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Bridge estimation of the probability
density at a point*

Antonietta Mira fand Geoff Nicholls?

May 7, 2001

Abstract

Bridge estimation, as described by Meng and Wong in 1996, is used to es-
timate the value taken by a probability density at a point in the state space.
When the normalisation of the prior density is known, this value may be
used to estimate a Bayes factor. It is shown that the multi-block Metropolis-
Hastings estimators of Chib and Jeliazkov (2001) are bridge estimators. This
identification leads to more efficient estimators for the quantity of interest.

Keywords: Bayes factor, Bridge estimators, Marginal likelihood, Markov
chain Monte Carlo, Metropolis-Hastings algorithms.

1 Motivation

In their recent paper, Chib and Jeliazkov (2001) treat the problem of estimating
the value taken by the normalised probability density at a point. Their interest
is motivated by the Bayesian model choice problem, and the estimation of Bayes
factors. It turns out the estimators given in Chib and Jeliazkov (2001) belong to
the class of bridge estimators considered in Meng and Wong (1996). This result
may seem surprising, given that bridge estimators deal with ratios of normalising
constants. However, as we will see, the normalised density at a point is a ratio of
normalising constants in which the trivial normalising constant of an atom at the
point in question plays the part of the second constant. The bridge in Chib and
Jeliazkov (2001) proves to be a sequence of densities, defined on spaces of increasing
dimension, running from this atom, and finishing at the target density. The value
of making an identification of this kind, is in bringing into play the body of theory

*This work has been supportted by the F.A.R. 2000, of the University of Insubria.

tUniversitd dell’Insubria, Facoltd di Economia, Via Ravasi 2, 21100, Varese, Italy. Email:
amira@eco.uninsubria.it

tAuckland University, Department of Mathematics, Private Bag 92019, Auckland, New Zealand.
Email: nicholls@math.auckland.ac.nz

1



and experience developed in Meng and Wong (1996) and by subsequent authors.
In particular, efficiency gains, over the scheme of Chib and Jeliazkov (2001), are
immediate, as we will see.

Bayesian inference expresses conflicting beliefs as distinct prior distributions. We
can sometimes quantify the relative support, given by the data to each of two prior
models, using their Bayes factor. We compute the average value of the likelihood
under each of the two priors; the Bayes factor is the ratio of these two average
values. Let fy|x(y|z) denote the likelihood of data y given parameters z. Let fx(z)
be an unnormalised prior density, defined for x in some parameter space X, and
let Zx = [, fx(z)dz. Let fxy(z|ly) = frix(ylz)fx(z) denote the unnormalised
posterior density for z € X and let Zxy = [, fx)v(z|y)dz. The average likelihood
under the prior is

Enclfntin)] = [ foxtyin s )

= Zxiv/Zx. (2)

The problem of estimating a Bayes factor therefore reduces to the problem of esti-
mating the ratio of the normalising constants of the posterior and prior distributions.

Estimates of ratios of normalising constants are sometimes required in classical in-
ference also, for example when dealing with missing data in likelihood ratios for
hypothesis testing. Finally the problem is of great interest in statistical physics.
We refer the reader to the introduction of the paper by Meng and Wong (1996) for
an extensive treatment of non-Bayesian and non-statistical applications of the ideas
presented in the present manuscript.

In Section 2 we review the Meng-Wong family of bridge estimators for the ratio
of normalizing constants. We then introduce (Section 3) the estimators proposed
by Chib and Jeliazkov (2001) used within both for the single and multiple blocks
Metropolis-Hastings algorithm and show that they are bridge estimators. This iden-
tification allows us to improve the Chib and Jeliazkov estimators in terms of their
efficiency. We end with some concluding remarks.

2 The Meng-Wong family of estimators

2.1 Bridge estimators

Meng and Wong (1996) give a formula which may be used to generate estimators
for ratios of normalising constants. Gelman and Meng (1998) develop these ideas
very neatly. For i = 1,2, let f®)(z) be an unnormalised density with state space
X and normalising constant Z®. Let an admissible weight function h(z) be an
arbitrary function, defined on X N X satisfying

0< / h(@) fO () O (2)dz| < 0o, (3)
x(WHnx(2)
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The ratio of the normalising constants of f!) and f® may be written

o _ 20 _ Epolh(@)fV(@)] (4)
P Z@ T Epo k() fO ()]

The above ratio leads to the natural Monte Carlo estimator TAZ’I for r,zl’l. Suppose
that, for i = 1,2, sequences S; = {2 }j\':(ll) of N@ samples ("7 ~ f; are available.
The samples may be correlated, for example, they may be generated by MCMC.
Let S = {S),S,} and 77! (S) be an estimate of r;"" based on S. Let

£2,1 2,1
Es[(7y (S) — 1)
(ry")?
denote the relative mean square error for a particular estimator and given stochastic

processes realising S. Suppose h(z) = ho(z) minimises RE?(72") over all admissible

h. Meng and Wong (1996) show that ho is

RE* (") =

-1

ho(z) = [NW W (z) + rp' N® 3 (1)]

As Meng and Wong note, the presence of ri’l, the quantity we wish to estimate, in
the proposed estimator is not a significant obstacle. The iteration defined by

1 N FO (z(2).4)
91 N() ijl NO fO) (2@:0)+ N7t (:8) f2) (2(2)d)
P, (t+1;9) = ©

(5)

LZN(I) @ (zMd)
N1 £aj=1 N(l)f(l)(m(l),j)+N(2)fig(t;s)f(2)(m(1),;')

converges to fi;(S) (usually very rapidly).

Note that, when the samples in S; are not iid, N® is to be replaced, wherever it
appears in Eqn. (5), by the “effective sample size” parameter of the set S;. This is
difficult as effective sample size is not even uniquely defined in the present setting
since it is not clear on which paremeter to base the estimation of the autocorrelation
time. However the problem does not seem so great in practice. First, as Meng and
Wong note, any reasonable estimate for the effective sample size is adequate, since
the relative mean square error RE? (fil) is typically insensitive to the value chosen
for this quantity. Secondly, if f®) is the posterior, f® the prior, and if T}le is the
integrated autocorrelation time of the likelihood in the sequence S;, then replacing

the sample size with the estimate N® /T}?lx leads to near optimal estimators for

~2.1 . . . . . .
7, . This second observation is supported by our own experimentation, which we

do not report.

2.2 Bridging spaces of unequal dimension

There are extensions of the identity in Eqn. (4). Take a sequence, index i =

0,1,2...B, of B+ 1 densities f®, associated normalising constants Z®, and state
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spaces X, For each of the B ratios Z0~1/Z0) i = 1,2...B fix some weight
function A (1;),v; € X@. Consider now the identity
7(0) JAUREAC) 7(B-1)

7B~ 7o 7o X T (6)

If, for each i = 1,2...B, we can find h = h(®) satisfying Eqn. (3) (with f(!) re-
placed by f(~Y and f® by f®) it is straightforward to estimate each ratio in
Eqn. (6) as before, and thereby estimate Z(®/Z(). However, if the bridging den-
sities ... f1), f®_. involved are defined on spaces of unequal dimension, Eqn. (3)
cannot be satisfied. Chen and Shao (1996) remove this restriction, as we now ex-
plain.

Let x = (z1,29...xp) denote a parameter vector z € X with components divided
into B blocks of parameters. For i = 0,1,..., B, let ¥; = (z1,25...1;) denote a
composite variable built from the first 4 blocks. In this setting X© x®  x(B)
is a sequence of spaces of increasing dimension, running from a possible atom at
X to the full space XB) = X. Following Chen and Shao (1996), introduce a
sequence of B explicitly normalised conditional densities w;;_1(x;|1;_1) indexed by

i=1,2...B, with support z; € Xzf,i’i_l)(wi,l).
Let f(i’i_l)(d)i) = f(i_l)(%4)%,14(%\%4) and
X0 = Ly, m); i € XD g € A6 ()],

so that [y 1 SO V() dipi_idz; = Z0 Y. Admissible h((¢);) now satisfy a vari-
ant of Eqn. (3),

0<|[ @) OO () dui| < o (7)
i-DAX )
and the identity
di-1 A _ Ese [f(i’i_l)h(i)]

T 70~ Ejor o [fOR0)] (8)

replaces Eqn. (4) whenever two bridging densities are defined on spaces of unequal
dimension. Following Meng and Wong (1996), Chen and Shao (1996) give hg)

minimising the MSE of the natural estimator for 7‘2’2_1. Note that the more general
reversible jump setting of Green (1995) is allowed. One may bridge f(©) to f(®) using
an arbitrary sequence of distributions. It is not necessary that each distribution adds

a factor to a product measure as implied in this exposition.

3 The estimators of Chib and Jeliazkov

Returning to estimation of ZX|y/ZX, it is is natural to choose f(l) = fxy and
f@ = fx in Eqn. (4) and thereby obtain an estimator 7y, , for the expected
likelihood under prior fx. However, it is quite often the case that the normalising
constant of the prior can be calculated in ilosed form. In this case it may be possible



to find a comparison density f® with advantages over the prior. For example, the
estimator 7y, ,,Z® /Zx formed using some alternative comparison function f(*
may be more easily computed, or may have a smaller sampling variance, than 7, Xvix-

In this section we analyse a class of estimators, proposed in Chib and Jeliazkov
(2001), for which the prior normalising constant must be known or separately esti-
mated. For ease of notation, let f(z) = fxy(z|y) be an unnormalised density on
X and let f(z) = f(z)/Z with Z = [, f(z)dz. Let a fixed state z* € X' be given.
Typically z* is an estimate of the posterior mode or mean obtained from MCMC
simulation of the posterior. We will consider the problem of estimating f(z*), which
is equivalent to determining 7y /Zx when the prior normalisation is known.

We start with “single block” problems: a Metropolis-Hastings Markov chain with
equilibrium f is given; in it, all the parameters of f are updated in a single Metropolis-
Hastings step. Chib and Jeliazkov (2001) give an estimator for f(z*) in terms of
expectations in the equilibrium and Hastings-proposal densities. We show, in Sec-
tion 3.1, that their single-block estimator is in the Meng-Wong family, and can be
improved by replacing the Chib and Jeliazkov choice of A with the Meng-Wong
optimal choice.

It is not always feasible to update all parameters of a posterior density in a single
Metropolis-Hastings update. One may then identify blocks of variables which may
conveniently be updated as a group. Chib and Jeliazkov show how normalising
constants may be estimated in multiple block problems. We show, in Section 3.2,
that their multi-block estimator is a bridge estimator. Combining the bridging
densities of Chib and Jeliazkov (2001) and the optimal weight functions from Meng
and Wong (1996), we write down an improved estimator, no less tractable than that
of Chib and Jeliazkov.

3.1 Single block densities

Let ¢(x, z') be a normalised proposal density for 2/ conditional on z, and let a(x, z')
be the corresponding probability of accepting z’ in a Metropolis-Hastings update:

f(@) q(o, w)]
f(x)q(z,2")
This update respects the detailed balance relation,

q(z,2") a(z, ') f(z) = q(2', z) a2, x) f(2'). 9)
Chib and Jeliazkov base an estimator for f(z*) on the identity

7oty = f(z*) _ Erla(z, 2*)q(x, 2*)]
1) Z Eqzr o [a(z*, 2)]

a(z,z') = min [1,

(10)

*

Consider now the generating identity, Eqn. (4). The choices f)(z) = f(z*) ¢(z*, 2),
FO(z) = f(2),

h(x) = hc_](ﬂ?) =



xM = {z;2z € X,q(z*,z) > 0} and X@ = X, lead from Eqn. (4) to Eqn. (10).
Notice that Z(!) = f(x*) since ¢(z*, ) is normalised over x, so that our choices set
up ZW /2@ = f(x*). Identity Eqn. (10) is a special case of identity Eqn. (4). The
optimal A for this f) and f® is

1

hyg =[N f(@*) qla*, 2) + NO(f(2*)/2) f ()] (11)

and our simulations confirm this. It is straightforward to convert code computing
an estimator based on hgy(z) to code computing the optimal estimator obtained
when f(z*) is estimated using Eqn. (11). The estimator derived from h¢,(x) may
be used to seed the iteration defined in Eqn. (5).

3.2 Densities with more than one parameter block
3.2.1 Notation
Let ¥;11 = (%i31,%i42...2p) denote the complement of ¢; = (x1,29...2;) so
that © = (Y 1,2, V). Let Wi, = (27,27 ,...25). Let f(vi 1,2V}, =
f(i1,2i, 97, ,) and

X ={(Wi1, 2i); Wi, 24, V7)) € X, f(i1, mi, ¥74) > 0F

Let Z; = fX; f iz, x|V, ) dipi—idz; and Jz(lﬁi—l,xiw;ﬂ) = f(im1, 2|V, )/ Z;.
Let f(xz}|W%,,) equal the normalised marginal density

Flailvin) = [ Fonaiivia) dier

For the special case 1 = B, X = X is the full space, Zg = Z, and by f(:v*B) we
mean the normalised marginal density

flay) = %/X f(p_1,23) dp_;.

3.2.2 The method of Chib and Jeliazkov
Chib and Jeliazkov use the relation
F@*) = f(@5W3) x f(a3|W3) x -+ x fahy_y[Ty) x f(z}), (12)

to reduce the problem of estimating f(z*) to the problem of estimating f(z}|¥?,,)
foreachi:=1,---,B.

Consider now a Metropolis-Hastings Markov chain with equilibrium f(t;_1, ;| ¥* 1)
Let g;(;, zj|vi—1, ¥}, ;) be the normalised proposal density for the Metropolis-Hastings
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step from x = (1, 23, U, ) to o' = (¢;_1, 2}, Y7, ;). The corresponding Metropolis-
Hastings acceptance probability is

(i, xﬂ‘l’?ﬂ) Qi (5, Tl hia, ‘I’?+1)
f (i, $i|\1’7+1) qi(i, 3| i1, ‘I’?+1)

Let f; i (i) = f(bia |}, \Ij:—f—l) Qi (x5, il i1, ‘I’;'kﬂ) and
zz 1 — {(wl 1, ) (1/% 1,11,'1,\1/“_1) € X ‘Iz(f'?zal"zh/fz 17\11:-}—1) > 0}

Chib and Jeliazkov show that, for:=1,--- | B

o, x3|1i—1, U7, ;) = min |1,

Efi* [, 5[5 1, ‘Il;f+1) Qi (s, T} i1, ‘I’;'k+1)]

: * (13
Efi*,z'—l [a(xz y Ly |wi71, \II'H-I)]

f& Vi) =

7

In this formula “Ej+” is an expectation over F(pi 1, 2:|¥%,) and state space X;* and

“Ef:. 7 1s an expectation over fi":i_l(wz-) and state space X;%;_;. These expectations

2,8—1°
are estimated from samples in the obvious way.

3.2.3 Bridge estimation for spaces of unequal dimension
The relation in Eqn. (12) can be written in a suggestive way. Since
F@imr, 25 |95,) = (@} 1950) f (ima |25, F,)

we have f(z}|Ur,,) = Z;i_1/Z; and it follows that Eqn. (12) is equivalent to the
identity

f —f(x ) X é X —ZB_2 X ZB_I.

fr) = S x G x 22N 2 (14

Consider deriving an estimator for Z; 1/Z; (ie f(zf|¥f,,)) using Eqn. (8). Referring
to Eqn. (8), set

fOW) = f@hi1, 2l VE),
wz‘,i—1(33i|1/1i—1) = Qi($;~k,$z’|¢z‘—1,\1’:+1)

so that we identify f®=9(¢;) in Sec. (2.2) with f7;_;(¢;), in Sec (3.2.2), and

RO () = B, (1) = alal, @il thicr, Wi)) [ f (Wi, 2l W),

X® = &7 and X0 = A% . Note that X© = {z*} is an atom with f =
f(z*), and wig(z1) = q(a%, 71| ¥%), so that Z(O) = f(x*). Substituting these func-
tions in Eqn. (8) and using the detailed balance relations for q(z;, «j|1_1, ¥}, ),
a(zi, z|vi—1, Vi) and f(vi1, 2|V}, ;) we arrive precisely at Eqn. (13). The bridge
estimation formulae Eqn. (6) and Eqn. (8) are identical to the estimation relations
Eqn. (12) and Eqn. (13). It follows that the block update estimators of Chib and

Jeliazkov (2001) are bridge estimators.
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Chib and Jeliazkov build their brldge from a neatly chosen sequence of distributions.
However, their choice of h(?) = h ¢y at each span of the bridge is not optimal, whilst

the optimal A® = h{) is

hS) = [ 1N 4+ (Zi1 [ Z3) f (Wi, 2] U, )N

Here N1 is the effective sample size of a set of samples from f; sio1(¥i). The
Q)

-1

estimator derived from h(o
derived from A, (1;).

is not substantially more difficult to compute than that

4 Conclusions

We have shown that the multi-block Metropolis-Hastings estimators of Chib and
Jeliazkov (2001) are bridge estimators. By choosing the free functions in those
general bridge estimation identities appropriately we arrive at the identity Chib and
Jeliazkov use to define their estimators. Results in Meng and Wong (1996) and
Chen and Shao (1997) lead to efficiency gains in estimation. Simulation results on
very simple single block problems, which we do not report, show that efficiency
gains do indeed result. For multi-block problems these gains are likely to be more
strongly marked, since those bridge estimates involve products. Small efficiency
gains accumulate from one factor to the next.

Clearly one need not use, in the simulations generating the samples S; and S,, the
same ¢(z*, ) one uses in the final estimators. One must have the normalisation of ¢
for the estimators, whereas this is not always needed in the simulation itself. It would
be interesting to know to what extent good simulation-¢’s make good estimation-¢’s.
This point is considered by Chib and Jeliazkov (2001).

Chib and Jeliazkov (2001) assume that the prior normalising constant is known
or can be estimated separately. The alternatives we give above make the same
assumption. In fact we regard this as undesirable compared to the simplest Meng-
Wong estimator 7., which takes fY = fxy and f = fy, and does not require
an independent value for the prior normalising constant. When that information is
available, 71, .., can be beaten for efficiency. However, one would almost always
compute 7p, , , in order to check the estimators we discuss above, since computer
code calculating those estimators is exposed to a wider range of bugs.
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