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Bayesian estimate of credit risk via MCMC with
delayed rejection

Antonietta Mira and Paolo Tenconi

Abstract. We develop a Bayesian hierarchical logistic regression model to pre-
dict the credit risk of companies classified in different sectors. Explanatory
variables derived by experts from balance-sheets are included. Markov chain
Monte Carlo (MCMC) methods are used to estimate the proposed model. In
particular we show how the delaying rejection strategy outperforms the stan-
dard Metropolis-Hastings algorithm in terms of asymptotic efficiency of the
resulting estimates. The advantages of our model over others proposed in the
literature are discussed and tested via cross-validation procedures.

1. Motivation

The aim of this paper is to estimate the default probability (DP) of companies that
apply to banks for loan. The explanatory variables available to us are performance
indicators derived from the balance sheet of each company and the knowledge of
the macro-sector to which the company belongs. For privacy reasons we do not
report how the 4 performance indicators are obtained and the 7 sectors identified.
The data set (Banca Intesa, BCI) consists of 7513 companies of which 1.615 %
defaulted. A more detailed description of the dataset appears in Table 1 where the
unbalanced design is apparent.

The main issues related to DP prediction are: the events of interest are rare
(thus bias and consistency problems arise); the different sectors might present
similar behaviors relative to risk of defaulting; expert analysts have, typically,
strong prior opinions on DP. The logistic regression model we propose is Bayesian,
hierarchical and introduces dependency among different sectors thus addressing
efficiently all the above mentioned issues.
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TABLE 1. Summary of the dataset.

Dimension | % Default

Sector 1 63 0%

Sector 2 638 1.41%
Sector 3 1342 1.49%
Sector 4 1163 1.63%
Sector 5 1526 1.51%
Sector 6 315 9.52%
Sector 7 2466 0.93%

2. The Model

We use a logistic regression, that is we model the logit of the default probability,
as a linear function of the explanatory variables. In the sequel we use the following
notation, indicating vectors with underlined letters:

e n;: number of companies belonging to sector 7, j =1,---,7;

e y; ; : binary observation on company ¢ (i = 1,--- ,n;), belonging to sector
j. The value one indicates a default event;

o z;;: 4 x1 vector of explanatory variables. (performance indicators) for
company ¢ belonging to sector j;

e o : 7 x 1 vector of intercepts, one for each sector;

e 3:4x 1 vector of slopes, one for each performance indicator.

The parameters of interest are o and . We will, informally, indicate by y and =
all the observations on the dependent and explanatory variables respectively.
Adopting a logistic regression model gives rise to the following likelihood:

Baya H H 6’!]1: 1- ‘)1—?]1',_7‘ (21)

where
- exp(oy +ai; B)
S + exp(a; + -'L' 5) .
Following the Bayesian paradigm, prior dlstrlbutions are assigned to the pa-
rameters of interest, in particular we take the prior on 3, p(3), to be a four di-
mensional normal centered at zero (u By = = 0) and with the identity matrix times 64

(2.2)

as the covariance matrix (Xg).

The intercepts, o, are assumed to have normal prior distributions, p(a|ga, 05
independent only given the parameters p, and 2. The mean p,, is unknown with
normal hyper prior, p(us), centered at zero and with variance equal to 64. The
prior on the variance is a Gamma(a,b) distribution with mean equal to 5 and
variance equal to 9.
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The values of the known hyper parameters have been fixed so that the cor-
responding priors are fairly vague. Prior information on DP, elicited by expert
analysts (not available to us), can be incorporated when assigning the values of
these hyper parameters. Typically expert analysts express opinions on the DP, §; ;,
(rather than o and () by assigning them a mean value and a level of confidence
or a variance. Given these measures of location and spread a beta distribution is
assumed on these probabilities and the values of @ and § matching the assigned
prior distributions can be inferred using the inverse logit transformation.

The model implemented has been estimated both using informative and non-
informative priors centered in zero with a very high variance (results reported).
The evidence gained using fictitious informative priors suggests that, in our setting,
the estimates are robust relative to the choice of the prior parameters due to
rather large amount of data that causes the prevalence of the likelihood over prior
influence in the posterior.

The distribution of interest, the posterior of the slopes, intercepts and hyper
parameters, is proportional to

(@, B, ta 0aly, @) o< L, By, ) [ [ pljlpa; 02) p(pa) ploa) p(B)  (2:3)
J
A graphical representation of the proposed model appears in Figure 1.

3. The algorithm

We use a MCMC algorithm (Tierney, 1994) to simulate observations from (2.3),
the 13-dimentional posterior distribution of interest. To improve the performance
of the standard Metropolis-Hastings algorithm (MH) we adopt the delaying rejec-
tion (DR) strategy (Tierney and Mira, 1999, Green and Mira, 2001) with a single
delaying step. This means that, upon rejection of a proposed candidate move, in-
stead of advancing the simulation time and retaining the same position (as in a
standard MH sampler), a second stage candidate is proposed and accepted with a
probability computed to preserve detailed balance relative to the target distribu-
tion (Tierney and Mira, 1999). If this second stage proposal is accepted the chain
moves there, otherwise the same position is retained. In either case, only at this
point, time is advanced. The advantage of the DR strategy is that the resulting
algorithm dominates the standard MH since it produces estimates with a smaller
asymptotic variance, in other words the DR dominates the corresponding single
stage MH sampler in the Peskun ordering (Peskun 1973) as proved by Tierney
and Mira (1999). Also, the proposal distribution, which is typically hard to tune
in regular MH samplers, can be improved upon rejection that is, the second stage
proposal can be different from the first stage one and we are allowed to “learn”
from previously rejected candidates (without loosing the Markovian property).
This allows to locally tune the proposal with a partially (within sweep) adaptive
strategy. Different forms of adaptation can be adopted. As suggested in Green
and Mira (2001) the first stage proposal should permit “bold” moves (having high
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FIGURE 1. Graphical representation of the model.

variance, for example), and should be simple to obtain and to sample from. The
design of higher stage proposals can require more computational time (using for
example more accurate approximations of the target at the current position of
the chain) and should propose more “timid” moves. Along these lines, a possible
strategy to update the proposal, expecially in a varying dimentional setting, is to
use the “zeroth order method” suggested by Brooks et al. 2003 to design the first
stage proposal, the “first order method” (more computationally intensive) at the
second stage and so on.

We tried different updating schemes: single variable updating and block up-
dating of all the variables of interest at once. The former strategy shows a much
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better performance than the latter for both the MH and the DR due to the fact
that the range of variability of a and f is quite different. We will thus only report
the simulation results of the random scan single site updating scheme.

4. Simulation results

The results reported were obtained by running a simulation of length 1024 (= 210)
after a burn-in of 150 steps. Both the DR and the MH were started in the same
position, namely all the variables are initialized at zero. Convergence to the core of
the distribution happens quite fast thus the choice of the relatively short burn-in
and length of the simulation. The proposal distributions are all normals centered
at the current position of the chain thus leading to a random walk Metropolis-
Hastings algorithm. As suggested in Green and Mira (2001) the first stage proposal
is over dispersed and o; (the spread of the first stage proposal), for the various
parameters, has been set, after having run 5 pilot simulations, equal to the values
reported in Table 2. The second stage proposal has a o2 = 01/2. The comparison
in terms of efficiency of the resulting estimates is made with a MH that uses the
same Normal proposals but with spread equal to (o7 + 02)/2.

TABLE 2. Values of o7 used for the first stage proposal in the DR.

a1 1.2
Qg a7, by | 04
Oq 3
b 0.15
ba 0.4
bs 0.3
by 0.15

The simulation results are presented in Table 3 where the mean along the
sample path is reported for both the MH and the DR chain. The numbers in
Table 3 and 5 have been obtained by averaging 5 independent runs of DR and MH
to reduce the simulation bias. We report in parenthesis the standard deviations
obtained over these 5 runs: the DR estimates appear to be more stable then the
MH ones. The drawback of DR is that, in this particular application, it takes a time
almost twice as long to run, compared to the MH. In this regard we point out that
the code is written in GAUSS, an interpreted language, thus comparisons between
DR and MH, that take simulation time into account, are not very meaningful.

Credible (confidence) intervals at 95 % level are also derived from the MCMC
simulation (Table 3), by computing the 0.25 and the 0.975 quantiles of the simu-
lated values.

For comparison purposes, in Table 3 we also report the MLE (maximum
likelihood estimates) of the logistic regression parameters, a and § , obtained
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TaBLE 3. Estimates and credible (confidence) intervals of the pa-
rameters of interest for the Bayesian (MH and DR) and the clas-

sical model (MLE).

MH Est. (sd) | MH Cred. Int. || DR Est. (sd) | DR Cred. Int. || MLE | ML Conf. Int.
oy || -7.06 (0.008) | -10.10;-4.83 | -6.76 (0.003) -9.09; -4.98 -5.25 -5.66 ; -4.84
as || -5.47 (0.085) | -6.26; 4.82 | -5.49 (0.115) | -6.20; 4.84 | -5.25 | -5.66;-4.84
as || 521 (0.020) | 5.75; 472 | 5.21 (0.014) | 5.72; 474 | 525 | -5.66; -4.84
ay || -4.99 (0.005) -5.59 ; -4.45 -5.01 (0.002) -5.58 ; -4.51 -5.25 -5.66 ; -4.84
as || -5.34 (0.237) -5.93 ; -4.83 -5.36 (0.108) -5.93 ; -4.86 -5.25 -5.66 ; -4.84
ae || -4.03 (0.074) | -4.71; 346 | -4.06 (0.067) | -4.67; 354 | -3.54 ~1.41,-2.66
ar || -6.48 (0.024) -7.15; -5.87 -6.50 (0.055) -7.09; -5.97 -5.25 -5.66 ; -4.84
B1 || -0.10 (0.035) -0.20; 0.01 -0.10 (0.075) -0.18 ;0.0 -0.083 -0.16; -0.002
B2 || -1.50 (0.050) -2.35; -0.84 -1.54 (0.066) -2.29; -0.85 -1.08 -1.65; -0.51
Bs | -1.38 (0.053) | -1.73;-1.06 || -1.37 (0.071) | -1.66;-1.09 | -1.13 | -1.47;-0.79
Ba || 0.06 (0.042) -0.026 ; 0.14 0.07 (0.064) -0.01;0.13 0.08 -0.001; 0.16
U || -5-49 (0.054) -6.72 ; -4.34 -5.47 (0.097) -6.43 ; -4.55
o2 | 2.97 (0.203) | 0.605;7.28 || 2.21 (0.123) | 0.65;5.18

using a standard Newton-Raphson procedure. When computing the MLE we use
(2.1) as the likelihood with a dummy variable for the intercept of sector 6 since the
data show a much higher percentage of defaults here (in the sequel we will refer
to this model as the “classical” model). As Table 3 shows, this dummy variable is
justified also by the Bayesian analysis, since the estimated value of the parameters
in this sector are significantly different from the others. This dummy causes the
MLE and the confidence interval for the intercept of sector 6 to be different from
the others.

We preferred a generalized linear regression parametric model (versus, for
example, a neural network) since the signs of the estimated [ parameters are
amenable for a financial interpretation: Variable 1 measures the overall economic
performance of the firm and, as the estimate suggests, there is a negative relation-
ship with the default probability; Variable 2 is related to the ability of the firm to
pick-up external funds, the interpretation of this coefficient sign can be ambigu-
ous; Variable 3 is related to the ability of the firm to generate cash flow to finance
its short term activities, the negative sign of the parameter is expected; Variable
4 measures the inefficiency in administrating commercial activities, the obvious
correlation with default probability is highlighted by the estimated parameter.

For each company we also derive the estimated posterior distribution of the
DP by using a normal kernel density estimator on the values of §; ; computed at
each point in time during the simulation. In Figure 2 two such distributions (for
company 30 in sector 6 and company 20 in sector 2) are plotted: notice the long
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FIGURE 2. Posterior density estimate of DP: company 30 in sec-
tor 6 (top); company 20 in sector 2

right tail behavior in the bottom picture which is quite common for companies
with low risk.

Various estimates of the DP can be computed. Table 4 summaries the results
obtained for the two companies mentioned above. In the first column we report
the value obtained using formula (2.2) and substituting for a;; and f the estimates
obtained with the DR algorithm by averaging over the whole simulation. In the
second column we average the 1024 values of §; ; simulated at each step of the DR
algorithm by substituting for ; and 8 in (2.2) the values of these parameters at
that step in the simulation (these are the same values of 8; ; used to get the kernel
density estimator). In the last column the estimates of the DP obtained by ML
are reported. As we can clearly see the ML highly underestimates the probabilities
of interests while the Bayesian estimates, in particular the ones reported in the
second column, obtained by integrating over the posterior distribution of 8; ;, do
not suffer from this drawback.
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ACF

ACF

FIGURE 3. Autocorrelation functions for az: MH (left) and DR

TABLE 4. Estimates of DP for company 30 in sector 6 and com-
pany 20 in sector 2.

plug in posterior mean of a and j | posterior mean of 6; ; MLE
030,6 0.431 0.434 0.37169
020,2 0.032 0.034 0.02576

All the estimates so far reported have been obtained from the DR simulation,
unless otherwise specified. Similar values would be obtained from the MH sam-
pler since both the algorithms produce Markov chains with the proper stationary
distribution and both have converged according to the performed diagnostics. As
pointed out before, the difference between the MH and the DR is in the asymptotic
variance of the resulting estimators.

To compare the performance of the two samplers, in Figure 3 we present the
graphs of the autocorrelation function (ACF) for one of the parameters of interest,



Bayesian estimate of credit risk 9

as. The picture shows that the ACF for the DR is below the one obtained using
the MH. This fact, true for all the parameters, is a signal of better mixing of the
DR chain which explores the state space in a more efficient way.

For comparison purposes we also estimate the integrated auto correlation
time, 7 = Y72 pk, where py = covp{¢(Xo),p(Xx)}/0o?, ¢ is the function
of interest (we have taken ¢(x) = x), and o2 is the finite variance of ¢ under
the posterior 7. To estimate 7 we used Sokal’s adaptive truncated periodogram
estimator (Sokal, 1989). The results are presented in Tables 5 and 6 and show
that, for all the parameters of interest, the DR outperforms the MH.

TABLE 5. Estimates of 7 for o with MH and DR.

MH | 26.9 50.1 43.2 50.3 54.6 60.6 60.2
DR 17.0 18.4 28.1 28.4 30.1 32.3 35.1

TABLE 6. Estimates of 7 for 8 and the hyper-parameters with
MH and DR.

B B2 B3 B4 Mo a2
MH 10.0 64.5 23.4 5.6 15.9 20.2

DR 7.2 38.1 20.9 4.2 14.6 15.6

To compare the predictive performance of the Bayesian versus the classical
logistic regression model a cross-validation analysis has been performed. In Figures
5, 6,7,8,9,10 and 11 we represent, for each sector, the predicted default and not
default detected by the Bayesian and classical model estimated via MLE (there
is no graph for not defaulted companies for sector 1 since no defaults were ob-
served). To estimate the two models we used 70 % of the total observations while
the remaining sample was used to validate the model. The two samples (training
and validation) are randomly selected but balanced in that they have the same
proportion of defaults for each sector as in the original sample. On the x-axis the
observation number is indicated, on the y-axis the default probability. For the
graphs on the right hand side we would like these probabilities to be as high as
possible and, comparing the classical (solid line) with the Bayesian model (dashed
line) we detect that the proposed model outperforms the classical one for every
sector except the last one (sector 7) which is the sector with observed smallest de-
fault frequency (excluding sector 1, which is a residual sector). As for the graphs
on the left hand side, there are companies that, according to both models, would
not receive any credit line despite the fact that they showed no default, that is,
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both models misclassify these companies and, the Bayesian model is more inclined
toward this.

To have an overall feeling of the comparative performance of the two models
we computed, on the test sample, the root mean squared error of classification:

where y; is either zero or one and 6; is the estimated default probability (for
simplicity we slightly change the notation here). This performance indicator has
been computed on the test sample for both defaulted and not defaulted companies
(thus having n = 30%7513 = 2254) and also for the subset of defaulted companies
alone as well as for the subset of not defaulted ones. The results are reported in
Table 7 and show the overall better performance of the Bayesian model.

TABLE 7. Estimated root mean squared error

MLE | Bayesian
all 0.1282 | 0.1273
not defaulted | 0.0280 | 0.0272
defaulted 0.9646 | 0.9591

Finally, in Figure 4, we show how the percentage of correct classification
for defaulted (right picture) and not defaulted (left picture) companies varies as
the threshold defined to classify them ranges between zero and one. Again the
proposed Bayesian model outperforms the classical one for practically all values
of the threshold.

5. Conclusions and extensions

The proposed model presents various advantages. First the fact that the output
of the Bayesian approach is the estimate of the posterior distribution of the DP
of each company. Having a distribution instead of a punctual value (as obtained
by classical MLE approaches) allows the construction of credible intervals and
the possibility to estimate quantiles to derive performance indicators such as the
analog of the Value at Risk for the default probability. We thus obtain a more
complete and informative picture of the quantity of interest. Furthermore, the
linear parametric model adopted allows for a coherent economic interpretation of
the estimated parameters.

The second advantage is that our procedure does not suffer from bias prob-
lems which are typical for rare events (King and Zeng, 2001). Also, the hierarchical
model allows to estimate DP of sectors where no default event was observed by
taking strength from the data available from other sectors that present a similar
behavior relative to credit risk.
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Finally, since the joint posterior distribution of the DP associated to all com-
panies in all sectors is available one can derive the joint posterior estimates of the
risk associated to a specific sector or to a specific portfolio of loans. The aggrega-
tion involved in computing the risk of a given portfolio should take the covariance
structure derived by the posterior distribution into account.

To compare the predictive performance of the Bayesian versus the classi-
cal model we performed a cross-validation analysis. By computing the root mean
squared error of classification and the percentage of correct classification for a vary-
ing threshold, we show how the Bayesian model overall outperforms the classical
one.

We plan to investigate a model where different slopes are allowed for dif-
ferent sectors and indicators of the economic cycle will be included among the
explanatory variables. A further extension will incorporate time into the analysis:
the performance indicators derived from the balance sheets can be updated every
3 months. Finally, partition models or mixture models can be used to partition
the companies in different sectors.
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