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C1,1 functions and optimality conditions∗

Davide La Torre† Matteo Rocca‡

22nd April 2002

Abstract

In this work we provide a characterization of C1,1 functions on Rn (that is,
differentiable with locally Lipschitz partial derivatives) by means of second
directional divided differences. In particular, we prove that the class of C1,1

functions is equivalent to the class of functions with bounded second direc-
tional divided differences. From this result we deduce a Taylor’s formula for
this class of functions and some optimality conditions. The characterizations
and the optimality conditions proved by Riemann derivatives can be useful
to write minimization algorithms; in fact, only the values of the function are
required to compute second order conditions.

Keywords: Divided differences, Riemann derivatives, C1,1 functions, nonlinear
optimization, generalized derivatives

1 Introduction

The study of the class of C1,1 functions has been renewed since the work of Hiriart-
Urruty in his doctoral thesis [7]. The need for investigating these functions, as
pointed out in [8], [10], [23], [24] and [25], comes from the fact that several prob-
lems of applied mathematics including variational inequalities, semi-infinite pro-
gramming, iterated local minimization, etc. involve differentiable functions with no
hope to be twice differentiable. In [8] the authors introduced the concept of general-
ized Hessian matrices and derived second order optimality conditions for nonlinear
constrained problems. Further applications can be found in [10], [15], [19], [20],
[22].
In this section we recall some concepts which are fundamental for understanding the
proof of the results.
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1.1 Riemann derivatives

In the following we will consider a function f : Ω → R, with Ω an open subset of
Rn. For such a function we define:

δd
2f(x; h) = f(x + 2hd)− 2f(x + hd) + f(x).

with x ∈ Ω, h ∈ R and d ∈ Rn.

Definition 1.1. The second Riemann derivative of f at a point x ∈ Ω in the
direction d ∈ Rn is defined as:

f ′′r (x; d) = lim
h→0

δd
2f(x; h)

h2
,

if this limit exists.

Definition 1.2. The second upper and lower Riemann derivatives of f at x ∈ Ω in
the direction d ∈ Rn are defined, respectively, as:

f
′′
r(x; d) = lim sup

h→0

δd
2f(x; h)

h2
,

f ′′
r
(x; d) = lim inf

h→0

δd
2f(x; h)

h2
.

Similarly we can define differences:

∆d
2f(x; h) = f(x + hd)− 2f(x) + f(x− hd),

and then the corresponding second Riemann-type derivatives f ′′R(x; d), f
′′
R(x; d) and

f ′′
R
(x; d).

For properties of Riemann derivatives one can see [1], [2], [6] and [16].

Lemma 1.1. Assume that f is bounded in a neighborhood of the point x0 ∈ Ω. If,
for a fixed d ∈ Rn, there exist neighborhoods U of the point x0 and V of 0 ∈ R
such that

δd
2f(x;h)

h2 is bounded on U × V \{0}, then also f(x+hd)−f(x)
h

is bounded on
U × V \{0}.

Proof. From the hypotheses we obtain that there exists a number δ > 0 such that
∀x ∈ U and ∀h with |h| ≤ δ, h 6= 0, the following inequalities hold:∣∣∣∣f(x + hd)− f(x)− 2

(
f

(
x +

h

2
d

)
− f(x)

)∣∣∣∣ ≤ M

∣∣∣∣h2
∣∣∣∣2 ,

∣∣∣∣f (
x +

h

2
d

)
− f(x)− 2

(
f

(
x +

h

4
d

)
− f(x)

)∣∣∣∣ ≤ M

∣∣∣∣h4
∣∣∣∣2 , . . .∣∣∣∣f (

x +
h

2n−1
d

)
− f(x)− 2

(
f

(
x +

h

2n
d

)
− f(x)

)∣∣∣∣ ≤ M

∣∣∣∣ h

2n

∣∣∣∣2 .
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Multiplying these inequalities by 1, 2, 22, . . . , 2(n−1) respectively, we obtain by addi-
tion: ∣∣∣∣f(x + hd)− f(x)− 2n

(
f

(
x +

h

2n
d

)
− f(x)

)∣∣∣∣ ≤ 2M

∣∣∣∣h2
∣∣∣∣2 ,

and hence: ∣∣∣∣∣2n f(x + h
2n d)− f(x)

h

∣∣∣∣∣ ≤ M ′

for 1
2
δ ≤ |h| ≤ δ, by using the boundedness of f . Hence, writing ξ = h

2n , we have:∣∣∣∣f(x + ξd)− f(x)

ξ

∣∣∣∣ ≤ M ′ for
δ

2n+1
≤ |ξ| ≤ δ

2n
, n = 0, 1, . . . ,

and the lemma is established, since n can be arbitrarily chosen.

In the following we set:

f ′(x; d) = lim
h→0

f(x + hd)− f(x)

h
, f ′′(x; d) = lim

h→0

f ′(x + hd; d)− f ′(x; d)

h
,

if these limits exist.

1.2 Standard mollifiers

The function:

φ(x) =


C exp( 1

‖x‖2−1
), if ‖x‖ < 1

0, if ‖x‖ ≥ 1

is C∞(Rn) and we can choose the constant C ∈ R such that:∫
Rn

φ(x)dx = 1.

Definition 1.3. Let ε > 0. The following functions:

φε(x) =
φ(x

ε
)

εn

are called standard mollifiers.

Definition 1.4. Let f : Ω → R. We say that f ∈ Ck
0 (Ω) if f ∈ Ck(Ω) and

sptf = {x ∈ Ω : f(x) 6= 0} ⊂ Ω.

Theorem 1.1. [3] The functions φε are C∞(Rn) and satisfy:

•
∫

Rn φε(x)dx = 1
3



• sptφε ⊂ B(0, ε) = {x ∈ Rn : ‖x‖ < ε}.

For a bounded function f : Ω → R, and ε > 0, we define functions fε : Rn → R by
the convolution fε(x) =

∫
Ω

φε(y−x)f(y)dy. Observe that fε(x) = 0 if x /∈ Ω+B(0, ε)
and that fε ∈ C∞(Rn).

Theorem 1.2. [3] Suppose that f ∈ L1
loc(Ω). Then fε(x) → f(x) a.e. x ∈ Ω, when

ε → 0. If f ∈ C(Ω) then the convergence is uniform on compact subsets of Ω.

Theorem 1.3. [3] Let K be a compact subset of Ω. Then ∃ε0 > 0 such that ∀ε ≤ ε0

and ∀x ∈ K, the following function:

y → φε(y − x)

is C∞
0 (Ω).

2 The main results

Definition 2.1. A function f : Ω → R is locally Lipschitz at x0 when there exist a
constant K and a neighborhood U of x0 such that:

|f(x)− f(y)| ≤ K‖x− y‖, ∀x, y ∈ U.

Definition 2.2. A function f : Ω → R is of class C1,1 at x0 when its first order
partial derivatives exist in a neighborhood of x0 and are locally Lipschitz at x0.

Some possible applications of C1,1 functions are shown in the following examples.

Example 2.1. Let g : Ω ⊂ Rn → R be twice continuously differentiable on Ω and
consider1 f(x) = [g+(x)]2 where g+(x) = max{g(x), 0}. Then f is C1,1 on Ω.

Example 2.2. In many problems in engineering applications and control theory
([23], [24] and the references therein) one has to study nonsmooth semi-infinite
optimization problems such as the following:

minimize f(x)

subject to max
t∈[a,b]

φj(x, t) ≤ 0, j = 1 . . . l

where f : Rn → R and φj : Rn → R are C2, j = 1 . . . l, −∞ < a < x < b < +∞.
One approach for solving this problem is to convert the functional constraints into
equality constraints of the form:

hj(x) =

∫ b

a

[max{φj(x, y), 0}]2 dt = 0, j = 1 . . . l

1This type of functions arises in some penalty methods.
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and apply the methods of nonlinear programming. Hence the problem becomes:

minimize f(x)

subject to hj(x) = 0, j = 1 . . . l

Since φj is C2, it is easy see that the function hj is C1,1 with the gradient:

∇hj(x) = 2

∫ b

a

max{φj(x, t), 0}∇φj(x, t)dt, j = 1 . . . l.

Example 2.3. Consider the following minimization problem:

min f0(x)

over all x ∈ Rn such that f1(x) ≤ 0, . . . fm(x) ≤ 0. Letting r denote a positive
parameter, the augmented Lagrangian Lr [21] is defined on Rn × Rm as

Lr(x, y) = f0(x) +
1

4r

m∑
i=1

{[yi + 2rfi(x)]+}2 − y2
i .

From the general theory of duality which yields Lr as a particular Lagrangian, we
know that Lr(x, ·) is concave and also that Lr(·, y) is convex whenever the minimiza-
tion problem is a convex minimization problem. Upon setting y = 0 in the previous
expression, we observe that:

Lr(x, 0) = f0(x) + r
m∑

i=1

[f+
i (x)]2

is the ordinary penalized version of the minimization problem. Lr is differentiable
everywhere on Rn × Rm with:

∇xLr(x, y) = ∇f0(x) +
m∑

j=1

[yj + 2rfj(x)]+∇fj(x)

∂Lr

∂yi

(x, y) = max{fi(x),
−yi

2r
}, i = 1 . . . m.

When the fi are C2 on Rn, Lr is C1,1 on Rn+m. The dual problem corresponding to
Lr is by definition:

max gr(y)

over y ∈ Rm, where gr(y) = infx∈Rn Lr(x, y). In the convex case with r > 0, gr is
again C1,1 concave function with the following uniform Lipschitz property on ∇g,

|∇gr(y)−∇gr(x)| ≤ 1

2r
|y − y′|, ∀y, y′ ∈ Rm.

The following result characterizes a function of class C1,1 by the boundness of
second-order divided differences.
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Theorem 2.1. Assume that the function f : Ω → R is bounded on a neighborhood of
the point x0 ∈ Ω. Then f is of class C1,1 at x0 if and only if there exist neighborhoods

U of x0 and V of 0 ∈ R such that
δd
2f(x;h)

h2 is bounded on U × V \{0}, ∀d ∈ S1 =
{d ∈ Rn : ‖d‖ = 1}.

Proof. i) Sufficiency. From lemma 1.1, since
δd
2f(x;h)

h2 is bounded on U × V \{0},
∀d ∈ S1, the same holds for f(x+hd)−f(x)

h
. Observe that this last fact implies that f

is locally Lipschitz at x0 and hence continuous in a neighborhood of x0. For every
x in a neighborhood of x0 and for ε ”sufficiently small”, we have, for d ∈ S1:

f ′ε(x; d) = lim
h→0

fε(x + hd)− fε(x)

h
=

lim
h→0

1

h

[∫
Ω

φε(y − x− hd)f(y)dy −
∫

Ω

φε(y − x)f(y)dy

]
.

Putting z = y − hd, we obtain:∫
Ω

φε(y − x− hd)f(y)dy =

∫
Ω−{hd}

φε(z − x)f(z + hd)dz.

From theorem 1.3, we know that, for ε ”sufficiently small”, the functions z →
φε(z − x) are C∞

0 (Ω) and hence, if also |h| is ”small enough”, we get:∫
Ω−{hd}

φε(z − x)f(z + hd)dz =

∫
Ω

φε(z − x)f(z + hd)dz.

It follows that:

f ′ε(x; d) = lim
h→0

∫
Ω

f(z + hd)− f(z)

h
φε(z − x)dz.

Furthermore one can easily see that:

f ′′ε (x; d) = lim
h→0

fε(x + 2hd)− 2fε(x + hd) + fε(x)

h2

and similarly deduce:

f ′′ε (x; d) = lim
h→0

∫
Ω

δd
2f(z; h)

h2
φε(z − x)dz.

From the boundedness of
δd
2f(x;h)

h2 and of f(x+hd)−f(x)
h

, we obtain the existence of a
constant M such that |f ′ε(x; d)| ≤ M and |f ′′ε (x; d)| ≤ M , for every d ∈ S1, x in a
neighborhood Ũ of x0 and ε ”sufficiently small”. Hence, for every x ∈ Ũ and d ∈ S1,
there exists a sequence εn converging to 0 such that f ′εn

(x; d) converges to a limit

which we denote by α(x; d). Observe that α(x; d) is bounded on Ũ whenever d ∈ S1.
For every x ∈ Ũ , d ∈ S1 and h with |h| ”small enough”, we can write:

fεn(x + hd) = fεn(x) + hf ′εn
(x; d) +

1

2
h2f ′′εn

(ξn; d),
6



where ξn ∈ (x, x + hd).
Recalling theorem 1.2, taking the limit for n → +∞, it follows that f ′′εn

(ξn; d)
converges to a limit which we denote by β(x, h, d). Moreover:

f(x + hd) = f(x) + hα(x; d) +
1

2
h2β(x, h, d).

Observing that β(x, h, d) is bounded for x ∈ Ũ , |h| ”sufficiently small” and d ∈ S1,
it follows that α(x; d) = f ′(x; d).
Furthermore, ∀d ∈ S1 the functions f ′′εn

(x; d) are bounded on Ũ uniformly with
respect to ε and thus the functions f ′εn

(x; d) satisfy the following uniform Lipschitz
condition: ∣∣f ′εn

(y; d)− f ′εn
(x; d)

∣∣ ≤ B‖y − x‖,∀x, y ∈ Ũ .

Since f ′εn
(y; d) and f ′εn

(x; d) converge to f ′(y; d) and f ′(x; d) respectively, we see that

f ′(x; d) is Lipschitz on Ũ , ∀d ∈ Rn. Taking d = ei, i = 1, . . . , n (where ei is the i-th
fundamental vector of Rn), we obtain the thesis.
ii) Necessity. Assume that f is of class C1,1 at x0. Set:

∆
d

2f(x; s, t) = f(x + sd + td)− f(x + td)− f(x + sd) + f(x),

where d ∈ S1, x ∈ Ω, s, t ∈ R and |s| and |t| are ”sufficiently small”. Applying the
mean value theorem, we obtain:

∆
d

2f(x; s, t)

st
=

< ∇f(x + θtd + sd)−∇f(x + θtd), d >

s
,

where θ ∈ (0, 1). Since f is of class C1,1 at x0 it follows easily that there exist a
constant M , a neighborhood Ũ of x0 and a number δ > 0 such that, ∀d ∈ S1 we
have: ∣∣∣∣∣∆

d

2f(x; s, t)

st

∣∣∣∣∣ ≤ M, ∀x ∈ Ũ , |s| < δ, |t| < δ.

Now the thesis follows observing that if s = t = h, then ∆
d

2f(x; s, t) = δd
2f(x; h).

Corollary 2.1. Assume that the function f is bounded on a neighborhood of x0 ∈ Ω.
Then f is of class C1,1 at x0 if and only if there exist neighborhoods U of x0 and V

of 0 ∈ R such that
∆d

2f(x;h)

h2 is bounded on U × V \{0}, ∀d ∈ S1.

Proof. The proof is straightforward remembering that:

δd
2f(x; h) = ∆d

2f(x + hd; h).

Corollary 2.2. If f is of class C1,1 at x0, there exist sequences εn converging to
0 and ξn ∈ (x0, x0 + hd) such that f ′′εn

(ξn; d) converges to a limit β(x0, h, d) and it
holds:

f(x0 + hd) = f(x0) + f ′(x0; d)h +
β(x0, h, d)

2
h2.
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Proof. It is enclosed in the proof of the previous theorem.

Theorem 2.2. (Taylor’s formula) Let f be a function of class C1,1 at x0.

(i) If the function x → f
′′
r(x; d) is upper semicontinuous in a neighborhood of x0, for

a fixed d ∈ S1, then there exists ξ ∈ [x0, x0 + hd] such that, for h ”small enough”
we have:

f(x0 + hd) ≤ f(x0) + hf ′(x0; d) +
h2

2!
f
′′
r(ξ; d)

(ii) If the function x → f ′′
r
(x; d) is lower semicontinuous in a neighborhood of x0, for

a fixed d ∈ S1, then there exists ξ ∈ [x0, x0 + hd] such that for h ”small enough”
we have:

f(x0 + hd) ≥ f(x0) + hf ′(x0; d) +
h2

2!
f ′′

r
(ξ; d)

Proof. i) Without loss of generality, the term β(x0; h; d) in the previous corollary
2.2 can be expressed as:

β(x0; h; d) = lim
n→+∞

f ′′εn
(ξn; d)

for some sequences ξn → ξ ∈ [x0, x0 + hd] and εn → 0. Similarly to the proof of
theorem 2.1, one can write that2:

f ′′εn
(ξn, d) =

∫
Ω

φ′′εn
(y − ξn; d)f(y)dy =∫

B(0,1)

lim
h→0

δd
2φεn(y − ξn; h)

h2
f(y)dy =

lim
h→0

∫
B(0,1)

δd
2φεn(y − ξn; h)

h2
f(y)dy =

lim
h→0

∫
B(0,1)

δd
2f(ξn + εny; h)

h2
φεn(y)dy ≤∫

B(0,1)

lim sup
h→0

δd
2f(ξn + εny; h)

h2
φ(y)dy =

∫
B(0,1)

f
′′
r(ξn + εny; d)φ(y)dy.

Now using the upper semicontinuity of f
′′
r(·; d) we have:

β(x; h; d) ≤
∫

B(0,1)

lim sup
n→+∞

f
′′
r(ξn + εny; d)φ(y)dy ≤

∫
B(0,1)

f
′′
r(ξ; d)φ(y)dy = f

′′
r(ξ; d)

and the proof is complete.
ii) It is similar to the previous proof and we omit it.

2In the proof of this theorem we will use the following generalized version of Fatou’s lemma: if
fn is a sequence of measurable functions, fn ≤ M and E ⊂ Rn is a subset of finite measure, then
lim supn→+∞

∫
E

fn ≤
∫

E
lim supn→+∞ fn

8



Theorem 2.3. Assume that f is continuous and f ′′r (x; d) exists on a neighborhood
of the point x0 , ∀d ∈ S1. Then f is of class C1,1 at x0 if and only if there exist a
neighborhood U of x0 and a function g ∈ L1(U) such that the following assumptions
hold:

(i) ∃M ≥ 0 such that |f ′′r (x; d)| ≤ M , ∀x ∈ U , ∀d ∈ S1,

(ii)
∣∣∣ δd

2f(x;h)

h2

∣∣∣ ≤ g(x), for |h| ”small enough” (h 6= 0), d ∈ S1 and a.e. x ∈ U .

Proof. i) Sufficiency. Arguing in a fashion similar to that of theorem 2.1 and using
Lebesgue theorem, we obtain for ε ”sufficiently small”, for every x in a neighborhood
of x0 and d ∈ S1:

f ′′ε (x; d) = lim
h→0

∫
Ω

δd
2f(z; h)

h2
φε(z − x)dz =

∫
Ω

lim
h→0

δd
2f(z; h)

h2
φε(z − x)dz =∫

Ω

f ′′r (z; d)φε(z − x)dz.

It follows that ∀d ∈ S1 f ′′ε (x, d) is bounded on U (uniformly with respect to ε).
Using the integral representation of divided differences (see for instance [9], ch. 6,
th. 2), we have:

δd
2fε(x; h)

h2
=

∫ 1

0

dt1

∫ t1

0

f ′′ε (x + t2hd + t1hd; d)dt2.

For x and h in suitable neighborhoods of x0 and 0 respectively, the left member in
the previous inequality is bounded by a constant M (uniformly with respect to ε).
Sending ε to 0 and recalling theorem 1.2, we get the existence of neighborhoods U

of x0 and V of 0 ∈ R such that ∀d ∈ S1 δd
2f(x;h)

h2 is bounded on U × V \{0}. The
thesis now follows recalling theorem 2.1.

ii) Necessity. The proof is similar to that of the necessary condition in theorem
2.1.

Remark 2.1. Hypothesis (ii) in the previous theorem cannot be omitted. In fact,
as is easily seen, the function f(x) = |x| satisfies hypothesis (i) but not hypothesis
(ii) in a neighborhood of x0 = 0 and is not of class C1,1 at 0.

Remark 2.2. Theorems 2.1 and 2.3 extend the elementary condition which relates
the Lipschitz condition on f ′ and the boundedness of f ′′. We generalize this relation
without requiring any differentiability hypothesis and linking the existence and the

Lipschitz behaviour of f ′ to the boundedness of
δd
2f(x,h)

h2 or of the directional Riemann
derivatives.

Remark 2.3. Conditions similar to those of theorem 2.3, expressed in terms of
f ′′R(x; d) can be proved in analogous way.
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3 Optimality conditions for unconstrained opti-

mization problems

The aim of this section is to study necessary and sufficient conditions for C1,1 un-
constrained optimization problems. These conditions are proved by using the gen-
eralized Taylor’s expansions given in the previous section and Riemann derivatives.
These optimality conditions can be used to write minimization algorithms; in fact
for the computation of the next results only the values of the function are required.
In the following we will suppose that, for any d ∈ S1, the function x → f

′′
r(x, d) is

upper semicontinuous and that the function x → f ′′
r
(x; d) is lower semicontinuous

in a neighborhood of x0.

So we consider the following unconstrained optimization problem:

P1) min
x∈Ω

f(x)

where Ω is an open subset of Rn.

Theorem 3.1. (necessary condition) If f is C1,1 and x0 is a local minimum point

then ∇f(x0) = 0 and f
′′
r(x0, d) ≥ 0 ∀d ∈ S1.

Proof. From Taylor’s formula we obtain, for h ”small enough”:

f(x0 + hd) ≤ f(x0) + h < ∇f(x0), d > +
h2

2
f
′′
r(ξ, d)

where ξ ∈ [x0, x0 + hd]. So

0 ≤ f(x0 + hd)− f(x0) ≤ f
′′
r(ξ, d)

and taking the limit when h → 0 we obtain the thesis.

Theorem 3.2. (sufficient condition) If f is C1,1, ∇f(x0) = 0 and f ′′
r
(x0+αd, d) > 0,

∀α ∈ (0, 1) and ∀d ∈ S1, then x0 is a strict local minimum of f on Ω.

Proof. On the contrary suppose that x0 is not a strict local minimum; then there
exists a sequence xk such that xk → x0, when k → +∞ and f(xk) ≤ f(x0) ∀k ∈ N.
So xk = x0 + δkuk, where ‖uk‖ = 1 and δk → 0 when k → +∞. So we have:

f(xk) ≥ f(x0) + δ2
k

f ′′
r
(ξk, uk)

2

where x0 ≤ ξk ≤ x0 + δkuk. This implies that

0 ≥ f(xk)− f(x0) ≥ δ2
k

f ′′
r
(ξk, uk)

2

and then, when k is ”sufficiently large”, we obtain:

f ′′
r
(ξk, uk) ≤ 0

which contradicts the hypothesis.
10



References

[1] Ash J.M.: Very generalized Riemann derivatives. Real Analysis Exhange, 12,
1985, 10-29.

[2] Ash J.M.: Generalizations of the Riemann derivative., Tran. Amer. Math. Soc.,
126, 1997, 181-199.

[3] H. Brezis: Analyse fonctionelle- Theorie et applications. Masson Editeur, Paris,
1963.

[4] X. Chen: Convergence of BFGS method for LC1 convex constrained optimiza-
tion. SIAM J. Control Optim., 34, 1996, 2051-2063.

[5] R. Cominetti, R. Correa: A generalized second-order derivative in nonsmooth
optimization. SIAM J. Control Optim., 28, 1990, 789-809.

[6] A. Guerraggio, M. Rocca: Derivate dirette di Riemann e di Peano. Convessitá e
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