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Abstract

In this paper we discuss the properties of the orderings of positive dependence
introduced by Hollander et al. (1990) as generalizing the bivariate positive de-
pendence concepts of left-tail decreasing (LTD) and right-tail increasing (RTI)
studied by Esary and Proschan (1972). We show which of the postulates pro-
posed by Kimeldorf and Sampson (1987) for a reasonable positive dependence
ordering are satisfied and how the orders can be studied by restricting them
to copulas, and we give some examples. We also investigate the relationship of
these orders with some other orderings which have appeared in the literature
and generalize the same notions of positive dependence.
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1 Introduction

In recent years, the statistical literature has reserved much attention to the study of
positive dependence between random variables, intended as their tendency to assume
concordant values, and many notions have been introduced to formally describe such
concept.

One of the aspects researchers have been focusing on is the definition of stochastic
orderings capable to compare, with respect to some criteria, the strength of depen-
dence of two different bivariate random vectors with the same univariate marginal
distributions, with interesting applications in reliability theory, multivariate data
analysis, finance and many other related fields. In many cases, bivariate positive de-
pendence orderings arose as generalizations of positive dependence notions, as such
orderings reduce to the corresponding notions when the joint probability law of the
random variables is compared with the distribution that the pair would have if they
were independent. For instance, this is the case for the orderings PQD, SI and TP2;
see Yanagimoto and Okamoto (1969), Tchen (1980), Kimeldorf and Sampson (1987),
Fang and Joe (1992) and the references therein.

The purpose of this paper is to discuss the properties of the orderings of positive
dependence which were introduced by Hollander et al. (1990), generalizing the bivari-
ate concepts of left-tail decreasing (LTD) and right-tail increasing (RTI) studied by
Esary and Proschan (1972). We will then investigate their relationship with some or-
derings proposed by Averous and Dortet-Bernadet (2000) and Colangelo et al. (2006)
which generalize the same notions.

The paper is organized as follows. In Section 2 we define the concept of bivariate
positive dependence ordering and we also present some postulates as well as a copula
representation that any reasonable such ordering should satisfy; these postulates
were introduced by Kimeldorf and Sampson (1987). In Section 3 we discuss the
orderings introduced by Hollander et al. (1990); since, to the best of our knowledge,
no discussion can be found in the literature about their properties, we present them
in detail, showing the strict relationship between these orders and how they can be
studied by restricting them to copulas. A number of examples will also be provided.
In Section 4 we introduce the positive dependence orderings which were studied by
Averous and Dortet-Bernadet (2000) and, after discussing their properties, we show
that although they generalize the same positive dependence notions as the orderings
of Hollander et al. (1990), no implications exist between them; finally, we briefly
present the properties of the positive dependence orderings introduced by Colangelo
et al. (2006), and we review their results with regard to the relationship with the
other orderings presented in the paper.

Some conventions that are used in this paper are the following. By “increasing”
and “decreasing,” we mean “non-decreasing” and “non-increasing,” respectively. For
any two bivariate vectors x = (x1, x2) and y = (y1, y2), the notation x ≤ y means
xi ≤ yi for i = 1, 2. Given a set A ⊆ R2, its closure will be denoted by A. For any
distribution function F of a random variable X, we denote by Ran(F ) its range and
by F−1 its left-continuous inverse, that is the function defined by F−1(u) = inf{t ∈
R : F (t) ≥ u} for all u ∈ [0, 1].

For every distribution function F of a bivariate random vector X = (X1, X2),
2



let F and F π respectively denote the corresponding survival function ( i.e. F (x) =
P(X > x)) and the distribution of Xπ = (X2, X1). Define also the conditional
distributions FL

x1
(x2) = P(X2 ≤ x2|X1 ≤ x1) and FR

x1
(x2) = P(X2 ≤ x2|X1 > x1) for

all x1 ∈ R for which the conditional probabilities are well defined. Finally, let
d−→

denote convergence in distribution.

2 Some preliminaries

We denote by ∆2 the class of all bivariate distribution functions on R2 and by
Γ(F1, F2) the Fréchet class with marginal distribution functions F1 and F2, i.e., the
subclass of ∆2 containing the distribution functions with the univariate marginals
F1 and F2. The Fréchet upper and lower bounds in each class Γ(F1, F2) are defined
as F+(x1, x2) = min{F1(x1), F2(x2)} and F−(x1, x2) = max {F1(x1) + F2(x2)− 1, 0}
for all x ∈ R2. These bounds are pointwise sharp and lie in the corresponding
Fréchet Class. In each Fréchet class Γ(F1, F2), we denote by F⊥ the distribution
function corresponding to the independence case, that is the function defined by
F⊥(x) = F1(x1)F2(x2) for all x ∈ R2. Notice that, given a binary relation ¹ on ∆2,
for any pair of random vectors X = (X1, X2) and Y = (Y1, Y2) with distributions F
and G we will equivalently write X ¹ Y or F ¹ G.

For any F,G ∈ Γ(F1, F2), F is said to be smaller than G in the positive quadrant
dependence order (and we write F ≤PQD G) if F (x) ≤ G(x) for all x ∈ R2. Letting
F = F⊥ it is easy to see that the ordering ≤PQD generalizes the positive quadrant
dependence notion introduced by Lehmann (1966).

Kimeldorf and Sampson (1987, 1989) proposed a few postulates that any binary
relation ¹ on ∆2 should satisfy to define a reasonable bivariate positive dependence
ordering. Here is a slight variation of the postulate list in Kimeldorf and Sampson
(1987).

P.1 The relation ¹ is a partial order (reflexive, transitive and antisymmetric).

P.2 If F ¹ G, then F ≤PQD G.

P.3 For any F ∈M(F1, F2), F− ¹ F ¹ F+.

P.4 If (X1, X2) ¹ (Y1, Y2), then (φ1(X1), φ2(X2)) ¹ (φ1(Y1), φ2(Y2)) for all increas-
ing functions φ1, φ2 : R→ R.

P.5 If (X1, X2) ¹ (Y1, Y2), then (φ1(X1), φ2(X2)) ¹ (φ1(Y1), φ2(Y2)) for all decreas-
ing functions φ1, φ2 : R→ R.

P.6 If (X1, X2) ¹ (Y1, Y2), then (φ(Y1), Y2) ¹ (φ(X1), X2) for all decreasing func-
tions φ : R→ R.

P.7 If (X1, X2) ¹ (Y1, Y2), then (Y1, φ(Y2)) ¹ (X1, φ(X2)) for all decreasing func-
tions φ : R→ R.

P.8 If F ¹ G, then F π ¹ Gπ.
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P.9 If {Fn, n ≥ 1}, {Gn, n ≥ 1} are such that Fn ¹ Gn for all n, Fn
d−→ F and

Gn
d−→ G, then F ¹ G.

Many bivariate positive dependence orderings are known to satisfy these proper-
ties. For instance, this is the case for the orderings ≤PQD and ≤TP2 ; see Kimeldorf
and Sampson (1987). For a generalization of the axioms to the multivariate setting
and a detailed discussion of some multivariate positive dependence orderings, we refer
to Joe (1997) and Müller and Stoyan (2002).

Let (X1, X2) be a random vector with distribution function F ∈ Γ(F1, F2); by
Sklar Theorem (see, for instance, Schweizer and Sklar (1983)) there exists a function
CF : [0, 1]2 → [0, 1] such that, for all x ∈ R2, we have

F (x1, x2) = CF (F1(x1), F2(x2)). (1)

The function CF is called copula of F and it is a bivariate distribution function with
uniform marginals. In addition, for all u ∈ RF1,F2 = Ran(F1)× Ran(F2), it satisfies
CF (u1, u2) = F (F−1

1 (u1), F
−1
2 (u2)), so that CF is uniquely defined on RF1,F2 and thus

it is unique whenever F is continuous.
As the dependence structure of any distribution function is completely summa-

rized by the corresponding copulas, it follows that an interesting property that any
positive dependence ordering ¹ should fulfill is that, for any two distribution func-
tions F and G in the same Fréchet class, F ¹ G if, and only if, F and G admit two
copulas CF and CG satisfying CF ¹ CG. This property can be shown to be satisfied
by several bivariate positive dependence orderings and it is strictly connected to pos-
tulate P.4. In fact, for fixed F, G ∈ Γ(F1, F2), let CF and CG be their corresponding
copulas which satisfy CF ¹ CG; letting U ∼ CF and V ∼ CG, F ¹ G thus follows
by postulate P.4 since (F−1

1 (U1), F
−1
2 (U2)) ∼ F and (F−1

1 (V1), F
−1
2 (V2)) ∼ G, where

F−1
1 and F−1

2 are increasing transformations. On the converse, let F,G ∈ Γ(F1, F2)
and suppose that X ∼ F , Y ∼ G and F ¹ G; it is easy to see that the distribution
functions of the random vectors (F1(X1), F2(X2)) and (F1(Y1), F2(Y2)) respectively
coincide with any copula CF of F and CG of G on the set RF1,F2 , and then postulate
P.4 entails that any such CF and CG do satisfy the definition of ¹ on RF1,F2 . There-
fore, whenever F1 and F2 are continuous, it will follow that the uniquely defined CF

and CG satisfy CF ¹ CG while, in general, it will have to be proven the existence of
two such copulas satisfying the definition of ¹ on ([0, 1]2 −RF1,F2).

We close the section recalling some positive dependence notions which will be
central in the sequel. Given a random vector X = (X1, X2), X2 is said to be left-tail
decreasing (LTD) [right-tail increasing (RTI)] in X1 if FL

x1
(x2) ≥ FL

x′1
(x2) [FR

x1
(x2) ≥

FR
x′1

(x2)] whenever x1 ≤ x′1. For a general treatment of bivariate positive dependence

notions and the corresponding generalizations to the multivariate setting, additional
references are Kimeldorf and Sampson (1989) and Colangelo et al. (2005).
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3 The orderings of Hollander, Proschan and Scon-

ing

Let (X1, X2) and (Y1, Y2) be two random vectors with distributions F and G lying in
Γ(F1, F2). Hollander et al. (1990) define Y2 to be more LTD in Y1 than X2 is in X1

(and we write (X1, X2) ≤LTD (Y1, Y2) or F ≤LTD G) if, for all x1 < x′1,

FL
x1

(x2)− FL
x′1

(x2) ≤ GL
x1

(x2)−GL
x′1

(x2) for any x2 ∈ R. (2)

Analogously, they define Y2 to be more RTI in Y1 than X2 is in X1 (and we write
(X1, X2) ≤RTI (Y1, Y2) or F ≤RTI G) if, for all x1 < x′1,

FR
x1

(x2)− FR
x′1

(x2) ≤ GR
x1

(x2)−GR
x′1

(x2) for any x2 ∈ R. (3)

Letting F = F⊥, it is easy to see that the relations ≤LTD and ≤RTI are indeed
generalizations of the LTD and the RTI positive dependence notions. Hollander
et al. (1990) introduced these orderings in relation to the evaluation of the degree
of dependence in the randomly censored models, but, to the best of our knowledge,
their properties have never been studied in the literature.

Simple arguments can be used to show that the binary relations ≤LTD and ≤RTI

are partial orders, so that postulate P.1 is satisfied. In order to see that also postulate
P.2 holds, it suffices to respectively let x′1 →∞ and x1 → −∞ in conditions (2) and
(3); the result would then follow by noticing that the distributions lie in the same
Fréchet class.

We now discuss whether the orderings satisfy postulate P.3. Notice that, in any
given Fréchet class Γ(F1, F2), for any x ∈ R2,

F+,L
x1

(x2) = min

(
1,

F2(x2)

F1(x1)

)
, F−,L

x1
(x2) = max

(
0,

F1(x1) + F2(x2)− 1

F1(x1)

)

and

F+,R
x1

(x2) = 1−min

(
1,

F 2(x2)

F 1(x1)

)
, F−,R

x1
(x2) = 1−max

(
0,

F 1(x1) + F 2(x2)− 1

F 1(x1)

)
.

Therefore, F ≤LTD F+ if, and only if, for all x1 < x′1 and x2 ∈ R,

FL
x1

(x2)− FL
x′1

(x2) ≤ min

(
1,

F2(x2)

F1(x1)

)
−min

(
1,

F2(x2)

F1(x′1)

)
, (4)

and then, whenever x′1 is such that F1(x
′
1) ≤ F2(x2), condition (4) cannot hold with a

strict inequality if F is LTD. Analogously, F− ≤LTD F if, and only if, for all x1 < x′1
and x2 ∈ R,

max

(
0,

F1(x1) + F2(x2)− 1

F1(x1)

)
−max

(
0,

F1(x
′
1) + F2(x2)− 1

F1(x′1)

)

≤ FL
x1

(x2)− FL
x′1

(x2), (5)
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so that it’s easy to see that condition (5) is always satisfied if F is LTD but it needn’t
hold in general.

A symmetric argument applies for the ordering ≤RTI; in particular, if F is RTI
then condition (3) cannot hold with a strict inequality for all x1 < x′1 and x2 ∈ R
with GR

x1
= F+,R

x1
, while condition (3) is satisfied with FR

x1
= F−,R

x1
if G is RTI, but

it needn’t hold in general. Numerical counterexamples are provided in Example 2
below.

The following result establishes some important properties of the orderings under
consideration; in particular, it implies that postulates P.4 and P.7 are satisfied and
it also shows the close relationship between the orderings ≤LTD and ≤RTI. The proof
of the theorem is omitted as it is based on standard arguments.

Theorem 1. Let (X1, X2) and (Y1, Y2) be two random vectors with distribution func-
tions F,G ∈ Γ(F1, F2).

(a) If (X1, X2) ≤LTD [≤RTI](Y1, Y2) then (φ1(X1), φ2(X2)) ≤LTD [≤RTI](φ1(Y1), φ2(Y2))
for all increasing functions φ1, φ2 : R→ R. Conversely, if (φ1(X1), φ2(X2)) ≤LTD

[ ≤RTI ] (φ1(Y1), φ2(Y2)) for some strictly increasing functions φ1, φ2 : R → R
then (X1, X2) ≤LTD [≤RTI](Y1, Y2).

(b) If (X1, X2) ≤LTD [≤RTI](Y1, Y2) then (φ1(X1), φ2(X2)) ≤RTI [≤LTD](φ1(Y1), φ2(Y2))
for all decreasing functions φ1, φ2 : R→ R. Conversely, if (φ1(X1), φ2(X2)) ≤RTI

[ ≤LTD ] (φ1(Y1), φ2(Y2)) for some strictly decreasing functions φ1, φ2 : R→ R
then (X1, X2) ≤LTD [≤RTI](Y1, Y2).

(c) If (X1, X2) ≤LTD [≤RTI](Y1, Y2) then (φ(X1), X2) ≥RTI [≥LTD](φ(Y1), Y2) for all
decreasing functions φ : R→ R. Conversely, if (φ(X1), X2) ≥∗RTI [≥∗LTD](φ(Y1), Y2)
for some strictly decreasing function φ : R → R then (X1, X2) ≤LTD [≤RTI

](Y1, Y2).

(d) If (X1, X2) ≤LTD [≤RTI](Y1, Y2) then (X1, φ(X2)) ≥LTD [≥RTI](Y1, φ(Y2)) for all
decreasing functions φ : R → R. Conversely, if (X1, φ(X2)) ≥∗LTD [≥∗RTI

](Y1, φ(Y2)) for some strictly decreasing function φ : R → R then (X1, X2) ≤LTD

[≤RTI](Y1, Y2).

Simple approximation arguments easily establish that also postulate P.9 must
hold for both orderings, while the following example shows that ≤LTD doesn’t need
to admit the lower and upper Fréchet bounds as minimal and maximal elements
and that postulates P.5, P.6 and P.7 are also not satisfied. In view of part (b) of
Theorem 1 it is easy to see that neither ≤RTI satisfies postulates P.3, P.5, P.6 and
P.7.

Example 2. Let (X1, X2) be a random vector with probability mass function

3 0 0 1/5
2 0 1/5 0
1 2/5 0 1/5

,
,,x2
x1 1 2 3
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and denote by F the distribution function of (X1, X2) and by F− the Fréchet lower
bound in its corresponding Fréchet class. Letting (Y1, Y2) denote a random vector
with F− as its distribution, a simple calculation shows that (Y1, Y2) ≤LTD (X1, X2).

Consider now the random vector (−X1,−X2) and let G be its corresponding
distribution function. Denoting by G1 and G2 the marginals of G, it is easy to
notice that the Fréchet lower bound G− in Γ(G1, G2) is the distribution function
of (−Y1,−Y2). Letting x1 = −3, x′1 = −2 and x2 = −2, it holds GL

x1
(x2) = 1/2,

GL
x′1

(x2) = 2/3, G1(x1) = 2/5, G1(x
′
1) = 3/5 and G2(x2) = 2/5, so that inequality (5)

fails. Hence (−Y1,−Y2) 6≤LTD (−X1,−X2), showing that the Fréchet lower bound
needn’t be a minimal element with respect to the ordering ≤LTD and that postulate
P.5 is not satisfied.

Analogously, consider the random vector (−X1, X2) and let H be its corresponding
distribution function. Denoting by H1 the marginal distribution of −X1, it is easy to
notice that the Fréchet upper bound H+ in Γ(H1, F2) is the distribution function of
(−Y1, Y2). Letting x1 = −3, x′1 = −2 and x2 = 1, it holds HL

x1
(x2) = 1/2, HL

x′1
(x2) =

1/3, H1(x1) = 2/5, H1(x
′
1) = 3/5 and F2(x2) = 3/5, so that inequality (4) fails.

Hence (−X1, X2) 6≤LTD (−Y1, Y2), showing that the Fréchet upper bound needn’t be
a maximal element with respect to the ordering ≤LTD and that postulate P.6 is also
not satisfied.

Finally, let Gπ be the distribution of (−X2,−X1) and, as above, notice that the
Fréchet lower bound Gπ− in Γ(G2, G1) is the distribution function of (−Y2,−Y1).
Lehmann (1966) shows that Gπ is LTD and then, in view of the previous discussion,
Gπ− ≤LTD Gπ; hence, as G− 6≤LTD G, postulate P.8 is not met. J

We now prove that the orderings ≤LTD and ≤RTI admit the copula representation
discussed in Section 2.

Theorem 3. Let X and Y have, respectively, distribution functions F, G ∈ Γ(F1, F2).
Then X ≤LTD Y [X ≤RTI Y ] if, and only if, there exist copulas CF and CG (as in
(1)) such that CF ≤LTD CG [CF ≤RTI CG].

Proof. We give only the proof for the ordering ≤LTD; the proof for the other ordering
is similar. In view of the discussion above, postulate P.4 implies the sufficiency
part of the theorem and that the functions CF , CG : RF1,F2 → [0, 1] defined by
CF (u1, u2) = F (F−1

1 (u1), F
−1
2 (u2)) and CG(u1, u2) = G(F−1

1 (u1), F
−1
2 (u2)), satisfy

CF (u1, u2)

u1

− CF (u′1, u2)

u′1
≤ CG(u1, u2)

u1

− CG(u′1, u2)

u′1
(6)

for any u2 ∈ Ran(F2) and u1, u
′
1 ∈ Ran(F1) such that u1 < u′1. Hence, it remains to

prove that CF and CG can be extended to two copulas satisfying equation (6) on the
set [0, 1]2 −RF1,F2 .

To construct such extensions, we use the method illustrated in Schweizer and Sklar
(1983), namely considering linear interpolations along each variable. First define CF

and CG on all boundary points of RF1,F2 by taking the limit (and this implies that

condition (6) holds on the closure ofRF1,F2 , i.e. RF1,F2 = Ran(F1)×Ran(F2) ). Then,
if CF is defined in (l1, u2) and (m1, u2) but not for u1 ∈ (l1,m1), let CF (u1, u2) =

7



βu1CF (l1, u2) + (1− βu1)CF (m1, u2) with βu1 = m1−u1

m1−l1
. Analogously, if CF is defined

in (u1, l2) and (u1, m2) but not for u2 ∈ (l2,m2), let CF (u1, u2) = βu2CF (u1, l2)+ (1−
βu2)CF (u1,m2) with βu2 = m2−u2

m2−l2
. The same contruction is applied to CG. Five cases

need to be considered.
Case 1. Let u2 ∈ Ran(F2), u1 6∈ Ran(F1) and u′1 ∈ Ran(F1), with u1 < u′1; then
there exist l1,m1 boundary points of Ran(F1) such that CF and CG are not defined
on (l1,m1)× [0, 1] and l1 < u1 < m1 < u′1. Noting that γu1 = βu1

l1
u1
∈ (0, 1), it holds

CF (u1, u2)

u1

− CF (u′1, u2)

u′1

= γu1

[
CF (l1, u2)

l1
− CF (u′1, u2)

u′1

]
+ (1− γu1)

[
CF (m1, u2)

m1

− CF (u′1, u2)

u′1

]

≤ γu1

[
CG(l1, u2)

l1
− CG(u′1, u2)

u′1

]
+ (1− γu1)

[
CG(m1, u2)

m1

− CG(u′1, u2)

u′1

]

=
CG(u1, u2)

u1

− CG(u′1, u2)

u′1
,

where the inequality follows by condition (6) as l1 and m1 belong to Ran(F1).
Case 2. Let u2 ∈ Ran(F2), u1 ∈ Ran(F1) and u′1 6∈ Ran(F1), with u1 < u′1. The
same reasoning as above can be applied to show that (6) is satisfied also in this case.
Case 3. Let u2 ∈ Ran(F2) and u1, u

′
1 6∈ Ran(F1) with u1 < u′1, and suppose that

there exist l1,m1 boundary points of Ran(F1) such that CF and CG are not defined
on (l1,m1) × [0, 1] and l1 < u1 < u′1 < m1. Using the construction outlined above,
it clearly holds CF (u′1, u2) = εu′1CF (u1, u2) + (1 − εu′1)CF (m1, u2) and CG(u′1, u2) =

εu′1CG(u1, u2) + (1 − εu′1)CG(m1, u2), with εu′1 =
m1−u′1
m1−u1

; hence, noting that γu′1 =
εu′1

u1

u′1
∈ (0, 1),

CF (u1, u2)

u1

− CF (u′1, u2)

u′1
= (1− γu′1)

[
CF (u1, u2)

u1

− CF (m1, u2)

m1

]

≤ (1− γu′1)

[
CG(u1, u2)

u1

− CG(m1, u2)

m1

]

=
CG(u1, u2)

u1

− CG(u′1, u2)

u′1
,

where the inequality follows by Case 1 as u1 6∈ Ran(F1) and m1 ∈ Ran(F1).
Case 4. Let u2 ∈ Ran(F2) and u1, u

′
1 6∈ Ran(F1) with u1 < u′1, and suppose that

there exist two pairs {l1,m1} and {l′1,m′
1} of boundary points of Ran(F1) such that

CF and CG are not defined on (l1,m1) × [0, 1] and (l′1,m
′
1) × [0, 1], and l1 < u1 <

m1 < l′1 < u′1 < m′
1. Noting that γu′1 = βu′1

l′1
u′1
∈ (0, 1), it holds

CF (u1, u2)

u1

− CF (u′1, u2)

u′1

= γu′1

[
CF (u1, u2)

u1

− CF (l′1, u2)

l′1

]
+ (1− γu′1)

[
CF (u1, u2)

u1

− CF (m′
1, u2)

m′
1

]
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≤ γu′1

[
CG(u1, u2)

u1

− CG(l′1, u2)

l′1

]
+ (1− γu′1)

[
CG(u1, u2)

u1

− CG(m′
1, u2)

m′
1

]

=
CG(u1, u2)

u1

− CG(u′1, u2)

u′1
,

where the inequality follows by Case 1 as u1 6∈ Ran(F1) and l′1,m
′
1 ∈ Ran(F1).

Case 5. The cases so far discussed prove that equation (6) must hold for all u1, u
′
1 ∈

[0, 1] with u1 < u′1 and u2 ∈ Ran(F2). Therefore, suppose that u2 6∈ Ran(F2); then
there exist l2,m2 boundary points of Ran(F2) such that CF and CG are not defined
on [0, 1]× (l2,m2) and l2 < u2 < m2. Hence

CF (u1, u2)

u1

− CF (u′1, u2)

u′1

= βu2

[
CF (u1, l2)

u1

− CF (u′1, l2)
u′1

]
+ (1− βu2)

[
CF (u1,m2)

u1

− CF (u′1,m2)

u′1

]

≤ βu2

[
CG(u1, l2)

u1

− CG(u′1, l2)
u′1

]
+ (1− βu2)

[
CG(u1,m2)

u1

− CG(u′1,m2)

u′1

]

=
CG(u1, u2)

u1

− CG(u′1, u2)

u′1
,

where the inequality follows by the previous cases as l2,m2 ∈ Ran(F2).

A useful corollary of Theorem 1 that will be used in the sequel is the following.

Corollary 4. Let U and V be two random vectors whose distribution functions are
copulas. Then

1. U ≤LTD V if, and only if, 1−U ≤RTI 1− V ;

2. U ≤RTI V if, and only if, 1−U ≤LTD 1− V .

Recall that if the distribution function of U is the copula C, then the distribution
of 1−U is also a copula; the latter is called the survival copula corresponding to C
(see Nelsen (1999, p.28)).

We close the section by discussing some parametric bivariate distributions which
are ordered with respect to ≤LTD and ≤RTI.

Example 5 (Gumbel-Barnett). The family {Cα, α ∈ (0, 1]}, where

Cα(u, v) = uv exp{−α ln u ln v}
for all (u, v) ∈ [0, 1]2 and α ∈ (0, 1], is said to be the Gumbel-Barnett family of
copulas. The functions in this class are the survival copulas associated with Gumbel’s
bivariate exponential distributions, whose importance in reliability theory is well
known; see Gumbel (1960) and Kotz et al. (2000) for the properties of such family of
distributions. Barnett (1980) first considered this class as a family of copulas. Notice
that the conditional copulas of a Gumbel-Barnett copula remain in the family; for
more details on this property and its importance in applications, see Charpentier
(2003) and the references therein.
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This family is negatively ordered in α with respect to ≤LTD. In fact, Cβ ≤LTD Cα

for α ≤ β if, and only if, the function g(α) = exp{−α ln u ln v} − exp{−α ln u′ ln v}
is decreasing in α for all u < u′ and v ∈ [0, 1], which fact is not difficult to prove by
differentiation. From Corollary 4 it also follows that the family {Dα, α ∈ (0, 1]} of
survival copulas associated to the Gumbel-Barnett family is negatively ordered in α
with respect to ≤RTI. J

Example 6 (Ali-Mikhail-Haq). The family {Cα, α ∈ [−1, 1)}, where

Cα(u, v) =
uv

1− α(1− u)(1− v)

for all (u, v) ∈ [0, 1]2 and α ∈ [−1, 1), is said to be the Ali-Mikhail-Haq family of
copulas. Ali et al. (1978) obtained this family of distributions as the solutions of a
functional equation involving the so-called bivariate survival odds ratio, which is a
natural quantity to consider in reliability theory; the interested reader is referred to
Nelsen (1999, Section 3.3.2) for a simple treatment of the subject.

This family is positively ordered in α with respect to ≤LTD. In fact, Cα ≤LTD Cβ

for α ≤ β if, and only if, the function g(α) = (1−α(1−u)(1−v))−1−(1−α(1−u′)(1−
v))−1 is increasing in α for all u < u′ and v ∈ [0, 1], which fact is not difficult to prove
by differentiation. From Corollary 4 it also follows that the family {Dα, α ∈ [−1, 1)}
of survival copulas associated to the Ali-Mikhail-Haq family is positively ordered in
α with respect to ≤RTI. J

Example 7 (Farlie-Gumbel-Morgenstern). The family {Cα, α ∈ [−1, 1]}, where

Cα(u, v) = uv(1 + α(1− u)(1− v))

for all (u, v) ∈ [0, 1]2 and α ∈ [−1, 1], is called the Farlie-Gumbel-Morgenstern family
of bivariate copulas. We refer to Kotz et al. (2000) for a detailed discussion on
the properties of the distributions in this family; we only stress here that the Farlie-
Gumbel-Morgenstern copulas coincide with their corresponding survival copulas. The
simple analytical form of the family has made these copulas very appealing in many
fields of application; for instance, the interested reader is referred to Shaked (1975),
who describes their usefulness in reliability theory and in Bayesian survey sampling,
and to Conway (1984), who briefly reviews some applications in quality control and
in medical studies.

This family is positively ordered in α with respect to ≤LTD and ≤RTI. In fact it
is not difficult to see that g(α) = CL

α,u(v) − CL
α,u′(v) = CR

α,u(v) − CR
α,u′(v) = αv(1 −

v)(u′ − u) increases in α. J

4 Relationships to other orders involving tail de-

pendence

In this section we discuss the relationship between the orderings ≤∗LTD and ≤∗RTI

and other orderings generalizing the LTD and the RTI positive dependence notions,
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namely the orderings proposed by Averous and Dortet-Bernadet (2000) and by Colan-
gelo et al. (2006).

Let Λ2 be the subclass of ∆2 containing all bivariate distributions F for which the
conditional distributions FL

x and FR
x are continuous and strictly increasing on their

support for all x ∈ R (in particular, notice that they are continuous for all x ∈ R if,
and only if, F2 is continuous). Averous and Dortet-Bernadet (2000) introduced the
following bivariate positive dependence orders. Let (X1, X2) and (Y1, Y2) be random
vectors with distribution functions F and G in Γ(F1, F2) ∩ Λ2; then (X1, X2) is said
to be smaller than (Y1, Y2) in the left tail decreasing order if

GL
x′1

(
(GL

x1
)−1(u)

) ≤ FL
x′1

(
(FL

x1
)−1(u)

)
, u ∈ [0, 1], (7)

whenever x1 ≤ x′1, and we denote this by (X1, X2) ≤∗LTD (Y1, Y2) or F ≤∗LTD G. If F
and G satisfy

GR
x′1

(
(GR

x1
)−1(u)

) ≤ FR
x′1

(
(FR

x1
)−1(u)

)
, u ∈ [0, 1], (8)

whenever x1 ≤ x′1, then (X1, X2) is said to be smaller than (Y1, Y2) in the right tail
increasing order and we denote this by (X1, X2) ≤∗RTI (Y1, Y2) or F ≤∗RTI G. Letting
F = F⊥, a simple calculation shows that the relations ≤∗LTD and ≤∗RTI are indeed
generalizations of the LTD and the RTI positive dependence notions.

Averous and Dortet-Bernadet (2000) proved that≤∗LTD and≤∗RTI define reasonable
positive dependence orderings as they are stronger than the PQD ordering, so that
postulate P.2 is satisfied, and they also claim that postulates P.1, P.3 and P.9 hold,
while the conditional nature of the orderings makes impossible to meet P.8; under
some regularity conditions on the nature of the transformations, an obvious version of
Theorem 1 can be stated, and this implies that P.4 and P.7 are satisfied (under such
conditions, at least). It is possible to find counterexamples showing that P.5 and P.6
do not hold. Whether these orderings admit the copula representation mentioned in
Section 2 and whether the assumptions on the form of the conditional distributions
can be relaxed, letting conditions (7) and (8) keep defining meaningful dependence
orderings, seem to be interesting open problems.

The following example proves that

(X1, X2) ≤∗LTD (Y1, Y2) 6=⇒ (X1, X2) ≤LTD (Y1, Y2);

it also shows another instance where the upper Fréchet bound fails to be the maximal
element with respect to ≤LTD. Part (b) of Theorem 1 and its analogous for the
orderings ≤∗LTD and ≤∗RTI also shows that

(X1, X2) ≤∗RTI (Y1, Y2) 6=⇒ (X1, X2) ≤RTI (Y1, Y2).

Example 8. Let Cα be a Farlie-Gumbel-Morgenstern copula with α > 0 and C+

be the Fréchet upper bound in the family of all copulas. Clearly Cα ∈ Λ2 and
Cα ≤∗LTD C+. Let now u, u′, v ∈ [0, 1] be such that 0 < u < u′ < v < 1; for
such points, condition (4) becomes α(u′ − u) ≤ 0, which is naturally false, so that
Cα �LTD C+. J

11



The following example is borrowed from Colangelo et al. (2006, Example 2.16); it
shows that

(X1, X2) ≤LTD (Y1, Y2) 6=⇒ (X1, X2) ≤∗LTD (Y1, Y2).

Example 9. Let (X1, X2) and (Y1, Y2) be two random vectors with distribution
functions in Γ2(F1, F2), where X1 and Y1 are discrete random variables taking on
the values 0, 1, and 2, with respective probabilities 1/8, 3/40, and 4/5, while F2 is
uniform on [0, 2]. Define the distribution functions F and G of (X1, X2) and (Y1, Y2)
through the following conditional distribution functions of X2 given X1, and of Y2

given Y1, as follows:

P (X2 ≤ y
∣∣X1 = 0) =





2
3
y, y ∈ [0, .6)

3
2
y − 1

2
, y ∈ [.6, 1)

1, y ≥ 1

P (Y2 ≤ y
∣∣Y1 = 0) =





3
2
y, y ∈ [0, .4)

2
3
y + 1

3
, y ∈ [.4, 1)

1, y ≥ 1

P (X2 ≤ y
∣∣X1 = 1) =





10
9
y, y ∈ [0, .6)

5
6
y + 1

6
, y ∈ [.6, 1)

1, y ≥ 1

P (Y2 ≤ y
∣∣Y1 = 1) =





3
2
y, y ∈ [0, .4)

2y − 1
5
, y ∈ [.4, .6)

1, y ≥ .6

P (X2 ≤ y
∣∣X1 = 2) =





5
12

y, y ∈ [0, .6)
5
16

y + 1
16

, y ∈ [.6, 1)
5
8
y − 1

4
, y ∈ [1, 2)

1, y ≥ 2

P (Y2 ≤ y
∣∣Y1 = 2) =





1
4
y, y ∈ [0, .4)

1
3
y − 1

30
, y ∈ [.4, .6)

25
48

y − 7
48

, y ∈ [.6, 1)
5
8
y − 1

4
, y ∈ [1, 2)

1, y ≥ 2

Note that FL
0 (y) = P (X2 ≤ y

∣∣X1 = 0) and GL
0 (y) = P (Y2 ≤ y

∣∣Y1 = 0), given
above. A straightforward computation gives

FL
1 (y) =





5
6
y, y ∈ [0, .6)

5
4
y − 1

4
, y ∈ [.6, 1)

1, y ≥ 1

GL
1 (y) =





3
2
y, y ∈ [0, .4)

7
6
y + 2

15
, y ∈ [.4, .6)

5
12

y + 7
12

, y ∈ [.6, 1)

1, y ≥ 1,
12



while FL
2 and GL

2 coincide with F2. It is easy to verify that F, G ∈ Λ2.
Colangelo et al. (2006) show that F 6≤∗LTD G. On the converse, to prove F ≤LTD G,

notice that it suffices to verify condition (2) for x1 = 0 and x′1 = 1. Clearly

FL
0 (y)− FL

1 (y) =





−1
6
y y ∈ [0, .6),

1
4
y − 1

4
y ∈ [.6, 1),

0 otherwise,

and

GL
0 (y)−GL

1 (y) =





−1
2
y + 1

5
y ∈ [.4, .6),

1
4
y − 1

4
y ∈ [.6, 1),

0 otherwise,

so that the result follows by noticing that −1
6
y ≤ −1

2
y + 1

5
on the interval [.4, .6]. J

Applying again part (b) of Theorem 1 and the analogous result for the orderings
≤∗LTD and ≤∗RTI, we obtain that

(X1, X2) ≤RTI (Y1, Y2) 6=⇒ (X1, X2) ≤∗RTI (Y1, Y2).

Colangelo et al. (2006) proposed two pairs of multivariate positive dependence
stochastic orderings which, in the bivariate case, both generalize the LTD and RTI
notions. They are respectively called the lower orthant decreasing ratio order and
the upper orthant increasing ratio order (denoted by ≤lodr and ≤uoir), and the strong
lower orthant decreasing ratio order and the strong upper orthant increasing ratio
order (denoted by ≤slodr and ≤suoir).

We will not reproduce the definition of these orders here. We simply stress that
≤lodr and ≤uoir fulfill most of the postulates proposed in Section 2 for a reasonable
bivariate positive dependence order. In particular, postulates P.1, P.2, P.8 and P.9 are
satisfied, while P.3 partially fails as, although the lower Fréchet bound is a minimal
element with respect to the orderings, the upper Fréchet bound needn’t be a maximal
element, so that also P.6 and P.7 cannot be met; finally, Theorems 2.1 and 2.2 in
Colangelo et al. (2006) imply that postulate P.4 is fulfilled but P.5 isn’t. Similarly,
the orderings ≤slodr and ≤suoir satisfy postulates P.2, P.8 and P.9, while P.1 and P.3
fail as the orderings are not reflexive and they don’t admit the Fréchet bounds as
minimal and maximal elements; simple arguments, in view of Proposition 3.6 and
Theorem 3.1 in Colangelo et al. (2006), respectively imply that postulates P.6 and
P.7 are not fulfilled, and that postulate P.4 is satisfied but P.5 isn’t. In addition, all
these orderings admit the copula representation discussed in Section 2.

We close the section outlining the relationship between these orderings and the
orderings discussed above. In particular, the ordering ≤slodr is stronger than ≤lodr,
≤LTD and ≤∗LTD and, correspondingly, ≤suoir is stronger than ≤uoir, ≤RTI and ≤∗RTI.
In addition, no other relationships exist between these ordering. For a proof of these
statements and other related results, we refer again to Colangelo et al. (2006).
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