,2, let P (0) be probability densities defined on spaces
X, Suppose these probability densities are given in terms of known function f(? and corresponding
unknown normalising constants ¢, so that p((6) = () f()(g). Assume that the two densities have

overlapping supports, X") and X®). Let a function h(6) be given, satisfying

0 < ‘ / 1(0) D (6) @ (0)d6) < oo (5)
xMnx @)
assuming such a function exists. Let r = ¢(!) /0(2) and let E; be an expectation in p{*). Meng and

Wong (1996) estimate r using the identity

_ B[P (0)h(0)
EoLfD (O)h(0)]

The optimal k() is chosen to minimise the mean square error. Suppose that, for i = 1,2, sequences

(6)

r
S0 = {H(i)’j};y:(? of N iid samples 87 ~ p(®) are available. Let S = {S™1), S@)} and #(S) be an

estimate of 7 based on S. The relative mean square error of 7(.5)

() = ESIG() =)

r
depends on h, and on the joint distribution of the samples S on which it is based. Suppose h = ho
minimises RE?(7) over all admissible h. Meng and Wong (1996) show that, for iid sampling, ho =
ho(f1), f@) with

-1

ho(f, f@) = [rN® D (9) + N@ f@ ()] . (7)
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As those authors explain, the presence of 7 1n the proposed estumator 1s not an obstacle: the iteration

defined b
Y N F@e3)
R N 2je1 (SN D (@1 F@ (g07)
ft+1(5) = 7D (0).4) (8)

N(2)
N(2) Z] 1 7(S)ND) FO)(92:5)+ N ) f(2) (6(2):7)

converges to 7(S) (usually very rapidly) to an estimator that is asymptotically equivalent to the
optimal estimator based on the true r.

When the samples in S; are not iid, the sample size, N, is not defined. Meng and Wong (1996)
consider replacing N in Eqn. (8) with the “effective sample size” parameter of the set S;. There is
no one number which gives the effective sample size of MCMC output, since the serial autocorrelations
in MCMC samples vary from one output parameter to another. However, as Meng and Wong show,
the relative mean square error RE?(#) is typically insensitive to the sample size estimate in a wide
neighborhood of the optimal value. In the Bayesian setting typically f is the posterior, f() the
prior. Let 7y|g be the integrated autocorrelation time of the likelihood in the sequence S (2), we then
replace N® in Eqn. (8) with N(2)/Ty‘@.

The case of densities with not overlapping supports is treated in Meng and Schilling (2002) by
suggesting to shift the densities to reduce the distance/difference between them before applying
identity (6). General class of transformations including centering and stochastic transformations are
proposed.

Chen and Shao (1997b) explicitly treat the case of estimating BF when the densities have different
dimentions. They only consider the case of nested models and suggest to embed the lower dimensional
density into the higher one by ”patching up” a conditional distribution with known normalizing
constant. Then the identity in Meng and Wong (1996) can be directly applied. Chen and Shao
(1997b) give the optimal "patch up” distribution which is the conditional distribution implied by the
one with larger dimension.

As commented in Meng and Schilling (2002) weather this approach is better than matching each

one of the densities to an approximation on the same space, depends on the application at hand.

3 The proposed extension

Contrary to what suggested in Chen and Shao (1997b) we propose to enlarge the original state spaces
with auxiliary variables and embed both densities into a larger dimentional space. The construction

of the enlarged state space and the auxiliary variables used are directly derived from the RJ algorithm



1mplemented to sample from the distributions of interest.
Following Bartolucci and Scaccia (2003), consider the distribution of (8, u;), with support Sk,

already introduced in Section 2.1,

Pr1(0k, w) = fri(Ok, wi)/ck, where  fi (0, ur) = p(y, O|k)q(u|6)
Let Eg; denote the expected value with respect to py;, similarly for Ey.

Theorem 1 For any function h(0x,wu;) with support Sk, the following identity holds

Byt [fued gr1 (O, wi) th(Op, wi)] _a_gp )
By [frid gk (01, ur) Yh{gik (01, ur) } Jik (01, uk)]  ck K

provided the denominator is bounded away from zero and infinity.

Proof It is sufficient to consider that the numerator of (9) is equal to

Cz/s Jued (gri Ok, wi) Yh(Ok, wi) frad (O, wr) }dOpduy

which equals, after a change of integration variables,

a /S JueA (01, ur) Yo gir (01, wi) } frid gin (601, ur) } Tk (01, ur ) dOyduy,

The latter is nothing but ¢;/cj times the denominator of (9). i
Notice that different functions h might be used for different pairs of models.

Identity 9 implies that the BF can be consistently estimated by

By = ity fin {gkl(el(gZ)a u§2))}h(eng)a u )Ny (10)

S felow 0w 300 ) T (61 ul)) /N2
where (Bg),ul(i)), i =1,...,Ny, is a sample of dimension N; from fi;(6,wu;) and (0l(i),u§:)), i =
1,..., No, is a sample of dimension Ny drawn from fj;(€;, ux). In practice the first sample may be

drawn by generating 021), 01(6N1) from the posterior distribution p(6|y, k), possibly through an

MCMC algorithm, and, for any Og), generating ul(i) from q(u;|@k); the second sample may be drawn

..y

in a similar way. However, for computational efficiency, Bartolucci and Scaccia (2003), propose the
following computational algorithm that can be also used in our setting. For any model M, generate
@) from the posterior distribution p(@x|y,k); then set £k = 1 and d = 1 and perform, a suitable

number of times (N), the following operations:

1. if £ > 1, generate u; from the proposal ¢(u;|0)) and compute h(6,w;), for [ = k — 1;



2. provided that k£ < K, repeat the previous operations lor | = k + 1;

3.set k=k+1ork=Fk—1, according to whether d = 1 or d = 0 and draw a new value of 8,

from p(@xly, k);
4. if k = K set d = 0; instead, if k = 1, set d = 1.

Note that, when 1 < k < K, we have to compute both oy ;_1(0k, ux—1) and o g1(0k, Uk+1)-
However, according to (4), these have in common p(y, 8x|k) that, consequently, has to be computed
only once saving simulation time; this motivates the particular structure of the algorithm. As output
of the algorithm we obtain, for any pair of consecutive models, (Mg, My1), the samples required to
estimate By, according to (10). Consequently, we can estimate the BF between any two models,

say M; and My, with [ > k, as
By =By 1By_11- 9 Bri1 (11)

By inverting (2) we may also estimate the posterior probabilities p(k|y)’s; when p(k) = 1/ K, Vk, for
simplicity, we have

By
14 By + B3 +---+ Bk

As output of the algorithm, we also obtain, for any model My, a sample from the posterior distribu-

p(kly) = (12)

tion of 0. This is a feature in common with the RJ algorithm, the main difference being that, within
the algorithm suggested by Bartolucci and Scaccia (2003), these samples have the same dimension,
equal to N/K, for all models.

The proposed identity, together with the above mentioned computational algorithm, should allow
us to estimate the BF between any pair of models more precisely than the RJ algorithm, especially
when one model is much more likely than the others. Intuitively, this is due to the fact that the
latter is based on an auxiliary random process for jumping from a model to another, which increases
the variability of the estimate. The apparent drawback of computational algorithm is that it may be
exploited only when we have a limited number of competing models, whereas, in principle, the RJ
algorithm may be used also in presence of a huge number of models.

The main advantange of the computational algorithm suggested by Bartolucci and Scaccia (2003)
with respect to the M algorithm of Chib and Jelaizkov (2001) is that it makes use of 2(K —1) samples
of across-models acceptance probabilities, while the latter is based on 2K samples of within-model
acceptance probabilities. Moreover, because of its particular structure, the algorithm we adopt is

faster in producing these samples.



1t may seem that the proposed approach 1s considerably more difficult to 1implement than that ot
Chib and Jelaizkov (2001) and Mira and Nicholls (2003), as these makes use of within-model proposals
which, usually, are readily available. However, in many situations, also across-model proposals are
readily available (see for instance sec. 4.1), or may be easily obtained from within-model proposals,
as when these do not depend on the previous value of the parameter vector (see for instance sec. 4.2).
In any case, consider that also a within-model proposal that depends on the previous value of the
parameter vector, say @, may be made independent of this by substituting 8, with an appropriate

0. chosen as within the approach of Chib and Jelaizkov (2001).

3.1 Asymptotically optimal choice of h and iterative formula

Once the densities of the two models under comparison are embedded into a common larger state
space we are back into the “same dimentional” setting of the paper by Meng and Wong (1996) and
the original identity can be applied by identifying appropriate f(!) and f®). In particular, by taking

XM = x® = (6, ) and

IO = fdgw O ue) Y, @ = fu{an Ok w)},

Meng-Wong identity, (6), gives the same result as in (9). Having noticed this, we can used MW

asymptotically optimal choice of h:

1
ho = (13)
sipik + SkPriJik

(which depends on the unknown ratio) and also adapt to our setting the iterative formula (8).

4 Some applications

In the sequel we compare the proposed method (RJ-MW) to estimate BF with competing ones: the
plain RJ, Chib method (M) and Chib method improved using the optimality result by Meng and

Wong (1996) (M-MW).

4.1 Linear regression analysis

Han and Carlin (2001) compared several methods for estimating the BF between two non-nested
linear regression models used to analyse the data shown in the Table 1, taken from Williams (1959);

see also Carlin and Chib (1995).



.

Yi T 2 { Yi Z; 2 { Yi Z; 2

1 3040 292 254 15 2250 27,5 238 29 1670 22,1 21,3
2 2470 24,7 222 16 2650 256 253 30 3310 292 285
3 3610 32,3 322 17 4970 345 342 31 3450 30,1 29,2
4 3480 31,3 31,0 18 2620 26,2 257 32 3600 314 314
5 3810 31,5 30,9 19 2900 26,7 264 33 2850 26,7 259
6 2330 24,5 239 20 1670 21,1 20,0 34 1590 22,1 214
7 1800 19,9 19,2 21 2540 24,1 239 35 3770 30,3 298
8 3110 27,3 272 22 3840 30,7 30,7 36 3850 320 30,6
9 3160 27,1 26,3 23 3800 32,7 32,6 37 2480 232 226

10 2310 240 239 24 4600 32,6 325 38 3570 30,3 30,3

11 4360 33,8 332 25 1900 22,1 20,8 39 2620 29,9 23,8

12 1880 21,5 21,0 26 2530 253 23,1 40 1890 20,8 184

13 3670 322 290 27 2920 30,8 298 41 3030 332 294

14 1740 225 22,0 28 4990 389 381 42 3030 28,2 282

Table 1: Mazimum compressive strength parallel to the grain (Y ), density (X) and resin-adjusted

density (Z) for 42 specimens of radiata pine
The two competing models are

Mi:  yi=a+B(zi—z)+e, & ~N(0v%)

Mo  yi=v+08(zi—2) +m, ni~NOT?,

with the following prior distributions: N (3000, 10°) for both « and vy, N(185,10%) for both 8 and §
and IG(3,1/(2-300%)) as for both 02 and 72, where IG(a, b) denotes the inverse gamma distribution,

whose density is
1
1) = )] - [T (@1

In this setting we compared our approach, denoted by RJ-MW | with that of Green (1995), denoted
by RJ, that of Chib and Jelaizkov (2001), denoted by M, and that Mira and Nicholls (2000), denoted
by M-MW. For the RJ algorithm we used 30,000 iterations, of which the first 5,000 are treated as
burn-in, and two types of moves: within-model and across-model, each with probability 1/2. As in
Han and Carlin (2001), we used the following proposal distributions to update the parameters within
M;:

o* ~ N(a,5000), B* ~ N(3,250), v** ~ LN(log(v?),1), (14)

where LN (i, 0%) denotes the log-normal distribution. For the parameters 7, § and 72 of M3 we used,
respectively, the same proposals as for «, 8 and v2, while, to jump from M; to My, we simply let
(o, B,v?) = (7,6, 7%); similarly to jump from Mj to M;. For the M method, based only on moves

of type (14), we chosen any 8} (in the notation of sec. 2.2) as the ML estimate of the corresponding

10



parameter and, for any model, we used /N1 = 2,000 1terations, atter a burn-in ot 1,000, to compute the
numerator and Ny = 2,000 to compute the denominator; in the complex these are 10,000 iterations
that roughly requires the same computing time of the 30,000 RJ iterations. Finally, for our algorithm
we used 20,000 iterations in the whole, whose 2,000 treated as burn-in, so that approximately the
same computing time of the other two algorithms is required.

The three algorithms were compared in term of efficiency in estimating the BF between Mo and
M, whose true value is By; = 4,862 (see Green and O’Hagan, 1998), which clearly indicates that
M has to be preferred to M;. The results of this comparison, based on 500 simulations, are in

Table 2 that shows the following quantities for any algorithm:

1 500 7
e Mean = 500 i=1 Bgl’i

e Standard error = \/ =5 0% (Bg1; — Mean)?

. _ 1 1 <500 /5 2
e Relative error = B—m\/m Yz (B21,; — B21)?,

where Bgl’i is the estimate of By; at the i-th trial of the simulation.

RJ M M-MW RJ-MW
Mean 7754.3 4887.7  4855.1 4862.3
Standard error 13,010.8  474.3 283.9 261.0
Relative error  274.13% 9.77%  5.84% 5.27%

Table 2: Comparison of the algorithms for computing the Bayes factor for the data in Table 1.

According to the previous results, the proposed algorithm is the most accurate in estimating Bo1,
whereas the RJ algorithm seems to the be the worst; this depends on the fact that Mo is much more
likely than M; and, therefore, the latter seldom jumps from M; to Ms. Han and Carlin (2001)
overcome this problem by letting the priors of the models equal to p(1) = 0.9995 and p(2) = 0.0005;

choosing these values, however, requires extra programming and computing time.

4.2 Logistic regression analysis

Dellaportas et al. (2001) compared several methods for selecting a hierarchical logistic regression
model for the data in Table 3, concerning the relationship between the number of survivals, the
patient condition (A) and the received treatment (B); these data are taken from Haely (1988).

Since there are two factors, we have 5 possible models: M; (intercept); My (intercept+A); Ms

(intercept+B); My (intercept+A + B); M5 (intercept+A + B + A.B). In particular, the full model

11



Patient condition Antitoxin Death Survivals

Less severe No 7 15
Yes 5 15
More severe No 22 4
Yes 15 6

Table 3: Number of survivals classified according to patient condition (A) and received treatment (B)
(M5) is formulated as

. Dii
Yi; ~ Bin(nij, pij), log (ﬁ) =p+pd+ /J;'B _‘_u%B’ (15)
ij

where, for i,j = 1,2, Yj;, n;; and p;; are, respectively, the number of survivals, the total number of
patients and the probability of surviving for the patients with condition ¢ who received treatment j.
Dellaportas et al. (2001) also used the sum-to-zero identifiability constraint and the prior N (0, 8) for
any of the identifiable parameters, u, u?, p8 and u‘2423 , which, by assumption, are also independent.
The same assumptions are made for any reduced model. Finally, the following proposal was used to

jointly update the parameters within the same model (within-model move)
(1, s w2, i) ~ N((—0.47,—0.87,0.56, —0.17)", diag(0.27,0.27,0.28, 0.27))

and also to jump from a model to another (across-model move).

Also in this setting we compared the proposed approach with those of Green (1995), Chib and
Jelaizkov (2001) and Mira and Nicholls (2000). For the RJ algorithm we used 20,000 iterations,
discarding the first 4,000 as burn-in, and only across-model moves. For the M method, we used
N; = 1,500 iterations, after a burn-in of 500, for computing the numerator and Ny = 1,000 for
computing the denominator, in the complex 12,500 iterations. Finally, for our algorithm we used in
the whole 16,000 iterations, with the first 4,000 treated as burn-in, chosen so that the computing time
required by our algorithm is roughly the same of the other two. As in Section 4.1, the algorithms
have been compared, from the point of view of the efficiency in estimating the BF, on the basis of
500 Monte Carlo simulations; the results of this comparison are shown in the Table 4 (as true value
of the Bayes factor we took the overall means).

The RJ algorithm seems, again, to be the least efficient in estimating the BF's, even if the loss in
terms of efficiency to the other methods is not so dramatic as is Section 4.1. Our algorithm performs
generally better that the others. In particular, it has the smallest relative error in estimating Boq,
By3 and Bs4. Instead, the M-MW method has the smallest relative error in estimating Bsz, but our

method is almost as efficient.

12



By Bss By Bs,
RJ Mean 101.3580 0.0231 38.4289 0.1179
Standard error 12.8320 0.0031 4.6844 0.0040
Relative error 12.90% 13.38% 12.15% 3.43%

M Mean 99.8230 0.0228 39.0250 0.1179
Standard error 1.1829  0.0005 0.8505 0.0026
Relative error 1.19%  2.08% 2.18%  2.20%
M-MW  Mean 99.8250  0.0228 39.0440 0.1179

Standard error 1.0333 0.0004 0.7122 0.0021
Relative error 1.04%  1.76% 1.82% 1.78%
RJ-MW Mean 99.7480 0.0228 39.0500 0.1178
Standard error 0.8641  0.0004 0.6990 0.0017
Relative error 0.87%  1.85% 1.79% 1.43%

Table 4: Comparison of the algorithms for computing the Bayes factor for the data in Table 3
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