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COALESCENCE TIME AND SECOND

LARGEST EIGENVALUE MODULUS IN THE

MONOTONE REVERSIBLE CASE

Fabrizio Leisen∗and Antonietta Mira†

July 27, 2006

Abstract

If T is the coalescence time of the Propp and Wilson [15], perfect sim-
ulation algorithm, the aim of this paper is to show that T depends on the
second largest eigenvalue modulus of the transition matrix of the under-
lying Markov chain. This gives a relationship between the ordering based
on the speed of convergence to stationarity in total variation distance and
the ordering defined in terms of speed of coalescence in perfect simulation.

1 Introduction

In [15], Propp and Wilson define an algorithm to sample ”exactly” from a
probability distribution π defined on a finite set E. To this aim, we need
a Markov chain that has π as its unique stationary distribution. The
updating rule of the Markov chain can be considered as a function:

φ : E × [0, 1] → E

(x,U) → φ(x,U)

where U is a uniform random variable on the interval [0, 1]. Let
P = {pij}i,j∈E be the transition matrix of the Markov chain, then
pij = P (φ(i, U) = j). Clearly, given a distribution of interest π, the
choice of the Markov chain is not unique, and an open question is how
this choice can be made ”optimally” in some sense. For Markov chains
reversible with respect to π, we can define an ordering, called ”speed of
convergence”, that is based on the second largest eigenvalue modulus
(SLEM throughout the paper) of the transition matrix (see [12] for a
survey on orderings for Markov chains). In this ordering convergence is
measured in terms of total variation distance. The purpose of this paper
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is to show that, in monotone reversible cases, the speed of convergence
ordering implies an ordering on the coalescence times. In Section 2, we
review the Propp and Wilson perfect simulation algorithm and set the
notation. In Section 3 we give preliminary theorems and in Section 4 we
state the main result that will be used, in Section 5, to define an
ordering for the coalescence times.

2 Propp and Wilson exact algorithm

In their seminal paper, [15], Propp and Wilson device a way to turn a
Markov chain Monte Carlo algorithm (MCMC) into a perfect simulation
algorithm. It is well know that in MCMC the crucial problem is how to
detect when the Markov chain has reached its stationary regime. Many
convergence diagnostics have been designed that aim at detecting failure
of convergence based on the simulated path of the Markov chain. All
these convergence diagnostics can at most give negative answers but will
never reassure the user on the fact that their Markov chains have reached
stationarity. Propp and Wilson propose a clever way to simulate a Markov
chain so that at the end of the perfect simulation algorithm an exact
sample from the stationary distribution, π, is obtained.

2.1 The exact simulation algorithm

Let :

• E = {x1, x2, · · · , xN} be a finite states space

• U−1, U−2, U−3, · · · be a sequence of i.i.d. random variables

• φ = φ(x,U) x ∈ E be the updating rule of an ergodic Markov chain
with stationary distribution π with the property that for all i, j ∈ E

P (φ(i, Ut) = j) = pij .
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Consider the following exact simulation algorithm:
step -1 Compute :

φ1 = φ(x1, U−1)
φ2 = φ(x2, U−1)
...
...
φn = φ(xn, U−1)
If φ1 = φ2 = · · · = φn = k for some k ∈ E then return k.
else go to step -2

step -2 Compute :
φ1 = φ(φ(x1, U−2), U−1)
φ2 = φ(φ(x2, U−2), U−1)
...
...
φn = φ(φ(xn, U−2), U−1)
If φ1 = φ2 = · · · = φn = k then return k.
else go to step -3

.......

.......

.......
step −t Compute :

φ1 = φ(φ(· · ·φ(φ(x1, U−t), U−t+1) · · · , U−2), U−1)
φ2 = φ(φ(· · ·φ(φ(x2, U−t), U−t+1) · · · , U−2), U−1)
...
...
φn = φ(φ(· · ·φ(φ(xn, U−t), U−t+1) · · · , U−2), U−1)
If φ1 = φ2 = · · · = φn = k then return k.
else go to step −t − 1

.......

Propp and Wilson, [15], proved that this algorithm ends with probability
one and that the value k that is returned is distributed as π. The time
step, T , where φ1 = φ2 = · · · = φn = k is called ”coalescence time” and
it depends on U−1, U−2, U−3, · · ·, so T is a random variable.

2.2 Monotone case and Coupling inequality

Let ≤E be a partial ordering on the states space E and assume that E

admits maximum and minimum with respect to this ordering. Through-
out the paper we denote the maximal and minimal state by 1̂ and 0̂.
If the updating rule of an ergodic Markov chain with stationary distribu-
tion π satisfies the property:

∀x, y ∈ E such that x ≤E y we have φ(x,U) ≤E φ(y,U)

then the chain is called monotone. This property is very important for the
Propp and Wilson algorithm because it guaranties that it is sufficient to
run only two chains, starting at 0̂ (minimal chain) and 1̂ (maximal chain)
respectively, and to verify coalescence only for these two chains. The
monotonicity property ensures that if the maximal and minimal chain
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have coalesced, then all other chains (started from any other possible
value in the state space) will also coalesce because they will be “trapped”
between the maximal and the minimal chain. Computationally, running
only the maximal and minimal chain this is more convenient then running
all possible chains.
The question is: if φ1, φ2 are two monotone updating rules of two ergodic
Markov chains with stationary distribution π and transitions matrix P

and Q respectively, which one coalesces before? In this paper the above
question will be addressed. For monotone Markov chains we have two
inequalities called ”coupling inequalities”:

P (T > t) ≤ ld(t)

P (T > t) ≥ d(t) ≥ d(t)

where l is the length of the longest chain in the totally ordered space E

and :
d(t) = max

x,y∈E
||Pt(x, ·) − P

t(y, ·)||TV ;

d(t) = max
x∈E

||Pt(x, ·) − π(·)||TV .

3 Preliminaries

For each fixed M ∈ N, we define two Markov chains on the state space E

in the following way :

X
M
0 = 0̂ X

M
1 = φ(0̂, U−M ) X

M
2 = φ(XM

1 , U−M+1) · · ·X
M
M = φ(XM

M−1, U−1);

Y
M
0 = 1̂ Y

M
1 = φ(1̂, U−M ) Y

M
2 = φ(Y M

1 , U−M+1) · · ·Y
M

M = φ(Y M
M−1, U−1).

If T is the coalescence time, we have:

X
T
T , Y

T
T ∼ π.

We now construct a new Markov chain on the enlarged state space E×E,
in the following way:

ZM
0 = (0̂, 1̂)

ZM
1 = φ̂((0̂, 1̂), U−M ) = (φ(0̂, U−M ), φ(1̂, U−M )) = (XM

1 , Y M
1 )

ZM
2 = φ̂(ZM

1 , U−M+1) = (φ(XM
1 , U−M+1), φ(Y M

1 , U−M+1)) = (XM
2 , Y M

2 )
· · ·
· · ·
· · ·

ZM
M = φ̂(ZM

M−1, U−1) = (φ(XM
M−1, U−1), φ(Y M

M−1, U−M )) = (XM
M , Y M

M )

The transition matrix of the Markov chain Z defined above is:

P̃ = {p(xi1
,xi2

)→(xj1
,xj2

)}(xi1
,xi2

),(xj1
,xj2

)∈E×E

where :
p(xi1

,xi2
)→(xj1

,xj2
) = pxi1

xj1
pxi2

xj2
.
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It is easy to check that this is indeed a stochastic matrix in fact, for any
(xi1 , xi2) we have that:

X

(xj1
,xj2

)∈E×E

p(xi1
,xi2

)→(xj1
,xj2

) =
X

xj1
∈E

X

xj2
∈E

pxi1
xj1

pxi2
xj2

= 1.

We note that the matrix P̃ can be written in the convenient form:

P̃ =

2

6

6

6

6

6

6

4

px1x1
P px1x2

P · · · px1xN
P

px2x1
P px2x2

P · · · px2xN
P

· · · ·
· · · ·
· · · ·

pxN x1
P pxN x2

P · · · pxN xN
P

3

7

7

7

7

7

7

5

and it’s easy to prove that :

P̃ n =

2

6

6

6

6

6

6

6

4

p
(n)
x1x1

P n p
(n)
x1x2

P n · · · p
(n)
x1xN

P n

p
(n)
x2x1

P n p
(n)
x2x2

P n · · · p
(n)
x2xN

P n

· · · ·
· · · ·
· · · ·

p
(n)
xN x1

P n p
(n)
xN x2

P n · · · p
(n)
xN xN

P n

3

7

7

7

7

7

7

7

5

Theorem 3.1 If P is reversible w.r.t. π then P̃ is also reversible w.r.t.

π̃, where π̃ is defined, for all i, j ∈ E × E, as:

π̃(i, j) = π(i)π(j).

Proof:

We show that for all (xi1 , xi2), (xj1 , xj2) ∈ E × E the following identity
holds:

π̃(xi1 , xi2)p(xi1
,xi2

)→(xj1
,xj2

) = π̃(xj1 , xj2 )p(xj1
,xj2

)→(xi1
,xi2

).

The above identity follows from:

π̃(xi1 , xi2)p(xi1
,xi2

)→(xj1
,xj2

) = π(xi1)π(xi2)pxi1
xj1

pxi2
xj2

= π(xi1)pxi1
xj1

π(xi2)pxi2
xj2

= pxj1
xi1

π(xj1)pxj2
xi2

π(xj2)

= pxj1
xi1

pxj2
xi2

π(xj1)π(xj2)

= π̃(xj1 , xj2 )p(xj1
,xj2

)→(xi1
,xi2

) �

The next theorem establishes a connection between the Z chain and the
two chains that start from 0̂ and 1̂. We use this notation: δ0̂, δ1̂ for the
measures on E, concentrated, respectively, on 0̂, 1̂, and δ(0̂,1̂) for the
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measure on E × E concentrated on (0̂, 1̂). Note that,
δ(0̂,1̂)(x, y) = δ0̂(x)δ1̂(y), so we can write δ(0̂,1̂) in this compact form:

δ(0̂,1̂) =

2

6

6

6

6

6

6

4

δ0̂(x1)δ1̂

δ0̂(x2)δ1̂

·
·
·

δ0̂(xN )δ1̂

3

7

7

7

7

7

7

5

Vectors are considered as column and we use the superscript t to denote
the transpose.

Theorem 3.2 Let T be a random variable with values in {1, 2, · · ·}. The

following two statements are equivalent:

1. XT
T ∼ π and Y T

T ∼ π

2. ZT
T ∼ π̃

Proof:

”(1 ⇒ 2)” If XT
T ∼ π,Y T

T ∼ π then

P (XT
T = i) = π(i) = (δ0̂P

T )(i) = p
(T )

0̂i

P (Y T
T = i) = π(i) = (δ1̂P

T )(i) = p
(T )

1̂i

So

δt

(0̂,1̂)
P̃ T = [δ0̂(0̂)δ

t

1̂
p
(T )

0̂x1

P̃ T , δ0̂(0̂)δ
t

1̂
p
(T )

0̂x2

P̃ T , · · · , δ0̂(0̂)δ
t

1̂
p
(T )

0̂xN
P̃ T ]

= [π(x1)π
t, π(x2)π

t, · · · , π(xN)πt]

= π̃

”(2 ⇒ 1)” If ZT
T ∼ π̃ then

||δ(0̂,1̂)P
T − π̃||TV = 0

Since:

||δt

(0̂,1̂)
P T − π̃||TV = 1

2

PN

i=1

PN

j=1 |(δ
t

(0̂,1̂)
P̃ T )(xi, xj) − π̃(xi, xj)|

= 1
2

PN

i=1

PN

j=1 |p
(T )

0̂xi
p
(T )

1̂xj
− π(xi)π(xj)|

= (we apply the triangular inequality)

≥ 1
2

PN

i=1 |p
(T )

0̂xi
− π(xi)|

= ||δt

0̂
P T − π||TV

it follows:

0 ≤ ||δt

0̂P
T − π||TV ≤ ||δt

(0̂,1̂)P
T − π̃||TV = 0.
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Analogously, we can show that:

||δt

1̂P
T − π||TV = 0

We can thus conclude that:

X
T
T , Y

T
T ∼ π

�

We now want to derive the eigenvalues of the matrix P̃ from the
eigenvalues of the matrix P . We recall that a reversible matrix is always
diagonalizable. In particular let R be the matrix:

R = diag(π(x1), π(x2), · · · , π(xN ))

then the matrix
S = R

1

2 PR
− 1

2

is symmetric. So there exists an orthogonal matrix O such that:

D = O
t
SO

where D is a diagonal matrix that has the same eigenvalues of P . Thus,
if λ1, λ2, · · · , λN are the eigenvalues of P , then

D = diag(λ1, λ2, · · · , λN ).

Theorem 3.3 If λ1, λ2, · · · , λN are the eigenvalues of P then the set:

{λiλj : i, j = 1, · · · , N}

is the set of all the eigenvalues of P̃ .

Proof: We use the preceding technique. Let

R̃ = diag(π̃(x1, x1), π̃(x1, x2), · · · , π̃(xN , xN ))

If S = {sxixj
}xi,xj∈E from a direct calculation it follows:

S̃ =

2

6

6

6

6

6

6

4

sx1x1
S sx1x2

S · · · sx1xN
S

sx2x1
S sx2x2

S · · · sx2xN
S

· · · ·
· · · ·
· · · ·

sxN x1
S sxN x2

S · · · sxN xN
S

3

7

7

7

7

7

7

5

And if O = {oxixj
}xi,xj∈E then we can choose Õ:

Õ =

2

6

6

6

6

6

6

4

ox1x1
O ox1x2

O · · · ox1xN
O

ox2x1
O ox2x2

O · · · ox2xN
O

· · · ·
· · · ·
· · · ·

oxN x1
O oxN x2

O · · · oxN xN
O

3

7

7

7

7

7

7

5
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This is an orthogonal matrix and D̃ = ÕtS̃Õ is a diagonal matrix with
the same eigenvalues of P̃ . This matrix has the form:

D̃ =

2

6

6

6

6

6

6

4

λ1D 0 · · · 0
0 λ2D · · · 0
· · · ·
· · · ·
· · · ·
0 0 · · · λND

3

7

7

7

7

7

7

5

�

The following two technical lemmas will be used in Section 4.

Lemma 3.1 Let P be a reversible irreducible transition matrix on the

finite state space E with stationary distribution π. Then, for n ≥ 1,all
i ∈ E, and all A ⊂ E

|δt
iP

n(A) − π
t(A)| ≤ (

1 − π(i)

π(i)
)

1

2 min(π(A)
1

2 ,
1

2
)ρn

where ρ is the SLEM of P .

An immediate consequence of the Lemma (3.1) is that if A = {i} then

|δt
iP

n(i) − π
t(i)| ≤ ρ

n

For a proof of Lemma (3.1), see Theorem 3.3, p.209 of [3].
If Q = {qij}i,j∈E is a stochastic matrix then we can define the
”ergodicity coefficient of Dobrushin, τ” as:

τ (Q) = max
x,y

1

2

X

i∈E

|qxi − qyi|.

So obviously:
d(t) = τ (Pt)

where d(t) is the norm defined in Section 2.2. We recall a result on
stochastic matrices and the ergodicity coefficient from [17] pp. 81-82:

Theorem 3.4 Let w = {wi} be an arbitrary vector and P = {pij} a

stochastic matrix indexed by E. If z = Pw, z = {zi}, then, for any two

indexes h, h′:

zh − zh′ ≤
1

2

X

j∈E

|phj − ph′j |{max
j∈E

wj − min
j∈E

wj}

and

{max
j∈E

zj − min
j∈E

zj} ≤ τ (P){max
j∈E

wj − min
j∈E

wj}

or equivalently:

max
h,h′∈E

|zh − zh′ | ≤ τ (P){ max
j,j′∈E

|wj − wj′ |}. (1)

An immediate consequence of this Theorem is the following Lemma.
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Lemma 3.2 If P is a stochastic matrix with ρ as its second largest

eigenvalues modulus, then

d(t) ≥ ρ
t

Proof : If w = {wi}i∈E is an eigenvector with corresponding eigenvalue
β, |β| < 1. Then:

Pw = βw

P
t
w = β

t
w.

If z = Ptw then

zh= Ptw(h) = βtwh

zh′= Ptw(h′) = βtwh′

maxh,h′∈E |zh − zh′ |= maxh,h′∈E |βtwh − βtwh′ | = |β|t maxh,h′∈E |wh − wh′ |

So by applying (1) we obtain:

|β|t max
h,h′∈E

|wh − wh′ | ≤ τ (Pt){ max
j,j′∈E

|wj − wj′ |}

But:

maxh,h′∈E |wh − wh′ | = maxj,j′∈E |wj − wj′ |

d(t) = τ (Pt)

So if ρ = |β| is the SLEM of P we obtain:

d(t) ≥ ρ
t

�

Now recall that
d(t) ≤ d(t) ≤ 2d(t)

so
2d(t) ≥ ρ

t
.

We note that, given two transition matrices, P1 and P2, such that
ρ1 < ρ2, then ρ̃1 < ρ̃2, where ρ̃1 and ρ̃2 are the SLEM of the enlarged
chain, P̃1 and P̃2 respectively.

4 Main result

Let us begin with a remark. If T is a coalescence time we have that:

||δt

(0̂,1̂)P̃
T − π̃||TV

Furthermore, for monotone Markov chains, we have that:

d(T ) = max
(xi,xj)∈(E×E)

||δt
(xi,xj)P̃

T − π̃||TV = 0.
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This is due to the fact that, if the minimal and maximal chains (i.e. the
chains starting from 0̂ and 1̂ respectively), coalesce then, thanks to the
monotonicity property, chains starting from any other initial state also
coalesce. We are now ready to state the main result.

Theorem 4.1 Let φ1, φ2 be two monotone updating rules of Markov

chains with transitions matrix P1 and P2 reversible with respect to π. If

T1, T2 are the coalescence times respectively of φ1, φ2 and

ρ1 < ρ2

where ρ1 = SLEM (P1), ρ2 = SLEM (P2),then

T1 < T2, a.s. π.

Proof: If ρ1 < ρ2 then
ρ̃1 < ρ̃2

where ρ̃1 = SLEM (P̃1), ρ̃2 = SLEM (P̃2).
If T1,T2 are coalescence times then:

||δt

(0̂,1̂)P̃1
T1

− π̃||TV = 0;

||δt

(0̂,1̂)P̃2
T2

− π̃||TV = 0.

From the first we obtain:

1

2

X

(xi,xj)∈E×E

|(δt

(0̂,1̂)P̃1
T1

)(xi, xj) − π̃(xi, xj)| = 0

But this is a sum of positive terms, so every terms must be equal to
zero. In particular:

|(δt

(0̂,1̂)P̃1
T1

)(0̂, 1̂) − π̃(0̂, 1̂)| = 0. (2)

Suppose that T1 ≥ T2, then

||δt

(0̂,1̂)P̃2
T1

− π̃||TV = 0

but from the remark at the beginning of the section:

max
(xi,xj)∈(E×E)

||δt
(xi,xj)P̃2

T1

− π̃||TV = 0. (3)

By combining (2) with (3) and using the lemmas of the previous section,
we obtain:

0 = (2) − 2 · (3) ≤ ρ̃1
T1 − ρ̃2

T1 .

We thus obtain:
ρ̃2 ≤ ρ̃1,

which contradicts the hypothesis.
�
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5 An ordering for coalescence time

Consider two transition matrices, P1 and P2, with the same stationary
distribution, that are monotone with respect to some partial ordering
defined on the state space. Let ρ1, ρ2 be the SLEMs and T1, T2 be the
coalescence times of P1 and P2 respectively.

Definition 5.1 We say that P1 dominates P2 in terms of speed of con-
vergence and write P1 ≥S P2, if

ρ1 ≤ ρ2.

This ordering was already defined in [12].

Definition 5.2 We say that P1 dominates P2 in terms of coalescence
time and write P1 ≥C P2, if

T1 ≤ T2.

Theorem 5.1 If P1 ≥S P2 then P1 ≥C P2.

The result follows from Theorem 4.1 in Section 4.

6 Conclusions

We give a sufficient condition for selecting an updating rule in perfect
simulation that is optimal in the sense of minimizing the coalescence time.
The results holds for finite state spaces and monotone chains. We plan to
investigate perfect sampling algorithm with continuous state spaces and
non-monotone updating mechanism in further research.
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