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Second–order mollified derivatives and
optimization∗

Giovanni P. Crespi† Davide La Torre‡ Matteo Rocca§

Abstract

The class of strongly semicontinuous functions is considered. For these func-
tions the notion of mollified derivatives, introduced by Ermoliev, Norkin and
Wets, is extended to the second order. By means of a generalized Taylor’s
formula, second order necessary and sufficient conditions are proved for both
unconstrained and constrained optimization.

Keywords: Mollifiers, Optimization, Smooth approximations, Strong semicontinuity .

1 Introduction

In this paper we extend to the second-order the approach introduced by Ermoliev,
Norkin and Wets [8] to define generalized derivatives even for discontinuous func-
tions, which often arise in applications (see [8] for references). To deal with such
applications a number of approaches have been proposed to develop a subdifferen-
tial calculus for nonsmooth and even discontinuous functions. Among the many
possibilities, let us remember the notions due to Aubin [2], Clarke [5], Ioffe [13],
Michel and Penot [20], Rockafellar [21], in the context of Variational Analysis. The
previous approaches are based on the introduction of first-order generalized deriva-
tives. Extensions to higher-order derivatives have been provided for instance by
Hiriart-Hurruty, Strodiot and Hien Nguyen [12], Jeyakumar and Luc [14], Klatte
and Tammer [15], Michel and Penot [19], Yang and Jeyakumar [26] , Yang [27].
Most of these higher-order approaches assume that the functions involved are of
class C1,1, that is once differentiable with locally Lipschitz gradient, or at least of
class C1. Anyway, another possibility, concerning the differentiation of nonsmooth
functions dates back to the 30’s and is related to the names of Sobolev [25], who
introduced the concept of “weak derivative” and later of Schwartz [24] who gener-
alized Sobolev’s approach with the “theory of distributions”. These tecniques are
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‡Università di Milano, Dipartimento di Economia Politica e Aziendale, via Conservatorio 7,

20122 Milano, Italia. e–mail: davide.latorre@unimi.it
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widely used in the theory of partial differential equations, in Mathematical Physics
and in related problems, but they have not been applied to deal with optimization
problems involving nonsmooth functions, until the work of Ermoliev, Norkin and
Wets.
The tools which allow to link the “modern” and the “ancient” approaches to Non-
smooth Analysis are those of “mollifier” and of “mollified functions”. More specifi-
cally, the approach followed by Ermoliev, Norkin and Wets appeals to some of the
results of the theory of distributions. They associate with a point x ∈ Rn a family
of mollifiers (density functions) whose support tends toward x and converges to the
Dirac function. Given such a family, say {ψε, ε > 0}, one can define a family of
mollified functions associated to a function f : Rn → R as the convolution of f and
ψε (mollified functions will be denoted by fε). Hence a mollified function can be
viewed as an averaged function. The mollified functions possess the same regularity
of the mollifiers ψε and hence, if they are at least of class C2, one can define first
and second-order generalized derivatives as the cluster points of all possible values
of first and second-order derivatives of fε. For more details one can see [8].
In this paper, section 2 recalls the notions of mollifier, of epi-convergence of a se-
quence of functions and some definitions introduced in [8]. Section 3 is devoted
to the introduction of second-order derivatives by means of mollified functions; sec-
tions 4 and 5 deal, respectively, with second-order necessary and sufficient optimality
conditions for unconstrained and constrained problems.

2 Preliminaries

To follow the approach presented in [8] we first need to introduce the notion of
mollifier (see e.g. [4]):

Definition 1 A sequence of mollifiers is any sequence of functions ψ := {ψε} :
Rm → R+, ε ↓ 0, such that:

i) suppψε := {x ∈ Rn | ψε(x) > 0} ⊆ ρεclB, ρε ↓ 0,

ii)

∫
Rn
ψε(x)dx = 1,

where B is the unit ball in Rn and clX means the closure of the set X.

Although in the sequel we may consider general families of mollifiers, some ex-
amples may be useful:

Example 1 Let ε be a positive number.

i) The functions:

ψε(x) =

{
1
εm
, max1,...,m |xi| ≤ ε

2

0, otherwise

are called Steklov mollifiers.
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ii) The functions:

ψε(x) =

{
C
εm

exp
(

ε2

‖x‖2−ε2

)
, if ‖x‖ < ε

0, if ‖x‖ ≥ ε

with C ∈ R such that
∫

Rm ψε(x)dx = 1, are called standard mollifiers.

It is easy to check that both the previous families of functions are of class C∞.

Definition 2 ([4]) Given a locally integrable function f : Rm → R and a sequence
of bounded mollifiers, define the functions fε(x) through the convolution:

fε(x) :=

∫
Rm

f(x− z)ψε(z)dz.

The sequence fε(x) is said a sequence of mollified functions.

In the following all the functions considered will be assumed to be locally integrable.

Remark 1 There is no loss of generality in considering f : Rm → R. The results
in this paper remain true also if f is defined on an open subset of Rm.

Some properties of the mollified functions can be considered classical:

Theorem 1 ([4]) Let f ∈ C (Rm). Then fε converges continuosly to f , i.e. fε(xε) →
f(x) for all xε → x. In fact fε converges uniformly to f on every compact subset of
Rm as ε ↓ 0.

The previous convergence property can be generalized.

Definition 3 ([1], [23]) A sequence of functions {fn : Rm → R} epi–converges to
f : Rm → R at x, if:

i) lim infn→+∞ fn(xn) ≥ f(x) for all xn → x;

ii) limn→+∞ fn(xn) = f(x) for some sequence xn → x.

The sequence {fn} epi–converges to f if this holds for all x ∈ Rm, in which case we
write f = e− lim fn.

Remark 2 It can be easily checked that when f is the epi–limit of some sequence
fn then f is lower semicontinuous. Moreover if fn converges continuously, then also
epi–converges.

Definition 4 ([8]) A function f : Rm → R is said strongly lower semicontinuous
(s.l.s.c.) at x if it is lower semicontinuous at x and there exists a sequence xn → x
with f continuous at xn (for all n) such that f(xn) → f(x). The function f is
strongly lower semicontinuous if this holds at all x.
The function f is said strongly upper semicontinuous (s.u.s.c.) at x if it is upper
semicontinuous at x and there exists a sequence xn → x with f continuous at xn
(for all n) such that f(xn) → f(x). The function f is strongly lower semicontinuous
if this holds at all x.

Proposition 1 If f : Rm → R is s.l.s.c., then −f is s.u.s.c. .

Proof: It follows directly from the definitions. 2
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Theorem 2 ([8]) Let εn ↓ 0. For any s.l.s.c. funcion f : Rm → R, and any
associated sequence fεn of mollified functions we have f = e− lim fεn.

Remark 3 It can be seen that, according to Remark 2, Theorem 1 follows from
Theorem 2.

Theorem 3 Let εn ↓ 0. For any s.u.s.c. function f : Rm → R and any associated
sequence fεn of mollified functions, we have for any x ∈ Rm:

i) lim supn→+∞ fεn(xn) ≤ f(x) for any sequence xn → x;

ii) limn→+∞ fεn(xn) = f(x) for some sequence xn → x.

Proof: Since f is s.u.s.c., we have −f s.l.s.c. and thus Theorem 2 applies:

i) for any sequence xn → x, lim infn→+∞ (− fεn(xn)) ≥ −f(x), which implies:

lim sup
n→+∞

fεn(xn) = − lim inf
n→+∞

(− fεn(xn)) ≤ f(x);

ii) for some sequence xn → x, limn→+∞ ( − fεn(xn)) = −f(x), from which we
conclude:

lim
n→+∞

fεn(xn) = f(x).

2

The following Proposition plays a crucial role in the sequel.

Proposition 2 ([24, 25]) Whenever the mollifiers ψε are of class Ck, so are the
associated mollified functions fε.

By means of mollified functions it is possible to define generalized directional
derivatives for a nonsmooth function f , which, under suitable regularity of f , coin-
cide with Clarke’s generalized derivative. Such an approach has been deepened by
several authors (see e.g. [7, 8]) in the first–order case.

Definition 5 ([8]) Let f : Rm → R, εn ↓ 0 as n→ +∞ and consider the sequence
{fεn} of mollified functions with associated mollifiers ψεn ∈ C1. The upper mollified
derivative of f at x in the direction d ∈ Rm, with respect to (w.r.t.) the mollifiers
sequence ψεn is defined as:

D ψf(x, d) := sup
xn→x

lim sup
n→+∞

∇fεn(xn)>d.

Similarly, we might introduce the following:

Definition 6 Let f : Rm → R, εn ↓ 0 as n → +∞ and consider the sequence
{fεn} of mollified functions with associated mollifiers ψεn ∈ C1. The lower mollified
derivative of f at x in the direction d ∈ Rm, w.r.t. the mollifiers sequence ψεn is
defined as:

D ψf(x, d) := inf
xn→x

lim inf
n→+∞

∇fεn(xn)>d.
4



In [8] it has been defined also a generalized gradient w.r.t. the mollifiers sequence
ψεn , in the following way:

∂ψf(x) := {L := Lim sup
n→+∞

∇fεn(xn), xn → x}

i.e. the set of cluster points of all possible sequences {∇fεn(xn)} such that xn → x.
Clearly (see e.g. [8]) for the above mentioned upper mollified derivative it holds:

D ψf(x; d) ≥ sup
L∈∂ψf(x)

L>d,

D ψf(x; d) ≤ inf
L∈∂ψf(x)

L>d.

This generalized gradient has been used in [7] and [8] to prove first–order necessary
optimality conditions for nonsmooth optimization. The equivalence with the well–
known notions of Nonsmooth Analysis is contained in the following proposition:

Proposition 3 ([8]) Let f : Rm → R be locally Lipschitz at x; then ∂ψf(x) coin-
cides with Clarke’s generalized gradient and Dψf(x, d) coincides with Clarke’s gen-
eralized derivative [5].

Remark 4 From the previous proposition and the well–known properties of Clarke’s
generalized gradient, we deduce that, if f and ψε ∈ C1, then ∂ψf(x) = ∇f(x).

Properties of these generalized derivatives and their applications to optimization
problems are investigated in [7, 8]. By the way, for the aim of our paper, we will
need to point out the following proposition (contained in [8]) of which we give an
alternative proof.

Proposition 4 Let f : Rm → R and x ∈ Rm. Then:

i) D ψf(·; d) is upper semicontinuous (u.s.c.) at x for all d ∈ Rm;

ii) D ψf(·; d) is lower semicontinuous (l.s.c.) at x for all d ∈ Rm.

Proof: We can prove only i), since ii) follows with the same reasoning.
Assume d ∈ Rm is fixed. First we note that the upper semicontinuity is obviuous if
D ψf(x; d) = +∞. Otherwise, for all K > D ψf(x; d), there exists a neighborhood
U(x) and an integer n0 so that:

∇fεn(x′)>d < K, ∀n > n0, ∀x′ ∈ U(x).

Therefore, for each x′ ∈ U(x), we have:

D ψf(x′; d) = sup
xn→x′

lim sup
n→+∞

∇fεn(xn)>d ≤ K,

which shows that D ψf(·; d) is u.s.c. indeed. 2
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Furthermore, we point out the following property:

Proposition 5 D ψf(x; ·) and D ψf(x; ·) are positively homogeneous functions.
Furthermore, if D ψf(x; ·) (D ψf(x; ·) respectively) is finite then it is subadditive
(resp. superadditive) and hence convex (resp. convcave) as a function of the direction
d.

Proof: The positive homogeneity is trivial. Concerning the second part of the The-
orem, we have, ∀d1, d2 ∈ Rm:

D ψf(x; d1 + d2) = sup
xn→x

lim sup
n→+∞

∇f(xn)
>(d1 + d2) ≤

≤ sup
xn→x

lim sup
n→+∞

∇f(xn)
>d1 + sup

xn→x
lim sup
n→+∞

∇f(xn)
>d2 =

= D ψf(x; d1) +D ψf(x; d2),

and henceD ψf(x; ·) is subadditive. Convexity follows considering positive homogenei-
ty and subadditivity. The proof for D ψf(x; ·) is analogous. 2

3 Second–order mollified derivatives

As suggested in [8], by requiring some more regularity of the mollifiers, it is possible
to construct also second–order generalized derivatives.

Definition 7 Let f : Rm → R, εn ↓ 0 and consider the sequence of mollified func-
tions {fεn}, obtained from a family of mollifiers ψεn ∈ C2. We define the second–
order upper mollified derivative of f at x in the directions d and v ∈ Rm, w.r.t. to
the mollifiers sequence {ψεn}, as:

D 2
ψf(x; d, v) := sup

xn→x
lim sup
n→+∞

d>Hfεn(xn)v,

where Hfεn(x) is the Hessian matrix of the function fεn ∈ C2 at the point x.

Definition 8 Let f : Rm → R, εn ↓ 0 and consider the sequence of mollified func-
tions {fεn}, obtained from a family of mollifiers ψεn ∈ C2. We define the second–
order lower mollified derivative of f at x in the directions d and v ∈ Rm, w.r.t. the
mollifiers sequence {ψεn}, as:

D 2
ψf(x; d, v) := inf

xn→x
lim inf
n→+∞

d>Hfεn(xn)v.

Proposition 6 Let f : Rm → R and x ∈ Rm.

i) If λ > 0, then:

D 2
ψλf(x; d) = λD 2

ψf(x; d);

D 2
ψλf(x; d) = λD 2

ψf(x; d).

Moreover, if λ < 0 we get:

D 2
ψλf(x; d) = λD 2

ψf(x; d).
6



ii) The maps (d, v) → D 2
ψf(x; d, v) and (d, v) → D 2

ψf(x; d, v) are symmetric

(that is D 2
ψf(x; d, v) = D 2

ψf(x; v, d) and D 2
ψf(x; d, v) = D 2

ψf(x; v, d)).

iii) The functions D 2
ψf(x; d, ·) and D 2

ψf(x; d, ·) are positively homogeneous, for
any fixed d ∈ Rm.

iv) If D 2
ψf(x; ·, ·) (D 2

ψf(x; ·, ·) resp.) is finite, then it is sublinear (superlinear).

v) D 2
ψf(x; d,−v) = −D 2

ψf(x; d, v).

vi) D 2
ψf(·; d, v) is upper semicontinuous (u.s.c.) at x for every d, v ∈ Rm.

vii) D 2
ψf(·; d, v) is lower semicontinuous (l.s.c.) at x for every d, v ∈ Rm.

Proof: i), ii) and iii) are obvious from the definitions. The proof of iv) is similar to
that of Proposition 5.
To prove v), observe that we have:

D 2
ψf(x; d,−v) = sup

xn→x
lim sup
n→+∞

−d>Hfεn(xn)v =

= sup
xn→x

− lim inf
n→+∞

d>Hfεn(xn)v =

= − inf
xn→x

lim inf
n→+∞

d>Hfεn(xn)v =

= −D 2
ψf(x; d, v).

The prooves of vi) and vii) are analogous to that of Proposition 4. 2

In the following we will set for simplicity:

D 2
ψf(x; d) := D 2

ψf(x; d, d)

and:
D 2

ψf(x; d) := D 2
ψf(x; d, d).

Remark 5 Clearly the previous derivatives may be infinity. A sufficient condition
for these derivatives to be finite is to require f ∈ C1,1 (that is once differentiable with
locally Lipschitz partial derivatives). In fact, in this case the second–order mollified
derivatives can be viewed as first–order mollified derivatives of a locally Lipschitz
function and thus Proposition 3 applies.

Remark 6 It is important to underline that the second–order mollified derivatives
are dependent on the specific family of mollifiers which we choose and also on the
sequence εn. Practically by changing one of these choices we might obtain a different
result for D 2

ψf(x; d, v). However, the results which follow hold true for any mollifiers
sequence (provided they are at least of class C2) and any choice of εn. Moreover, by
Proposition 4.10 in [8], we have that, if f ∈ C1, then for any choice of the sequence
of mollifiers and of εn, D 2

ψf(x; d, v) coincides with:

lim sup
x′→x, t↓0

∇f(x′ + td)>v −∇f(x′)>v

t
.

So, when f is of class C1,1 at x, D 2
ψf(x; d, v) coincides with the derivative introduced

in [12] (thet is second–order generalized derivative in Clarke’s sense). Hence when
f ∈ C1,1 it is possible to recover results presented in [12] from those which follow.
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Remark 7 One of the main advantages of considering mollified derivatives is that
we need not to go through a first–order approximation to get the second–order
derivative. Practically we derive both first and second–order generalized derivatives
as the limit of two indipendent well defined sequences of “numbers”.

Using these notions of derivatives, we shall introduce a Taylor’s formula for
strongly semicontinuous functions:

Theorem 4 (Lagrange theorem and Taylor’s formula) Let f : Rm → R be a
s.l.s.c. (resp. s.u.s.c.) function and let εn ↓ 0, t > 0, d and x ∈ Rm.

i) If ψεn ∈ C1 is a sequence of mollifiers, there exists a point ξ ∈ [x, x+ td] such
that:

f(x+ td)− f(x) ≤ tD ψf(ξ; d)
(f(x+ td)− f(x) ≥ tD ψf(ξ; d))

.

ii) If ψεn ∈ C2 is a sequence of mollifiers, there exists ξ ∈ [x, x+ td] such that:

f(x+ td)− f(x) ≤ tD ψf(x; d) + t2

2
D 2

ψf(ξ; d),

(f(x+ td)− f(x) ≥ tD ψf(x; d) + t2

2
D 2

ψf(ξ; d))

assuming that the righthand sides are well defined, i.e. it does not happen the
expression +∞−∞.

Proof: We prove only the second part. The proof of the first part is similar.
For any xn → x, we can easily write Taylor’s formula for each mollified function:

fεn(xn + td)− fεn(xn) = t∇fεn(xn)>d+
t2

2
d>Hfεn(ξn)d

where ξn ∈ (xn, xn + td). Without loss of generality, we can think that ξn → ξ ∈
[x, x+ td]. Now, we consider the lim sup as n→ +∞ and the definition of D ψf(x; d)
and D 2

ψf(x; d) to get:

lim sup
n→+∞

fεn(xn + td)− lim sup
n→+∞

fεn(xn) ≤ lim sup
n→+∞

[fεn(xn + td)− fεn(xn)] ≤

≤ t lim sup
n→+∞

∇fεn(xn)>d+
t2

2
lim sup
n→+∞

d>Hfεn(ξn)d ≤ tD ψf(x; d) +
t2

2
D 2

ψf(ξ; d).

By the strong lower semicontinuity assumed on f , there exists a sequence yn → x
such that:

lim
n→+∞

fεn(yn) = f(x).

Thus, recalling Theorem 2, we have, for this sequence:

lim sup
n→+∞

fεn(yn + td)− lim sup
n→+∞

fεn(yn) = lim sup
n→+∞

fεn(yn + td)− lim
n→+∞

fεn(yn) ≥

lim inf
n→+∞

fεn(yn + td)− lim
n→+∞

fεn(yn) ≥ f(x+ td)− f(x),

from which the thesis follows.
The other formula follows in a similar way, recalling Theorem 3 instead of Theorem
2. 2

It should be clear that, for both semicontinuity of the generalized derivatives and
Taylor’s formula, we need some conditions to avoid “triviality” of the derivatives,
such as f locally Lipschitz so that, as already seen, the first–order mollified derivative
is finite, since it coincides with Clarke’s derivative.
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4 Unconstrained Optimization

In this section we wish to give second–order necessary and sufficient conditions for
unconstrained optimization problems of the form:

P1) minx∈Ω f(x)

where f : Rm → R and Ω ⊆ Rm is an open set.
Some first–order necessary optimality conditions have already been studied in

[8], under very weak hypotheses on f .

Theorem 5 ([8]) Let f : Rm → R be s.l.s.c. and assume that x0 is a local solution
of problem P1). Then for any sequence of mollifiers, we have:

0 ∈ ∂ψf(x0).

Theorem 6 Let x0 be a local solution of problem P1) with f : Rm → R s.l.s.c..
Then the following conditions hold:

i) D ψf(x0; d) ≥ 0, ∀d ∈ Rm .

ii) D 2
ψf(x0; d) ≥ 0, ∀d ∈ Rm such that D ψf(x0; d) = 0 .

Proof:

i) By Theorem 5 we know 0 ∈ ∂ψf(x0). Thus, by definition:

D ψf(x0; d) ≥ 0.

ii) Let d be such that D ψf(x0; d) = 0 and apply Taylor’s formula to get:

f(x0 + td)− f(x0) ≤
t2

2
D 2

ψf(ξ; d),

for t > 0, d ∈ Rm and ξ ∈ [x0, x0 + td]. Fot t “small enough”, since x0 is a
local minimizer we obtain f(x0 + td)− f(x0) ≥ 0 and hence, using the upper
semicontinuity of D 2

ψf(·; d):

0 ≤ lim sup
t↓0

2
f(x0 + td)− f(x0)

t2
≤ lim sup

t↓0
D 2

ψf(ξ; d) ≤

lim sup
x→x0

D 2
ψf(x; d) ≤ D 2

ψf(x0; d),

so that condition ii) is proved.

2
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Theorem 7 Let f : Rm → R be s.u.s.c.. Moreover, assume that at x0 the following
conditions hold for any d ∈ S1 (the unit sphere in Rm):

i) D ψf(x0; d) > 0 implies that there exist a real number α(d) > 0 and a neigh-
borhood of the direction d, U(d) such that:

D ψf(x0 + td′; d′) > 0, ∀t ∈ (0, α(d)), ∀d′ ∈ U(d).

ii) D ψf(x0; d) = 0 implies that there exist a real number α(d) > 0 and a neigh-
borhood of d, U(d), such that D ψf(x0; d

′) ≥ 0 and D 2
ψf(x0 + td′; d′) > 0,

∀t ∈ (0, α(d)) and ∀d′ ∈ U(d).

Then x0 is a (strict) local solution of P1).

Proof: By contradiction, assume that there exists xn such that: f(xn)− f(x0) ≤ 0.
It can be easily written xn = x0 + tndn, dn ∈ S1, dn → d ∈ S1, tn ↓ 0.

i) If D ψf(x0; d) > 0, then:

0 ≥ f(x0 + tndn)− f(x0) ≥ tnD ψf(ξn; dn),

where ξn ∈ [x0, x0 + tndn]. Which contradict the hypothesis.

ii) If D ψf(x0; d) = 0, then we have the following contradiction:

0 ≥ f(x0 + tndn)− f(x0) ≥ tnD ψf(x0; dn) +
t2n
2
D 2

ψf(ξn; dn) > 0,

for n sufficiently large.

2

5 Constrained Optimization

In this section we give second–order necessary and sufficient optimality conditions
for constrained optimization problems. We begin considering the following problem:

P2) minx∈K f(x)

where K ⊆ Rm.

Definition 9 The cone of feasible directions of the set K at x is given by:

F (K, x) := {d ∈ Rm | ∃α > 0 : ∀t ∈ [0, α] , x+ td ∈ K} .

Definition 10 The set:

T (K, x0) := {d ∈ Rm | ∃ {dn} → d, ∃ {tn} ↓ 0 : x0 + tndn ∈ K}

is called the Bouligand tangent cone to the set K at x.
10



Clearly we have the following inclusion:

F (K, x) ⊆ T (K, x).

Theorem 8 Let f : Rm → R be s.l.s.c.. If x0 ∈ K is a local solution of problem
P2), then:

i) D ψf(x0; d) ≥ 0, ∀d ∈ F (K, x0),

ii) D 2
ψf(x0; d) ≥ 0, ∀d ∈ F (K, x0) such that D ψf(x0; d) = 0.

Proof: Let x0 be a local minimizer of f over K. For t “sufficiently small” and
d ∈ F (K, x0), we have:

0 ≤ f(x0 + td)− f(x0)

t
≤ D ψf(ξ; d),

for some ξ ∈ [x0, x0 + td]. Taking lim sup as t ↓ 0 of both members and recalling the
upper semicontinuity of D ψf(·; d), we obtain:

0 ≤ lim sup
t↓0

D ψf(ξ; d) ≤ D ψf(x0; d).

To prove condition ii), let d ∈ F (K, x0) be such that D ψf(x0; d) = 0. Using
Theorem 4, we have, for t > 0 “sufficiently small”:

0 ≤ f(x0 + td)− f(x0) ≤ +
t2

2
D 2

ψf(ξ; d),

where ξ ∈ [x0, x0 + td]. Dividing by t2, taking lim sup for t ↓ 0 and using the upper
semicontinuity of D 2

ψf(·; d), the thesis follows. 2

Theorem 9 Let f : Rm → R be s.u.s.c., x0 ∈ K and assume that ∀d ∈ T (K, x0)∩S1

one of the following conditions holds:

i) if D ψf(x0; d) > 0, then there exist a real number α(d) > 0 and a neighborhood
of the direction d, say U(d) such that:

D ψf(x0 + td′; d′) > 0, ∀t ∈ (0, α(d)), ∀d′ ∈ U(d) ∩ S1;

ii) if D ψf(x0; d) = 0, then there exist a real number α(d) > 0 and a neighborhood
of the direction d, say U(d), such that, for each t ∈ (0, α(d)) and for each
d′ ∈ U(d) ∩ S1 we have D ψf(x0; d

′) ≥ 0 and D 2
ψf(x0 + td′; d′) > 0.

Then x0 is a local solution of problem P2).

Proof: Ab assurdo, let assume there exists a feasible sequence {xn} → x0 such that
f(xn) < f(x0). It can be easily written, without loss of generality xn = x0 + tndn,
dn ∈ S1, dn → d ∈ S1, tn ↓ 0, and hence d ∈ T (K, x0).

11



i) If D ψf(x0; d) > 0, then, as n→ +∞:

0 ≥ f(x0 + tndn)− f(x0) ≥ tnD ψf(ξn; dn),

with ξn ∈ [x0, x0 + tndn], which is trivially a contradiction.

ii) If D ψf(x0; d) = 0, then:

0 ≥ f(x0 + tndn)− f(x0) ≥ tnD ψf(x0; dn) +
t2

2
D 2

ψf(ξn; dn),

with ξn ∈ [x0, x0 + tndn], which is again a contradiction.

2

Now we deal with the following constrained optimization problem:

P3) min f(x)
s.t.

gi(x) ≤ 0, i = 1, . . . , r

where f, gi : Rm → R. We will define the set of active constraints at a point
x0 as the index set I(x0) : {i = 1, . . . , r : gi(x0) = 0} and the feasible set as
Γ := {x ∈ Rm : gi(x) ≤ 0, i = 1, . . . , r}.
Concerning this problem, we will first investigate first–order conditions expressed
by means of mollified derivatives.

Lemma 1 (Generalized Abadie Lemma) Let f and gi, i ∈ I(x0) be s.l.s.c., gi,
i, /∈ I(x0) be u.s.c. and assume that x0 ∈ Γ is a local solution of problem P3).
Then @d ∈ Rm such that: {

D ψf(x0; d) < 0
D ψgi(x0; d) < 0, i ∈ I(x0)

Proof: Since x0 is a local solution of P3), we can easily check that, ∀d ∈ Rm,
@α(d) > 0 such that ∀t ∈ (0, α(d)):{

D ψf(x0 + td; d) < 0
D ψgi(x0 + td; d) < 0, i ∈ I(x0)

Infact, if for some d such an α(d) would exist, from Theorem 4 we would get,
∀t ∈ (0, α(d)):

f(x0 + td) < f(x0)
and

gi(x0 + td) < 0, i ∈ I(x0).

Since gi, i /∈ I(x0) are u.s.c. we obtain also, for t “small enough”, gi(x0 + td) <
0, i /∈ I(x0). This fact contradicts that x0 ∈ Γ is a local solution of P3).
Hence, for any fixed d ∈ Rm one can find a sequence tn ↓ 0 such that for all n it
holds or D ψf(x0 + tnd; d) ≥ 0 either D ψgi(x0 + tnd; d) ≥ 0, for some fixed i ∈ I(x0).
Recalling that the first–order upper mollified derivative is u.s.c. we obtain that
either D ψf(x0; d) ≥ 0 or D ψgi(x0; d) ≥ 0 and hence we get the thesis. 2
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Theorem 10 (Generalized F. John Conditions) Let f, gi, i ∈ I(x0) be s.l.s.c.
and gi, i /∈ I(x0) be u.s.c.. Assume that x0 ∈ Γ is a local solution of problem P3)
and that D ψf(x0; ·) and D ψgi(x0; ·), i ∈ I(x0) are finite.
Then there exist scalars τ ≥ 0, λi ≥ 0, i ∈ I(x0), not all zero, such that:

τD ψf(x0; d) +
∑

i∈I(x0) λiD ψgi(x0; d) ≥ 0, ∀d ∈ Rm. (1)

Proof: From the previous Lemma we know that the system:{
D ψf(x0; d) < 0
D ψgi(x0; d) < 0 i ∈ I(x0)

has no solution. Since the first–order upper mollified derivatives are convex (Propo-
sition 5), from a well known Theorem of the alternative ([3] Theorem 7.1.2), we
obtain the thesis. 2

Remark 8 Of course a relevant question is which conditions would ensure τ > 0
(or equivalently τ = 1) in formula (1). It can be easily seen that this is the case if
the following generalized Slater–type constraint qualification condition holds:

∃d ∈ Rm such that D ψgi(x0; d) < 0, i ∈ I(x0).

Now we prove necessary and sufficient second–order optimality conditions for
problem P3).

Theorem 11 Let f, gi, i ∈ I(x0) be s.l.s.c., gi, i /∈ I(x0) be u.s.c. and assume that
x0 ∈ Γ is a local solution of problem P3). Moreover assume that D ψf(x0; ·) and
D ψgi(x0; ·), i ∈ I(x0) are finite.
Then, if τ ≥ 0, λi ≥ 0, i ∈ I(x0) satisy (1), the following condition holds:

if d ∈ F (Γ(λ), x0) is such that τD ψf(x0; d) +
∑

i∈I(x0) λiD ψgi(x0; d) = 0

then τD 2
ψf(x0; d) +

∑
i∈I(x0) λiD 2

ψgi(x0; d) ≥ 0
(2)

where Γ(λ) = {x ∈ Γ |
∑

i∈I(x0) λigi(x) = 0}.

Proof: Let d ∈ F (Γ(λ), x0) be such that τD ψf(x0; d) +
∑

i∈I(x0) λiD ψgi(x0; d) = 0

and observe that, since D ψf(x0; ·) and D ψgi(x0; ·), i ∈ I(x0) are finite, we can write,
for t > 0:

f(x0 + td)− f(x0) ≤ tD ψf(x0; d) + t2

2
D 2

ψf(ξ; d)

gi(x0 + td)− gi(x0) ≤ tD ψgi(x0; d) + t2

2
D 2

ψgi(ξi; d), i ∈ I(x0)

where ξ, ξi ∈ [x0, x0 + td].
Hence we have:

τf(x0 + td) +
∑
i∈I(x0)

λigi(x0 + td)− τf(x0)−
∑
i∈I(x0)

λigi(x0) ≤

13



≤ t2

2
[τD 2

ψf(ξ; d) +
∑
i∈I(x0)

λiD 2
ψgi(ξi; d)].

For t “small enough”, the lefthandside is nonnegative and hence, using the upper
semicontinuity of second–order mollified derivatives:

0 ≤ lim sup
t↓0

[τD 2
ψf(ξ; d) +

∑
i∈I(x0)

λiD 2
ψgi(ξi; d)] ≤

≤ τ lim sup
t↓0

D 2
ψf(ξ; d) +

∑
i∈I(x0)

λi lim sup
t↓0

D 2
ψgi(ξi; d) ≤

≤ τD 2
ψf(x0; d) +

∑
i∈I(x0)

λiD 2
ψgi(x0; d),

and so we get the thesis. 2

Theorem 12 Let f, gi, i ∈ I(x0) be s.u.s.c. and x0 ∈ Γ. Moreover, assume there
exist scalars λi ≥ 0, i ∈ I(x0) such that ∀d ∈ T (Γ, x0) ∩ S1 one of the following
conditions holds:

i) If D ψf(x0; d) +
∑

i∈I(x0) λiD ψgi(x0; d) > 0, then there exist a real α(d) > 0

and a neighborhood of the direction d, U(d), so that:

D ψf(x0 + td′; d′) +
∑

i∈I(x0) λiD ψgi(x0 + td′; d′) > 0 ∀t ∈ (0, α(d)), ∀d′ ∈ U(d).

ii) If D ψf(x0; d) +
∑

i∈I(x0) λiD ψgi(x0; d) = 0, then there exist a real α(d) > 0

and a neighborhood of the direction d, U(d), so that:

D 2
ψf(x0 + td′; d′) +

∑
i∈I(x0) λiD 2

ψgi(x0 + td′; d′) > 0 ∀t ∈ (0, α(d)), ∀d′ ∈ U(d).

Then x0 is a (strict) local solution of P3).

Proof: By contradiction assume there exists a feasible sequence {xn} → x0 so that
f(xn)− f(x0) ≤ 0. We shall write xn = x0 + tndn for some dn → d ∈ T (Γ, x0) ∩ S1.

i) If D ψf(x0; d) +
∑

i∈I(x0) λiD ψgi(x0; d) > 0, then we would have:

f(x0 + tndn)− f(x0) ≥ tnD ψf(ξn; dn)
and gi(x0 + tndn)− gi(x0) ≥ tnD ψgi(ξ

i
n; dn), i ∈ I(x0)

where ξn, ξ
i
n ∈ [x0, x0 + tndn]. Using multipliers λi, we get:

0 ≥ f(x0 + tndn) +
∑
i∈I(x0)

λigi(x0 + tndn)− f(x0)−
∑
i∈I(x0)

λigi(x0) ≥

≥ tnD ψf(ξn; dn) + tn
∑
i∈I(x0)

λiD ψgi(ξ
i
n; dn)

which contradict the hypothesis for n large enough.
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ii) If D ψf(x0; d) +
∑

i∈I(x0) λiD ψgi(x0; d) = 0, then we shall write:

f(x0 + tndn)− f(x0) ≥ tnD ψf(x0; dn) + t2n
2
D 2

ψf(ξn; dn)

and gi(x0 + tndn)− gi(x0) ≥ tnD ψgi(x0; dn) + t2n
2
D 2

ψgi(ξ
i
n; dn), i ∈ I(x0)

where ξn, ξ
i
n ∈ [x0, x0 + tndn]. Using multipliers λi and the assumption, we

get:

0 ≥ f(x0 + tndn) +
∑
i∈I(x0)

λigi(x0 + tndn)− f(x0)−
∑
i∈I(x0)

λigi(x0) ≥

≥ t2n
2
D 2

ψf(ξn; dn) +
t2n
2

∑
i∈I(x0)

λiD 2
ψgi(ξ

i
n; dn)

which contradict again the hypothesis for n large enough.

2
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