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Abstract

This paper discusses the Monte Carlo (MC) design of Gaussian Vector Au-
toregressive processes (VAR) for the evalutation of invariant statistics. We
focus on the case of cointegrated (CI) I(1) processes, linear and invertible trans-
formations and CI rank likelihood ratio (LR) tests. It is found that all VAR
of order 1 can be reduced to a system of independent or recursive subsystems,
of computational dimension at most equal to 2. The results are applied to
the indexing of the distribution of LR test statistics for CI rank under local
alternatives. They are also extended to the case of VAR processes of higher
order.
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1 Introduction

This paper discusses the design of Gaussian VAR for MC simulations. We consider CI
systems, integrated of order 1, I(1), and LR test statistics for CI rank. These tests are
based on eigenvalues (squared canonical correlations) associated with reduced rank
regression (RRR), which are invariant with respect to linear and invertible transfor-
mations of the variables. We show how this invariance can be used to reduce the
dimension of the MC design.
MC experiments for the evaluation of the �nite sample properties of LR CI tests

has been considered by several authors, see e.g. Gonzalo (1994), Toda (1994, 1995),
Saikkonen and Lütkepohl (2000), Johansen (2002), Nielsen (2004), Cavaliere, Fanelli
and Paruolo (2005). The idea of using invariance to reduce the design dimension for
a VAR or order 1 can be found in Johansen (2002) and Nielsen (2004), respectively
for the case of CI rank equal to 1 and for the bivariate case.
In this paper we extend these results for any dimension of the CI rank, any number

of variables in the system and any number of lags. We exploit the fact that I(1) VAR
processes are closed under linear and invertible transformations, which form a group.
This generates an associated group of transformations on the parameters. A classical
result on invariance then assures that the distribution of statistics that are invariant
to transformations on the variables only depend on the maximal invariant function
for the transformation of the parameters.
One of the major limitations of MC simulations is their lack of generality. Each

data generating process (DGP) gives information that is con�ned to the particular
values chosen for the parameters. However if the statistics under investigation are
invariant with respect to some group of transformations on the process, then the
MC result of a single DGP cover all the processes traced by the orbit of a group of
associated transformations acting on the parameters.
This observation thus can be used both to avoid simulation of two DGP on the

same orbit (for which the distribution of the statistic of interest is the same) and to
cover the parameter space uniformly, with a smaller set of DGP. We show how the
MC design can be reduced both for VAR or order 1, VAR(1) �a popular choice �
and VAR of higher order.
Despite the persistent increase in computing power, one issue that remains of

concern in design of MC is the computational speed of various operations involved
in data simulation. We also consider this issue and discuss the possibility to use of
univariate, bivariate or multivariate recursions to generate the VAR. We show that a
VAR(1) can be reduced to a system of independent or block-triangular subsystems,
each at most of bivariate dimension.
We emphasize that the MC design reduction discussed in this paper for VAR

processes equally apply to the VAR part of VARMA processes. We note that the
simulation of the MA part does not involve recursions, and it is hence less time-
consuming than the VAR part. We also remark that the invariance results discussed
here with reference to MC design are analytic, and could be used also in analytic
work on the distributions.
We give an application of the VAR(1) results to the indexing of the local alter-

native for LR CI rank tests. We also discuss how VAR(1) results can be extended
to processes of order q, VAR(q), using the companion form. We �nd that a sizable
MC reduction can be obtained by invariance with respect to the companion form
parametrization, while this is not possible in general with respect to the standard
I(1) Equilibrium Correction (EC) parametrization.
The rest of the paper is organized as follows. Section 2 formulates the problem.
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Section 3 presents properties of VAR and RRR that are used in the Section 4 to
de�ne the design of VAR processes of order 1. An application of these results to the
indexing of the limit distribution of LR tests for CI rank under a local alternative
is reported in Section 5. Section 6 extends results to VAR(q) processes. Section 7
concludes. All proofs are placed in the Appendix.
We use the notation diag (A1; :::; An) to indicate a matrix with blocks A1, ..., An

on the main diagonal and let dg(A) be the matrix with o¤�diagonal elements equal
to 0 and diagonal elements equal to the ones on the diagonal of A:

2 Invariance and design reduction

In this Section we present a generic formulation of the problem, using the well known
ideas of invariance and groups, see e.g. Lehmann (1986) Chapter 6.
Let X�

t be a n
� � 1 vector of stochastic processes with time index t 2 T , and

de�ne X� := fX�
t ; t 2 T g. In particular we consider T := f1; :::; Tg in discrete time

situations and T := [0; 1] in the continuous time case. The stochastic process X� lives
on a probability space (X ;S;P). P is the probability measure for X�, i.e. P(X� 2 A),
A 2 S, gives the probability that X� belong to A.
P is assumed to belong to some parametric family P = P� that is easy to simulate

by MC, where � 2 � are a �nite dimensional parameter vector and parameter space,
respectively. We assume that � gives an identi�ed parametrization, in the sense that
P�� 6= P� whenever � 6= �

�
. Let P := fP�; � 2 �g denote the associated class of

probability measures.

2.1 Invariant statistic

We assume that interest lies with the distribution of a statistic h(X�) that is invariant
with respect to some transformation g of X�, h(X�) = h(g(X�)). The distribution of
h is assumed to be analytically intractable, and that therefore it must be estimated
by MC simulation. This is accomplished by sampling s i.i.d. draws X�i from P�
for a �xed value of �, and by estimating the distribution function of h by the MC
empirical distribution function cPr�(h(X�) � x) = s�1

Ps
i=1 1 (h(X

�i) � x), for any x
and large s. Here 1(�) is the indicator function. � is taken to be a subset of <d�; it
is also assumed that the MC design � takes on values obtained by discretization of
each coordinate in �.
We take the MC design dimension as d�1.

1 The goal of the paper is to �nd ways to
reduce the dimension of the parameter space � using the invariance of h; this is later
called MC design (dimension) reduction. In the following we take g to represent linear
invertible transformation of the process X� de�ned as X

�
:= g (X�) := fg (X�

t ) ; t 2
T g; g has matrix representation X�

:= HX�, where H is a square invertible matrix.

2.2 Transformed process

The transformed process X
�
has probability distribution P� that is assumed still to

belong to the class P; in other words there exists a value �� 2 � such that P� = P�� ,
i.e. the class P is closed under the transformation induced by g. This de�nes a
function �g that maps � into �

�
, �

�
= �g(�).

1This is an approximate indicator of the complexity of the MC simulation, because � is typically
not a product space.
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We assume that the parameter set � is preserved by g, in the sense that �g(�) 2 �
for all g, and that for any �

�
there exists a � such that �

�
= �g(�). Let G be a class

of transformations g de�ned above and let G be the smallest class containing G such
that g1, g2 2 G implies g1 � g2 2 G and g�1 2 G; then G is a group and the induced
set of transformations �g also forms a group �G, see Lehmann (1986) Lemma 1 page
283.
The set of points g(x) for �xed X� = x and all g 2 G de�nes an orbit in X . The

orbits de�ne a partition of the sample space X into sets of the form Xx := fX� 2 X :
X� = g(x); g 2 Gg. Similarly the set of points �g(�) for �xed � and all �g 2 �G de�nes
an orbit in �. The G orbits de�ne a partition of the sample space X into sets of the
form Xx := fX� 2 X : X� = g(x); g 2 Gg, and similarly for �G orbits in �:

2.3 MC design reduction

We next recall the de�nition of maximal invariant, using X� and the group G, noting
that these de�nition equally apply to � and �G. Recall that the function h(X�) is
called invariant under G, if h(X�) = h(g(X�)) for all X� 2 X and g 2 G. A statistic
h(X�) is called maximal invariant if h(X�1) = h(X�2) implies X�1 = g(X�2) for
some g 2 G. The maximal invariant statistic h(X�) is constant on the orbits, i.e.
h(X�) = h(x) for all X� 2 Xx, and takes di¤erent values on di¤erent orbits.
The following classical results, see Lehmann (1986) Theorem 3 in Chapter 6, gives

the key to MC design reduction; it is reported here without proof for ease of later
reference.

Theorem 1 If h(X) is invariant under G, and  (�) is maximal invariant under the
induced group �G, then the distribution of h(X) depends only on  (�).

This result allows to partition � through the maximal invariant function  (�)
into sets of the form � � := f� 2 � :  (�) =  

�g and to simulate just one process P�
for each � � . In this way all points � that lie on the same orbit of  are represented
by a single MC experiment.
Note that this implies a reduction in the MC design dimension; in fact the pa-

rameter space is reduced from � to z := f =  (�); � 2 �g � <dz, which has
dimension not greater than �. By �MC design reduction�we mean d�1�dz; this will
be computed in the following sections for the case of I(1) VAR processes.

3 VARs and Invariance

In this section we collect properties of VAR processes and on the invariance properties
of RRR. Subsection 3.1 de�nes the MC designs considered in the paper. Subsection 3.2
illustrates the properties of VAR processes under linear transformations. Subsection
3.3 presents invariance properties of the eigenvalues in RRR.

3.1 A class of probability measures

In this subsection we de�ne the main class P of probability measures implied by
Gaussian I(1) VAR processes, which enjoys a property of being closed closed under
linear invertible transformations, similarly to unrestricted VARs.
We consider a p� 1 process Xt generated by a VAR(q),

A(L)Xt = �Dt + "t (1)
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with deterministic part �Dt, i.i.d. innovations "t � N (0;
), and autoregressive
polynomial A(L) := �

Pq
i=0AiL

i, A0 := �I, L being the lag operator.
It is well known, see Johansen (1988), that the coe¢ cients Ai, i = 0; 1:::; q can

be linearly mapped into the set of coe¢ cients A(1) = �
Pq

j=0Aj, 	i :=
Pi

j=0Aj,
i = 1; :::; q � 1, that characterize the equilibrium correction form, EC, see eq. (3)
below. This map is a 1 to 1, so one can take either the set Ai, i = 1; :::; q or the set
A(1), 	i, i = 1; :::; q � 1 to represent the AR polynomial A(L).
We here take X�

t = Xt, X� = fX1; :::; XTg in the notation of the previous section;
P� is a Gaussian measure on X� induced by (1). The parameter � is de�ned below
in terms of A(1) and 	 := (	1 : ::: : 	q�1).
We assume that the VAR process Xt satis�es Granger�s I(1) representation theo-

rem, GRT, as given by Theorem 4.2 in Johansen (1996). Speci�cally the assumptions
of GRT are the following:

(a) jA(z)j has roots either at z = 1 or jzj > 1;

(b) A(1) has rank r, 0 � r < p, so that it allows representation A(1) = ���0 for
�, � full column rank p� r matrices;

(c) �0? _A(1)�? = �0? (	(iq�1 
 Ip)� Ip) �? has full rank p � r, where _A(z) =
dA(z)=dz, in is a n� 1 vector of ones, and 
 is Kronecker�s product.

We consider all VAR processes Xt in (1) that satisfy GRT. Moreover we assume
that �Dt can be decomposed as �1D1t+ �2D2t, where �i is p�mi and Dit is mi� 1,
i = 1; 2, and �1 = ��01. We de�ne as parameters � := (�, �, �1, 	, �2, 
) satisfying
(a) (b) (c) above, and 
 positive de�nite. Note that �, � in (b) are not identi�ed
because the decomposition A(1) = ���0 is not unique; we hence consider pairs (�1,
�10), and (�2, �20) equivalent when �1�10 = �2�20, this de�nes an equivalence relation
and equivalence classes. The parametrization � is identi�ed up to these equivalence
classes. This de�nes an identi�ed parametrization with parameter space �1.
We call the associated set of probability measures P1 := fP�; � 2 �1g. We �nd

that the dimension of �1 is

d�1 = (2p� r +m1) r + p (n+m2) +
1

2
p (p+ 1) ; (2)

where n := p(q � 1).
In the next subsection we show that P1 is closed under the action of linear and

invertible transformations g on Xt.

3.2 Transformations

In this subsection we de�ne the linear transformations g. We consider the transfor-
mation g of the form X

�
t := HXt, with H of dimension p � p and invertible. The

following result shows that P1 is closed under the action of g, and de�nes �g in this
case.

Theorem 2 Let Xt be a process with probability measure P� 2 P1, � := (�, �, �1, 	,
�2, 
) 2 �1; the transformed process X

�
t := HXt with H is square and invertible has

probability measure P�� 2 P1, where �
�
= �g(�) := (H�, H 0�1�, �1, H	(Iq�1 
H�1),

H�1�2, H
H 0) 2 �1.
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We note that Theorem 2 implies that g preserves �1: �g(�) 2 �1 for all � 2 �1
and given �

� 2 �1 one can �nd a � 2 �1 such that �
�
= �g(�). To verify the latter

claim, simply note that �g can be inverted to give � = �g�1(�
�
) = (H�1�

�
, H 0�

�
, �

�
1,

H�1	
�
(Iq�1
H), H�

�
2, H

�1

�
H 0�1), which still belongs to �1, such that �

�
= �g(�).

Consider now the class of transformation G of the form g given above. It is
well known that the class G of invertible linear transformation forms a group, see
e.g. Lehmann (1986) Appendix 1, Example 2. Hence also �G, the set of implied
transformations �g de�ned in Theorem 2 on � is a group by Lemma 1 in Lehmann
(1986), Chapter 6.
We next consider the statistical procedure of reduced rank regression and its

invariance properties.

3.3 Invariance

In this subsection we describe the invariance properties of statistics based on RRR.
For simplicity we assume that the statistical model (3) select the correct number of
lags q; the model may be written in EC form:

�Xt = ��0Xt�q +	Ut�1 + �Dt + "t (3)

where Xt and "t are p � 1, Ut�1 := (�Xt�1; :::;�Xt�q+1)
0 is p (q � 1) � 1, Dt is a

vector of deterministic terms. Here we have chosen the EC form with level variables
dated t� q, as in Johansen (1988). It is well known that the level term can be dated
in t� j where j can be chosen equal to 1, 2, ..., q. 2

In model (3) � and � are p � j matrices (not necessarily of full column rank).
Partition also Dt as Dt := (D

0
1t : D

0
2t)

0 and � := (�1 : �2) where �1 = ��01 2 col (�).
We indicate the corresponding statistical model as H(j), which can be put in the
RRR format

Z0t = ���0Z1t +�Z2t + "t (4)

with Z0t := �Xt, Z1t := (X 0
t�q : D

0
1t)

0, Z2t := (U 0t�1 : D
0
2t)

0, �� := (�0 : �01)
0. If Dit is

set equal to 0, it is understood that Dit is dropped from the de�nition of Zit, i = 1; 2.
Given a sample X := fXt; t = 1; :::; Tg, let ` (�; j) indicate the Gaussian log-

likelihood of model H(j) and let ` (j) := max� ` (�; j). The LR test of H(j) within
H (l), for j < l can be written as (see Johansen, 1996)3

LR (j; l) := �2(` (j)� ` (l)) = �T
lX

i=j+1

log(1� b�i); (5)

where b�i is the i-th largest solution of the eigenvalue problem���b�S11 � S10S
�1
00 S01

��� = 0: (6)

and Sij := Mij:2 := Mij �Mi2M
�1
22 M2j, Mij := T�1

PT
t=1 ZitZ

0
jt. We indicate the

eigenvalue problem (6) with the notation RRR(Z0t; Z1t;Z2t). We let S := (Sij)i;j=0;1
and M = (Mij)i;j=0;1;2 be matrices with blocks Sij and Mij respectively.

2See also Mulargia et al. (1992) for an application where the EC form with level term measured
in t� q is appropriate.

3Usually l in (5) is either taken as j + 1 or p; Cavaliere, Fanelli and Paruolo (2005) consider the
class of tests LR (j; l) for any l = j +1; :::; p. All these tests are functions of the eigenvalues b�i, and
hence inherit their invariance properties.
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The invariance property of the eigenvalues b� := fb�igpi=1 as canonical correlations
are well known, see Anderson (1984, Theorem 12.2.2); this property is inherited by
LR(j; l) as function of b�.
Theorem 3 Consider the eigenvalues b�i in RRR(Z0t; Z1t;Z2t) with Zit de�ned in (3).
The eigenvalues b�i are invariant with respect to the following joint transformation of
the variables Zit:

Z0t 7! H0Z0t +H02Z2t; Z1t 7! H1Z1t +H12Z2t; Z2t 7! H2Z2t (7)

where Hi, i = 0, 1, 2 are square invertible matrices. Moreover any function of
S := (Sij)i;j=0;1 which is invariant with respect to the transformation (7) is a function
of b�.
In particular we consider the transformationX

�
t := HXt and the associated trans-

formations (7) with H0 = H, H1 = diag(H; Im1), H2 = diag ((Iq�1 
H); Im2) with
H02 = H12 = 0.
Incidentally we recall that Theorem 3 implies that RRR(Z0t; Z1t;Z2t) is invariant

with respect to the choice of lag of the level term. Let in fact Z
�
1t contain the level

termXt�j with a given j 2 f1; 2; :::; q�1g; then Theorem 3 gives RRR(Z0t; Z1t;Z2t) =
RRR(Z0t; Z

�
1t;Z2t) because Z

�
1t = Z1t + H12Z2t with H12 :=

��
a0j 
 Ip

�
: 0
�
where aj

is a q � 1� 1 vector with j � 1 leading zeros and remaining entries equal to 1.
The next section considers MC design reductions for VAR(1) processes.

4 VAR(1) design

In this section we consider the class P1 with q = 1, see (1). We assume that also the
statistical model (3) selects q = 1. Ut�1 is dropped form (3) which becomes

�Xt = �
�
�0 �01

�� Xt�1
D1t

�
+ �2D2t + "t (8)

Note that � := (�, �, �1, �2, 
) and �1 has MC design dimension d�1 =
(2p� r +m1) r + pm2 +

1
2
p (p+ 1). Here we have used the identi�cation condition

on �, �.
In Subsection 4.1 we state how this design dimension can be reduced by means

of invariance. In Subsection 4.2 we compute the design reduction. In Subsection 4.3
we discuss further reductions that are possible for special cases. In Subsection 4.4 we
compare the present design with an alternative one based on covariances.

4.1 MC design reduction

In this subsection we present the main result. We �rst de�ne a function  (�) that
is invariant with respect to �g 2 �G; we then show that  is maximally invariant. We
then apply Theorem 1, and obtain that the distribution of the eigenvalues b� depends
only on  (�). Hence we can restrict attention to the simulation of one DGP for each
value of  (�) 2 z, instead than of each value of � 2 �.
We �rst de�ne the following function of � := (�, �, �1, �2, 
) ,

 (�) := (J; �; ; �;�)(�)

where:

8



1. (J;R)(�) is the real Jordan pair from the real Jordan decomposition of �(1)1 + I,
where �(1)1 := (�0
�)�1=2�0�(�0
�)1=2; J is a r � r real Jordan matrix J and
R is the nonsingular transformation that satisfy �(1)1 + I = RJR�1. For details
on the real Jordan decomposition see e.g. Horn and Johnson (1985) p. 152,
Theorem 3.4.5;

2. (Q; �)(�), is the QR pair in the QR decomposition of (�0�)1=2 �0, where ��0

is the rank decomposition of �(1)2 := (�0?

�1�?)

�1=2�0?

�1�(�0
�)1=2, of rank

j � min(r; p� r). � is a j � r upper triangular matrix, with positive entries on
the main diagonal;

3. (�) := a�1=2R�1(�0
�)�1=2�01, where �1 = ��01;  is a r �m1 matrix;

4. �(�) := H�2, where H = H2H1, and

H1 :=
�
� (�0
�)

�1=2
: 
�1�?

�
�0?


�1�?
��1=2�0

; (9)

H2 := diag
�
a�1=2R�1; H3

�
; H3 :=

�
� (�0�)

�1=2
Q : �? (�

0
?�?)

�1=2
�
: (10)

� is p�m2.

5. �(�) := a�1R�1R�10 where a is the �rst element on the main diagonal of
R�1R�10. � is a r � r positive de�nite symmetric matrix, with a 1 in the
�rst entry on the main diagonal. � contains r(r + 1)=2� 1 free elements.

Let z indicate the parameter space of  when � varies in �. We next de�ne the
map ' : z 7�! �, '( ) := (�; �; �1; �2;
)( ), that maps  back into � as follows:

�( ) = ((J � I)0 : �0 : 0)
0
; �( ) = (Ir : 0r�p�r)

0

�1( ) = ; �2( ) = �; 
( ) = diag(�; Ip�r): (11)

We also use the notation f(�) := ' �  (�) :

Theorem 4 The function  (�) is invariant with respect to the action of �g 2 �G.
The point f(�) := '( (�)) is on the same orbit as �, i.e. f(�) = �g (�) for some
�g 2 �G. Moreover  is maximally invariant, i.e.  

�
�
��
=  (�) for �

�
; � 2 �1 implies

�
�
= �g (�) for some �g 2 �G.

Theorem 4 partitions � through the maximal invariant function  (�) into sets of
the form � � := f� 2 � :  (�) =  

�g. One can simulate just one process P� choosing
one � = '

�
 
��
for each � � , because the distribution of b� is constant over � � by

Theorem 1. In this way all points � that lie in � � are represented by a single MC
experiment. The next corollary describes the representative DGP in � � . Here and
hereafter we omit zero entries for readability.

Corollary 5 In order to draw from the distribution P'( ) for a �xed value of  =
(J; �; ; �;�), one can simulate a Gaussian VAR(1) process Wt with dynamics8<:

W1t =
�W2t =
�W3t =

J (W1t�1 + D1t) + �1D2t + �1t
� (W1t�1 + D1t) + �2D2t + �2t

�3D2t + �3t

; (12)

� := var

0@ �1t
�2t
�3t

1A =

0@ �
Ir

Ip�2r

1A
9



where � := (� 01 : �
0
2 : �

0
3)
0, W1t is r � 1, W2t is j � 1, W3t is p � r � j � 1 and

�t := H"t � N(0;�). The eigenvalues in J are less of equal to 1 in modulus by the
assumption that all the measures in P1 satisfy GRT.

The representative DGP is thus (12) with a �xed value of  . We collect observa-
tions and comments about (12) in the following remarks.

1. The matrix J is associated with stationary dynamics. The eigenvalues in J
are all less than 1 in modulus because of assumption (a) in GRT. The latter
can be seed to be equivalent for VAR(1) processes to jeig(I + �0�)j < 1, see
Johansen (1996) Exercise 4.12, where eig (�) indicates a generic eigenvalue of
the argument. We note here that eig(I + �0�) = eig(�

(1)
1 + I).

2. We next describe the form of J . Let �k be a generic eigenvalue (less than 1
in modulus) of �(1)1 + I with dimension nk of the corresponding Jordan block,
r =

P
k nk see e.g. Horn and Johnson (1985) p. 126, Theorem 3.1.11.

The eigenvalues �k are not necessarily real. Let �s, ..., �r be the ordered real
eigenvalues with 1 � s � r. Let �j := aj + ibj = cj (cos!j + i sin!j) be a
generic complex eigenvalue, where aj, bj are the real and imaginary parts, cj
is the modulus and !j = arg (�j), 0 � !j < 2�. Because the matrix �(1)1 + I
is real, complex eigenvalues �j always appear with their complex conjugate
��j = aj � ibj.4

Let h be the number of complex pairs of eigenvalues with separate Jordan blocks
in the Jordan canonical form (not necessarily distinct). The form of J is

J
r�r

:= diag (Cn1(a1; b1); :::; Cnh(ah; bh); Jns (�s) ; :::; Jnr (�r)) , where

Ck(a; b)
2k�2k

:=

0BBB@
C(a; b) I2

. . . . . .
. . . I2

C(a; b)

1CCCA ; (13)

C(aj; bj)
2�2

:=

�
aj bj
�bj aj

�
=: compl (aj; bj) = cj

�
cos!j sin!j
� sin!j cos!j

�

Jk(�)
k�k

:=

0BBB@
� 1
. . . . . .

. . . 1
�

1CCCA
where we have reported dimensions below the matrices on the l.h.s.

3. We observe that the matrix J has a upper-block-triangular structure. The real
blocks are upper triangular, while the complex blocks Ck(a; b) are block-upper-
triangular, with bivariate blocks. We call this structure 2-block triangular, or
block triangular of dimension 2.

4One can note that the tripler (cj ; !j ; nj) completely characterizes Cnj (cj cos!j ; cj sin!j), and
it is associated in a simple way with stationary (cj < 1), explosive (cj > 1) and unit (cj = 1)
roots. For unit roots, the order of integration is associated with nj , i.e. the sub-process obtained by
selecting the block of variables corresponding fo Cnj (cj cos!j ; cj sin!j) is integrated of order I(nj),
see e.g. Bauer and Wagner (2005).
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4. Complex Jordan blocks Ck(a; b) are 2-block triangular. Hence one needs to use
bivariate algorithms to produce a simulation of each bivariate block given the
following ones in the ordering of Ck(a; b) in (13). Hence one cannot in general
simulate all I(1) VAR(1) processes only using univariate procedures, unless all
eigenvalues in J are real.

5. The block-triangular structures in the real Jordan decomposition of W1t can
speed calculations considerably with respect to non-block-triangular forms. This
is well known for the computation of solutions to linear systems. Here it is even
more important given that recursions are needed in order to generate autore-
gressive series.

6. The matrix � is a loading matrix of the di¤erences of the second set �W2t

of j variables on the lagged values of W1t. Also here one can adopt a block-
recursive approach in computations; one can �rst generate W �

1 , a T � r matrix,
and ��2 a T � j matrix of errors, with t-th rows respectively equal to W 0

1t and
�02t respectively; next compute W

�
1;lagged as (0 : W11 : ::: : W1T�1)

0 and e2 =
W �
1;lagged�

0+ ��2; �nally calculate the T � j matrix W2 as the cumulative sum of
e2. This just requires matrix multiplication and a single cumulative sum.

7. Simulation of W3 is independent of W1, W2 (both stochastically and computa-
tionally), and can be performed as cumulative sum of a T � p � r � j matrix
with t-th row equal to �03t.

8. Combining 5., 6., 7. one sees that recursions are needed only for the W1t block,
where the upper-(block-)triangular form of J implies savings in computing time.

We next illustrate simple cases for J , for r = 2, 3. If r = 2, one may have the
following cases.

i. Real eigenvalues:

J =

�
�1 c

�2

�
where c = 0 or c = 1; if c = 1 then �1 = �2.

ii. Complex conjugate eigenvalues: �1 = a+ bi, �2 = a� bi with

J = C(a; b) =

�
a b
�b a

�
:

If r = 3, one may have 0 or 2 (conjugate) complex eigenvalues. These are the
possible situations:

iii. One real, two complex conjugate eigenvalues:

J =

0@ �
a b
�b a

�
�3

1A
iv. Three real eigenvalues:

J =

0@ �1 c1 0
0 �2 c2
0 0 �3

1A (14)

where c1 and c2 can be either 0 or 1. If c1 = 1 then �1 = �2, if c2 = 1, then
�2 = �3. Finally c1 = c2 = 1 implies �1 = �2 = �3.

11



p� r r = 0 1 2 3 4 5 6 7
1 3 4 4 7 9 14 18 25
2 5 9 12 18 23 31 38 48
3 8 15 21 30 38 49 59 72
4 12 22 31 43 54 68 81 97
5 17 30 42 57 71 88 104 123
6 23 39 54 72 89 109 128 150
7 30 49 67 88 108 131 153 178

Table 1: Lower bound m0 for MC design dimension reduction.

4.2 Dimension comparison

This subsection calculates MC design reduction d�1 � dz associated with (12). We
observe that the deterministic parts of (8) and (12) have the same number of para-
meters: , � have the same number of free elements as �1 and �2. We hence restrict
attention to the case of no deterministics for dimension comparisons.
We consider the representation of the various elements J , �, � within  , in order

to calculate dz. Consider �rst the Jordan matrix J ; observe that each eigenvalue �i
in J can be either real or complex, where complex eigenvalues are conjugate. We
hence group eigenvalues in pairs, associating complex conjugate numbers.
Each generic pair, indicated as (�1, �2), can be represented in <3: the �rst co-

ordinate represents <(�1), the second one < (�2), the third one = (�1). When the
eigenvalues are real, the third coordinate is equal to 0. When (�1, �2) are complex
conjugate, the �rst and second coordinate are equal, = (�1) is reported on the third
axis and = (�2) = �= (�1) is a function of = (�1).
This implies that 2 br=2c+r coordinates are needed to represent the entries on the

main diagonal of J , where b�c indicates the largest lower integer value. The matrix
J contains also 0 or 1 in each entry on the �rst super-diagonal. One hence needs
r � 1 indicators that take values in f0; 1g. For dimension comparisons, we embed
the discrete set f0; 1g in < and count a total of 2 br=2c+ 2r � 1 coordinates in  to
represent J .
The matrix � has j(j + 1)=2 + max (r � j; 0)2 elements di¤erent from 0, where

0 � j � min(r; p� r) takes all di¤erent values on �. For dimension comparisons we
reserve r(r+1)=2 entries in  to represent �; this choice is conservative, in the sense
that when p � r < r, fewer coordinates are really needed. Finally we recall that �
corresponds to r(r + 1)=2� 1 coordinates in  .
The above gives dz = 2 br=2c+ 2r � 1 + r(r + 1)� 1 + rm1 + pm2; this must be

compared with d�1 from (2). In both dimensions we have also added the dimension
of the deterministic components for completeness. One �nds the following corollary.

Corollary 6 If r < p then

m0 := d�1�dz = 3(p�r�1)r+(p� r)2 =2+
�
r2=2� br=2c

�
+(p=2� br=2c)+2 > 0;

where b�c indicates the largest lower integer value.

Table 1 reports the lower bound of the MC design reduction m0; it is seen that
m0 can be substantial.

4.3 Special cases and further reductions

The (maximal) invariant function  in Subsection 4.1 provides a partition of the
parameter space �1. For special subsets of �1, there exist other invariant functions
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of � that imply an even greater MC design reduction. These special cases are treated
in this subsection.
In particular we discuss two nested special cases. Let �2 := f� : J(�) = diagg

indicate the subset of � of points that correspond to a diagonal Jordan matrix J in
 (�). De�ne also �3 := f� : J(�) = cIrg as the subset of � of points that correspond
to a Jordan matrix J proportional to the identity matrix. Let Pi := fP�; � 2 �ig be
the corresponding subsets of probability measures, i = 2; 3. Note that�3 � �2 � �1;
moreover for � 2 �2 or�3, J has all blocks of dimension one and only real eigenvalues.
Let  2 ( ) indicate the function  2( ) := (J; ��; �; ��;��) ( ) that leaves the J

coe¢ cients in  unaltered. � is mapped into �� := H4�H
�1
3 and � := (�ij)i;j=1;:::;r is

mapped into the correlation matrix�� = H3�H3 whereH3 := diag(s1�
�1=2
11 ; :::; sr�

�1=2
rr ),

H4 := diag(s1; :::; sj), �ii are the diagonal elements of �; moreover si := sign(�1i),
where sign(a) := 1 if a � 0 and sign(a) := �1 otherwise, a 2 <. Moreover � := H3,
�� := diag(H3; H4; Ip�r�j)�.
The matrix ��

�� =

0BBB@
1 ��12 ::: ��1r

��21
. . .

...
. . . ��r�1;r

��r1 ::: ��r;r�1 1

1CCCA
has non-negative correlations in the �rst row and column. The choice of the �rst
variable for the non-negativity restriction is arbitrary. Note also that �� has the
same characteristics as �, i.e. it is upper triangular with non-negative entries on the
main diagonal, because H3, H4 are diagonal.
Because  2 is a function of  (�), with a slight abuse of notation we also indicate

by  2 (�) the composite map  2 �  (�). Note that  2 (�) is �g 2 �G invariant, being
a function of  . Remark that �2 is preserved by g 2 G. In fact �g(�) 2 �2 for all
� 2 �2 because J(�) = J(�g(�)) is invariant; moreover given �

� 2 �2 one can �nd a
� 2 �2 such that �

�
= �g(�). To verify the latter claim, simply note that �g can be

inverted to give � = �g�1(�
�
), which still belongs to �2 because of the invariance of J

under �g 2 �G, such that �
�
= �g(�).

De�ne also f2 (�) := '( 2 (�)), which maps back  2 in �-space. We next state
results concerning P2.

Theorem 7 f2(�) := '( 2(�)) is on the same orbit as � for all � 2 �2, i.e. f2(�) =
�g (�) for some �g 2 �G. Moreover  2 is maximally invariant on �2, i.e.  2

�
�
��
=  2 (�)

for �
�
; � 2 �2 implies �

�
= �g (�) for some �g 2 �G. Hence � can be replaced by a

correlation matrix �� in the MC design (12) when � 2 �2.

Note that the above simpli�cation reduces the MC design dimension by r � 1 by
eliminating the variances on the main diagonal of �; moreover it restricts the r � 1
elements on the �rst row and column to the half-line <+0 .
We next consider the case of P3, when J is a scalar multiple of the identity, i.e.

J = �Ir. Let  3 ( ) indicate a function  3( ) := (J; ��; �; ��;��) ( ) that leaves
J in  unaltered. � is mapped into �� := �V �1 and � is mapped into the identity
matrix Ir where V is an upper triangular matrix with positive elements on the main
diagonal that satis�es V �V 0 = Ir, see Lemma 16 in the Appendix. Note also that
�� has the same characteristics as �, i.e. it is upper triangular with non-negative
entries on the main diagonal, because V is upper triangular with positive entries on
the main diagonal. Moreover � := V , �� := diag(V; Ip�r)�.
Again, because  3 is a function of  (�), with a slight abuse of notation we also

indicate by  3 (�) the composite map  3 �  (�). Note that  3 (�) is �g 2 �G invariant,
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being a function of  . Note also that �3 is preserved by g 2 G. In fact �g(�) 2 �3
for all � 2 �3 because J(�) = J(�g(�)) is �g 2 �G invariant; moreover given �

� 2 �3
one can �nd a � 2 �3 such that �

�
= �g(�). To verify the latter claim, simply note

that �g can be inverted to give � = �g�1(�
�
), which still belongs to �3 because of the

invariance of J under �g 2 �G, such that �
�
= �g(�).

De�ne also f3 (�) := '( 3 (�)), which maps back in �-space. We next state results
concerning P3.

Theorem 8 f3(�) := '( 3(�)) is on the same orbit as � for all � 2 �3. Moreover  3
is maximally invariant on �3, i.e.  3

�
�
��
=  3 (�) for �

�
; � 2 �3 implies �

�
= �g (�)

for some �g 2 �G. Hence � can be replaced by an identity matrix I in the MC design
(12) when � 2 �3.

Note that Theorem 8 reduces the design dimension by r(r+1)=2� 1 with respect
to (12) by eliminating �.
Finally note that the above further reduction can be applied to single real Jordan

blocks that are diagonal; this implies a comparatively smaller reduction in the number
of covariance parameters in �.

4.4 Covariance versus AR parametrization

An alternative parametrization, which eliminates � at the expense of creating ex-
tra non-zero covariances, is analyzed in this subsection. This alternative is explored
because eliminating AR coe¢ cients implies reducing recursions and hence saves com-
puter time. The cost of this elimination is the creation of some extra non-zero co-
variances of the errors, which are less expensive to generate in terms of computer
time. However we �nd that this alternative parametrization has higher dimension
than dim(z) in (12); moreover it is less well interpretable. The covariance parame-
trization is hence less attractive than the AR one given previously. This subsection
presents these results.
The covariance parametrization is obtained by a suitable g transformation of

Wt in (12). Observe that I � J is nonsingular, thanks to GRT. We consider the
transformation Yt = HWt, with

H =

0@ Ir
� (I � J)�1 Ij

Ip�r�j

1A
One �nds Y1t = W1t, Y3t = W3t and

�Y2t = ��2D2t + ��2t

where ��2 := � (I � J)�1 �1 + �2, ��2t := � (I � J)�1 �1t + �2t. The covariance matrix
of the errors ��t := H�t is equal to �� := (��ij)i;j=1;2;3 := var (�

�
t ) where

�� :=

0@ � � (I � J 0)�1 �0

� (I � J)�1� Ij + � (I � J)�1� (I � J 0)�1 �0

Ip�r�j

1A : (15)

Note that �Y2t, unlike �W2t, does not contain the term �W1t�1. The resulting
system has no AR coe¢ cients in the equations for �Y2t, i.e. it has eliminated �.
This was done at the expense of introducing variances for the second block of errors
corresponding to Y2t (of dimension j � 1) and between the �rst block Y1t and Y2t.
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The alternative parametrization  � (�) thus obtained is given by  � (�) := (J , ,
��, ��11, �

�
12, �

�
22), where �

�
11 = � and �

�
12, �

�
22 are de�ned in (15). It can then be

proved that this alternative parametrization  � (�) is maximally invariant in �1; this
is omitted for brevity.
We now wish to compare design dimensions in (12) and (15) where, without loss

of generality, we abstract from the coe¢ cients to D1t and D2t. J , , ��, ��11 = � are
present both inWt and Yt. The extra variances and covariances ��12, �

�
22 in (15) (when

unrestricted) generate rj + j(j + 1)=2 dimensions, which should be compared with
the number of free elements in �; the latter is bounded by rj. Hence the covariance
parametrization (15) gives a higher MC design dimension than (12).
Note also that the AR parametrization is amenable to a directional dependence

interpretation, i.e. �W2t adjusts toW1t�1 through �. On the contrary the covariances
in (15) give a-directional measures of associations between the errors in Y1t and Y2t.
The parametrization (12) should hence be preferred both because it gives a lower MC
design dimension and because the AR coe¢ cients in � are more directly interpretable
than the covariances in (15).

5 An application to asymptotics for local alterna-
tives

In this section we show how the results in Section 4 developed for VAR(1) processes
can be used to index the asymptotic distribution of LR CI rank test, under local
alternatives.
The local alternative is de�ned substituting ��0 with ��0 + T�1�1�

0
1, where �1,

�1 are p � s full column rank matrices, �1 2 col(�?), �1 2 col(�?). Let eigi(N) the
i-th largest eigenvalue, in case N has all real eigenvalues.
De�ne K(t), t 2 T := [0; 1] as the di¤usion

K(t) = ab0
Z t

0

K(u)du+ V (t); t 2 [0; 1] (16)

a := �0?�1 b0 := �01�?(�
0
?�?)

�1:

Here V (t) is a (p�r)�1 Brownian motion with covariance� := �0?
�? = E(V (1)V (1)0).
Let P� indicate the probability measure de�ned by (16), where � := (a, b, �) and let
E (�) denote expectations with respect to it. Here a and b are p�r�s matrices of full
column rank that satisfy rk (b0a) = s, and � is a positive de�nite symmetric matrix
of dimension p� r. This parameter space is identical to �1 (apart from dimensions)
when q = 1 and all the deterministic terms �1 and �2, are canceled.5 Indicate this
parameter space as �4 and let P4 := fP�; � 2 �4g.
If jeig(Ir + �0�)j < 1, see Johansen (1996 Chapter 14) and Cavaliere, Fanelli,

Paruolo (2005), then as T !1,

LR (r; l)
w! Vl�r :=

l�rX
i=1

eigi (N(K)) ;

N(K) :=

�Z 1

0

K(u)K(u)0du

��1 Z 1

0

K(u) (dK(u))0��1
Z 1

0

(dK(u))K(u)0

5The present results easily generalize when the local asymptotics are performed with deterministic
terms as in Saikkonen and Lütkepohl (2000).
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Eq. (16) can be seen as a continuos time analog of the VAR(1). We here show in
the following three subsections how the results developed for a VAR(1) apply also in
this continuous time case.

5.1 Transformations

We consider the transformation g that takes the process K(t) into HK(t), for H
square and invertible; g de�ned the group G. The following is the analogue of Theo-
rem 2.

Theorem 9 Let K(t) be a process with probability measure P� 2 P4, � := (a, b,
�) 2 �4; the transformed process HK(t) with H square and invertible has probability
measure P�� 2 P4, where �

�
:= �g (�) = (Ha, H 0�1b, H�H 0) 2 �4.

This shows that the di¤usion process (16) is closed under linear invertible trans-
formations, i.e. that g preserves �4.

5.2 Invariance

It is simple to verify that eigi(N(K)) are invariant with respect to this group of
transformations. Note in fact that

N(K
�
) = H 0�1N(K)H 0

and that the eigenvalues are invariant with respect to pre-multiplication by H 0�1

and post- multiplication by H 0, eigi(H 0�1NH 0) = eigi(N). Hence also the random
variable Vl�r in (16), which is a function of eigi(N), is invariant under G.

5.3 MC design reduction

One can hence apply Theorem 3 to the present case. Let again  be de�ned as
 (�) := (J; �;�)(�). Here all the de�nition in Section 4.1 apply, substituting � in
place of 
, s in place of r and p� r in place of p. Let also z := f (�); � 2 �4g:
Theorem 4 partitions �4 through the maximal invariant function  (�) into sets

of the form �4; � := f� 2 �4 :  (�) =  
�g. One can simulate just one process P�

choosing one � = '
�
 
��
for each � � , because the distribution of Vl�r is constant

over �4; � by Theorem 1. In this way all points � that lie in �4; � are represented
by a single MC experiment. The next corollary describes the representative DGP in
�4; � .

Corollary 10 In order to draw from the distribution P'( ) for a �xed value of  =
(J; �;�), one can simulate a di¤usion process K(t) as in (16) with a = (J 0 � Is : �

0 :
0)0, b = (Is : 0)0, � = diag(�s�s; Ip�r�s). The eigenvalues in J are less or equal to 1
in modulus by the assumption jeig(Ir + �0�)j < 1.

6 VAR(q) design

In this section we discuss how the results in the previous sections can be extended
to VAR(q) processes for q � 2. For VAR(q) one wishes to obtain parametrizations
which directly control the stable characteristic roots of jA(z)j = 0.
The approach we take is to consider the companion form of the VAR, and then

modify the techniques introduced in the previous sections in order to (possibly) reduce

16



the MC design dimension and, at the same time, obtain designs where one can directly
control the stable roots.
The choice of the companion form is intuitive, although a moment re�ection sug-

gests that this increases the dimensionality of the problem. In fact the companion
matrix is (n+ p)� (n+ p) where n := p(q� 1). For increasing q, the elements of the
companion form increase as p2q2, whereas the AR parameters A1, ...., Aq increase as
p2q.
One hence may wish to consider other techniques that reduce the MC design

dimension without in�ating the dimension of the problem to the companion form;
this is however beyond the scope of the present paper. We here restrict attention to
the type of techniques used for VAR(1), when applied to the companion form. We
obtain results similar in spirit to the ones of Section 4.
We obtain a MC dimension reduction when comparing the companion form para-

metriation, indicated as e� 2 e�, with the one obtained by invariance, e 2 ez1. In
general there is not, however, a positive MC reduction when comparing e 2 ez1 with
the direct parametration � 2 �1 introduced in Section 3.1.
This section is organized as follows. In Subsection 6.1 we �rst review a companion

form representation and state GRT in terms of it. This allows to de�ne the enlarged
parametrization e� 2 e� in Subsection 6.2. We next present extensions of the invariance
of RRR in Subsection 6.3; �nally in Subsection 6.4 we present results for MC design
reduction.

6.1 Companion form

In this subsection we present a state-space formulation for an I(1) VAR(q). Many
state-space formulations exist for an I(1) VAR(q). We here choose a particular one
which is simple to work with, see (18) below.
Consider the process eXt := (�X 0

t : �X
0
t�1 : ::: : �X

0
t�q+2 : X

0
t�q+1)

0 = (U 0t :

X 0
t�q+1)

0; the state vector eXt is (n+ p)� 1, and satis�es the companion form:0BBB@
�Xt
...

�Xt�q+2
Xt�q+1

1CCCA =

0BBB@
	1 ::: 	q�1 ��0

Ip
. . .

Ip Ip

1CCCA
0BBB@

�Xt�1
...

�Xt�q+1
Xt�q

1CCCA+
0@ �

1ADt +

0@ "t
1A i.e.

eXt = eA eXt�1 + e�Dt + e"t
The matrix eA is called the companion matrix. Again here we partition the deter-
ministic components as �Dt = ��01D1t + �2D2t. Let U := (e1 
 Ip), where e1 is
(q � 1) � 1 with 1 in the �rst entry and 0 elsewhere; with this notation e"t = U"t,e�2D2t = U�2D2t. Let also e"�t := U (�2D2t + "t). The EC form of the companion
equation is

0BBB@
�2Xt
...

�2Xt�q+2
�Xt�q+1

1CCCA =

0BBB@
	1 � Ip ::: 	q�1 �
Ip �Ip

. . . �Ip
Ip 0

1CCCA
�
In

�0 �01

�
0BBBBB@

�Xt�1
...

�Xt�q+1
Xt�q
D1t

1CCCCCA+ e"�t
� eXt = e�� e�0 e�01 �� eXt�1

D1t

�
+ e�2D2t + e"t (17)
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where

e� :=
0BBB@
	1 � Ip ::: 	q�1 �
Ip �Ip

. . . �Ip
Ip

1CCCA ; e� := � In
�

� e�01 := � 0
�01

�
(18)

6.2 An enlarged class of probability measures

In this subsection we discuss the extended parameterization associated with the com-
panion form (17). It is simple to verify that the conditions (a), (b), (c) for Xt can be
restated in terms of the companion form coe¢ cients e� and e� as follows:6
(a1) eA has all (non-zero) eigenvalues within the unit disc, jeig( eA)j < 1, or eig( eA) =

1, where eig (�) indicates a generic eigenvalues of the argument matrix;

(b1) Ipq� eA has reduced rank n+ r, so that it allows representation Ipq� eA = �e�e�0
for e�, e� full column rank n+ p� n+ r matrices;

(c1) e�0e� has full rank (or equivalently e�0?e�? has full rank).
Concerning (a1) we note that eig( eA) = eig( eA�I)+1, where eig( eA�I) = eig(e�e�0)

are either 0 or equal to eig(e�0e�). Hence (a1) and (c1) can be reformulated also as
follows:

(a2) jeig(In+r + e�0e�)j < 1 or eig(In+r + e�0e�) = 1;
(c2) eig(In+r + e�0e�) 6= 1.
We condense the set of conditions (a) (b) (c) into the following two conditions on

the companion matrix:

(b3) Ipq � eA = �e�e�0 for e�, e� full column rank n+ p� n+ r matrices;

(a3) (c3) jeig(In+r + e�0e�)j < 1
We decompose e
 = diag(
; 0) as e
 = e�diag(Ip; 0)e�0, where

e� := �e�1 : e�2� := �U
1=2 : U?� ; e�2 = U�2: (19)

Recall here that U := (e1 
 Ip). We take e� := (e�, e�, e�1, e�2, e�) satisfying (a3) (b3)
(c3) with e� of full column rank n+p; this de�nes e�. Note that the �rst p columns e�1
of e� are associated with non-zero covariances, and the remaining n columns e�2 pre-
multiply the singular part of e"t. We label Pe� as the Gaussian measure on eX induced
by e"t in (17), and call the associated set of probability measures eP := fPe�; e� 2 e�g.
De�ne also k(�) as the function that maps (�, �, �1, 	, �2, 
) 2 �1 into e� 2 e�,

where e�, e�, e�1 are de�ned in (18) and e�2, e� are de�ned in (19). De�ne the sete�1 := fe� : e� = k (�) ; � 2 �1g, which is a proper subset of e�, e�1 � e�, P1 � eP. In
other words the e� parametrization includes also processes that cannot be represented

6This formulation is well known, see e.g. Hansen (2005), Lemma A.1 and A.2.
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as a VAR(q), which are characterized by the pattern of 0 and I matrices in the lower
part of (17) and (18).
As for � 2 �, the e� 2 e� parametrization is not identi�ed, because each Pe�

depends on e�, e� only through their product e�e�0; moreover in the e� parametrization
Pe� is invariant with respect to the choice of e�2 provided e� is of full rank. This de�nes
equivalence classes and we assume that parameters values are treated as identical if
they belong to the same class.
The dimension de� of the parameterization e� 2 e� is calculated as follows. e�, e�

contain (2 (n+ p)� n� r) (n+ r) = (n+ 2p� r) (n+ r) identi�ed coordinates. The
additional parameters in e�1 are (n+ r)m1, and e�2 has (n+p)m2 entries; e�1 contains
(n+ p) p elements, where we note that one can e.g. choose e�2 = e�1?. Hence

de� = (n+ 2p� r +m1) (n+ r) + (n+ p) (m2 + p) : (20)

Note that this dimension is (much) bigger than the corresponding dimension d�1,
where d�1 = (2p � r)r + p(p + 1)=2+ rm1 + pm2, see Subsection 4.2. In this sense
the dimension of �1 is �in�ated�to the one of e� before obtaining a MC reduction by
means of invariance.
In the next subsection we consider extensions of the invariance properties of RRR

related to the companion form (17).

6.3 Extensions of RRR invariance

In this subsection we give extensions of the invariance properties of RRR; these
extensions are used to de�ne a di¤erent class of linear transformations to be applied
to the state vector in (17) to which the relevant RRR is invariant.
Let Zit be ni � 1 vectors of generic variables, i = 0; 1; 2, and partition Z2t as

Z2t := (Z 021;t : Z
0
22;t)

0 := (L0t : K
0
t)
0, where Z2j;t is n2j � 1, j = 1; 2. De�ne also

a di¤erent set of variables vectors Zyit as follows: Z
y
it := (Z 0it : Z

0
21;t)

0, i = 0; 1 and
Zy2t := Z22;t. Let s1 := min(n0; n1), s2 := s1 + n21; denote by M�

ij := Mij:K the
moment matrices of the Zit variables corrected for Z2j;t := Kt.
The following theorem describes the connection between the RRR involving the

set of Zit variables and the one involving the Z
y
it variables.

Theorem 11 Let b� := fb�igs1i=1 be the eigenvalues in RRR(Z0t; Z1t;Z2t), b�y :=
fb�yigs2i=1 be the eigenvalues in RRR(Zy0t; Zy1t;Zy2t) and U := f1gn21i=1 a set of n21 ele-
ments all equal to 1. If M�

LL has full rank, then b�y = b� [ U .
We observe that the set U of unit eigenvalues is due to the identity of the subset

of variables Lt := Z21 present both in Z
y
0t and Z

y
1t. Theorem 11 is used in the rest

of the paper setting Zit equal to the values de�ned in (4) and taking Z21;t := Ut�1,
Z22;t = D2t. We observe that M�

LL has full rank provided T > n.
This establishes the equivalence, except for the set U of eigenvalues equal to 1, of

RRR(Z0t; Z1t;Z2t) and RRR(Z
y
0t; Z

y
1t;Z

y
2t). With abuse of language we say that the

two RRR have the same eigenvalues.
We next note that Theorem 11 implies that one can resort to a RRR based on

the companion form in place of the original RRR(Z0t; Z1t;Z2t).

Corollary 12 Let Zit be de�ned as in (4) and T > n; then RRR(Z0t; Z1t;Z2t) has
the same eigenvalues as RRR( eZ0t; eZ1t;D2t) where eZ0t := � eXt, eZ1t := ( eX 0

t�1 : D
0
1t)

0

and eXt is de�ned in (17).
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Corollary 12 shows that one can substitute RRR(Z0t; Z1t;Z2t) with RRR( eZ0t; eZ1t;D2t).
Applying Theorem 3 to RRR( eZ0t; eZ1t;D2t) one obtains the following extended version
of the invariance results for RRR.

Theorem 13 Let T > n and consider the eigenvalues e�i of RRR( eZ0t; eZ1t;D2t) whereeZ0t := � eXt, eZ1t := ( eX 0
1t�1 : D

0
1t)

0. The eigenvalues e�i are invariant with respect to
the following joint transformation of the variables Zit, i = 0; 1 :eZ0t 7! H0

eZ0t eZ0t 7! H1
eZ1t; (21)

where Hi, i = 0, 1 are square invertible matrices.

In particular we consider the transformation eX�
t := H eXt and the associated trans-

formations (21) with H0 = H, H1 = diag(H; Im1). We note that the square matrix
H is (n+ p)� (n+ p), and hence of bigger dimension than the one in Subsection 3.2
considered for a VAR(1).

6.4 MC design

In this section we give the main results concerning VAR(q) processes. We �rst note
that the proof in Theorem 2 can be applied to the e� parametrization in order to show
that g( eXt) := H eXt induces the transformation �g(e�) := (He�, H 0�1e�, e�1, He�2, H e�)
on the parameters, and that this de�nes a group �G.
Let � := e�e�0; we next de�ne the following function  (e�) that is invariant with

respect to the transformation �g 2 �G on the parameters:e (e�) := ( eJ; e�; e; e�; e�)(e�);
where:

1. ( eJ; eR)(e�) is the real Jordan pair from the real Jordan decomposition of C :=

In+r+
�e�0�e��� 1

2 e�0e��e�0�e�� 1
2
, of dimension n+r; eJ is a n+r�n+r real Jordan

matrix and eR is the nonsingular transformation that satisfy C = eR eJ eR�1; eJ
contains (at most) n+ r distinct eigenvalues, less than 1 in modulus;

2. e�(e�) := dg(e��)�1 e��, where ( eQ; e��)(�), is the QR decomposition of�e�0?��1e�?��1=2 e�0?��1e��e�0�e�� 1
2
:

e� is a (p� r)� p upper triangular matrix, with ones on the main diagonal. It
contains p(p� r)� (p� r)(p� r + 1)=2 elements in the upper half;

3. e(e�) := ea�1=2 eR�1 �e�0�e��� 1
2 e�01, where ea is the �rst element on the main diagonal

of diag
� eR�1; I�UU 0 diag � eR�10; I�; e is a n + r �m1 matrix, with (n + r)m1

elements;

4. e�(e�) := He�2, where H = H2H1 and

H1 :=

�e� �e�0�e���1=2 : ��1e�? �e�0?��1e�?��1=2�0 ;
H2 := diag

�ea�1=2 eR�1 : dg(e��)�1 eQ0�
e� is (n+ p)�m2.
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r = 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
p� r de� � dez1 d�1 � dez1
1 3 15 44 90 153 233 330 444 0 -4 -6 -6 -4 0 6 14
2 8 30 69 125 198 288 395 519 -5 -8 -9 -8 -5 0 7 16
3 21 53 102 168 251 351 468 602 -9 -11 -11 -9 -5 1 9 19
4 38 80 139 215 308 418 545 689 -16 -17 -16 -13 -8 -1 8 19
5 63 115 184 270 373 493 630 784 -22 -22 -20 -16 -10 -2 8 20
6 92 154 233 329 442 572 719 883 -31 -30 -27 -22 -15 -6 5 18
7 129 201 290 396 519 659 816 990 -39 -37 -33 -27 -19 -9 3 17

Table 2: Left panel: de��dez1 . Right panel: d�1�dez1. Case q = 2, no deterministics.
5. e�0(e�) is the upper triangular p�(n+p) matrix obtained from the QR decompo-
sition of e�01e� �e�0�e���1=2 eR0�1ea�1=2; � contains np+p(p+1)=2�1 free elements,
where the last one is restricted by the �rst element on the main diagonal of e�e�0
to unity;

Let ez indicate the parameter space of e when e� varies in e�, and ez1 the one whene� varies in e�1. We next de�ne the map e' : ez 7�! e�, e'( e ) := (e�, e�, e�1, e�2, e�)( e ),
that maps e back into e� as follows:

e�( e ) = � eJ � Ie�
�
; e�( e ) = � In+r

0(p�r)�(n+r)

�
;

e�1( e ) := e; e�2( e ) = e�; e�(e ) = �e� : e�?� : (22)

We also use the notation ef(e�) := e' � e �e��. We here state the same results for
Theorem 2 for the e� parametrization.
Theorem 14 The function e (e�) is invariant with respect to the action of �g 2 �G.

The point ef(e�) := e'( e (e�)) is on the same orbit as e�, i.e. ef(e�) = �g
�e�� for some

�g 2 �G. Moreover e is maximally invariant, i.e. e (e��) = e (e�) for e�� ; e� 2 e� impliese�� = �g(e�) for some �g 2 �G.

We note that Theorem 14 can be used to partition e� by the maximal invariant
function e (e�). However, we are interested in the subset e�1 of e� that contains the
VAR(q) processes. QUIQUI
We observe that for e� 2 e�1 the maximal invariant function e (e�) has a special

structure. In particular we make the following remarks.

1. eJ derives from the real Jordan decomposition of

C := In+r +
�e�0�e��� 1

2 e�0e��e�0�e�� 1
2
=

=

0BBBBBBBB@


�1=2	1

1=2 ::: 
�1=2	q�1 
�1=2� (�0�)1=2


1=2 0

I
. . .
. . . . . .

I 0

(�0�)�1=2 �0 Ir

1CCCCCCCCA
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whose eigenvalues are less than 1 in modulus by assumption (a2) (c2) or (a3)
(c3). One needs 2 b(n+ r) =2c+ 2 (n+ r)� 1 coordinates to represent eJ:

2. From the companion form of a VAR(q), e� = diag
�

1=2; In

�
, and e�0? = (0 :

�0? : 0), so that e�0?��1 = e�0? and �e�0?��1e�?��1=2 e�0?��1e��e�0�e�� 1
2
= (0 :

(�0?�?)
�1=2 �0? : 0). In this case, one has e� = (0 : �� : 0), where �� :=

dg(��)�1 �� and �� is the upper triangular matrix in the QR decomposition
of (�0?�?)

�1=2 �0?. Note that �� requires only (p� r)(p+ r � 1)=2 coordinates.

3. The coe¢ cients to the deterministic components e and e� require (n + r)m1

coordinates and (n+p)m2 coordinates respectively. This number is much bigger
than the original dimensions of �1 and �2, respectively of dimension r�m1 and
p�m2.

4. Concerning e�, we observe that e�01e� �e�0�e���1=2 = (Ip : 0); however e�0 is the
triangular matrix in the QR decomposition of (Ip : 0) eR�1ea�1=2, which depends
via eR�1 on C. Thus there is no obvious reduction in the number of coordinates
needed to represent e� with respect to the case e� 2 e�.

5. The number of dimensions needed to represent e 2 ez1 is thus
dez1 = 2

�
n+ r

2

�
+ 2 (n+ r)� 2 + 1

2
(p� r)(p+ r � 1)+

+ np+
1

2
p(p+ 1) + (n+ r)m1 + (n+ p)m2:

This can be compared with de� from (20) as well as with d�1 from (2). Table
2 reports de� � dez1 and d�1 � dez1 for q = 2 and m1 = m2 = 0. It can be seen
that de� � dez1 > 0 while d�1 � dez1 can also be negative, i.e. there are more
coordinates in ez1 than in �1.

6. Further restrictions can be achieved exploiting the structure of eJ , using the
same principles as in Subsection 4.3. Consider in particular a scalar Jordan
block Jni (�i) = �1Ini and let �i be the corresponding block of �, with rank
decomposition ��0. One can then show that �i can be substituted by (�0i : 0)

0,
where �i is the upper triangular matrix in the QR decomposition of (�0�)1=2�0,
see Subsection 4.3.

7. Even regardless of the (possible) MC design dimension reduction, the e para-
metrization is better suited to control the stationary roots of the VAR(q) system
through eJ ; this is not possible using directly the parametrization in terms of
	1, ... 	q�1, �, �, 
.

7 Conclusions

In this paper we have considered reductions in design dimensions that can be achieved
thanks to invariance properties of reduced rank regression and the property of I(1)
VAR processes to be closed under linear transformations. These MC design reductions
can be considerable. The results are applied to the indexing of the limit distribution
of LR CI rank test under local alternatives and to VAR of order higher than 1.
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8 Appendix

Proof. of Theorem 2. Pre-multiplying A(L)Xt = �Dt + "t by H one obtains
HA(L)H�1HXt = H�Dt + H"t which de�nes a VAR for X

�
t := HXt with AR

polynomial A
�
(L) := HA(L)H�1, deterministic coe¢ cients �

�
:= H�, and Gaussian

noise "
�
t := H"t � N

�
0;


��
, 


�
:= H
H 0.

We need to verify that the measure P�� of X
�
t is in P1. First we observe that (a) is

veri�ed because the
��A�
(z)
�� = jHj jA(z)j jH�1j = jA(z)j and hence the AR character-

istic polynomials
��A�
(z)
�� and jA(z)j have the same zeroes. (b) is also satis�ed; in fact

rk
�
A
�
(1)
�
= rk (HA(1)H�1) = rk (A(1)) = r because H is of full rank. Hence one

can write A
�
(1) = ���

�
�0 with �

�
= H� and �

�
= H 0�1�. Note that �

�
? = H 0�1�?,

�
�
? = H�?.
Next consider (c); one �nds _A

�
(1) = H _A(1)H�1, so that

�
�0
?
_A
�
(1)�

�

? = �0?H
�1H _A(1)H�1H�? = �0? _A(1)�?

and obviously �
�0
?
_A
�
(1)�

�
? is of full rank p� r i¤ �0? _A(1)�? is; this shows that (c) is

satis�ed.
Finally consider �

�
1, �

�
2 and 


�
; one has �01 = �

�0
1 . One also sees that 


�
:= H
H 0

is symmetric positive de�nite because H and 
 are full rank. This completes the
proof.
Proof. of Theorem 3. First we show that the de�nition of Sij is una¤ected by

multiplication of Z2t by H2, square and nonsingular. In fact

Sij :=Mij �Mi2M
�1
22 M2j =Mij �Mi2H

0
2 (H2M22H

0
2)
�1
H2M2j:

Next observe that Sij is una¤ected by substituting Z0t with Z
�
0t := Z0t +H02Z2t and

Z1t with Z
�
1t := Z1t +H12Z2t. In fact

S
�

ij :=M
�

ij �M
�

i2M
�1
22 M

�

2j =Mij +Hi2M2j +Mi2H
0
2j +Hi2M22H

0
j2

� (Mi2 +Hi2M22)M
�1
22 (Mj2 +Hj2M22)

0

=Mij �Mi2M
�1
22 M2j = Sij.

Finally the eigenvalues b� are invariant with respect to substitution of Zit with HiZit,
i = 0; 1; in fact because Hi are invertible, one has

0 =
���b�S11 � S10S

�1
00 S01

��� = jH1j
���b�S11 � S10S

�1
00 S01

��� jH 0
1j =

=
���b�H1S11H

0
1 �H 0

1S10S
�1
00 S01H

0
1

��� = ���b�H1S11H
0
1 �H1S10H

0
0 (H0S00H

0
0)
�1
H0S01H

0
1

��� :
This proves the �rst statement of the theorem.
The second part is proved as follows. Let V indicate the generalized eigenvectors

associated with RRR(Z0t; Z1t;Z2t) that satisfy V 0S11V = Ip, V 0S10S
�1
00 S01V = b�. If a

function f(S00; S10; S11) is invariant with respect to (7), then one can choose H1 = V 0,
H 0
0 = S�100 S01V , H2 = I to �nd, by the assumed invariance of f , that

f(S00; S10; S11) = f(H0S00H
0
0; H1S10H

0
0; H1S11H

0
1) = f(b�; b�; Ip);

which is a function of b�. This completes the proof.
For ease of exposition, before the proof of Theorem 4 we �rst prove the following

Lemma.
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Lemma 15 f (�) := ' �  (�) lies on the same orbit as �, i.e. f (�) := '( (�)) =
�g (�) for some �g 2 �G.

Proof. In order to show that f (�) := '( (�)) = �g (�), we show how to construct
a transformation g(X) that has �g (�) = f (�). Let g(X) be represented by HXt, with
H square and nonsingular. We build H in (multiplicative) stages, i.e. we consider
H := H2H1. De�ne

H1 :=
�
� (�0
�)

�1=2
: 
�1�?

�
�0?


�1�?
��1=2�0

as in (9) and X
(1)
t := H1Xt. X

(1)
t follows a VAR(1) �X(1)

t = �(1)��(1)0(X
(1)0
t�1 :

D0
1t)

0 + �
(1)
2 D2t + "

(1)
t with �(1) = H1�, �(1) :=

�
Ir : 0r�(p�r) : �

0
1

�0
, �(1)2 := H1�2,

"
(1)
t = H1"t � N(0; Ip). Here we have used twice the fact that by construction
H�1
1 = 
H 0

1.
Next partition �(1) into the �rst r and the last p� r rows,

�
(1)
1 := (�0
�)

�1=2
�0� (�0
�)

1=2
;

�
(1)
2 :=

�
�0?


�1�?
��1=2

�0?

�1� (�0
�)

1=2
:

Note that �(1)1 is square and of full rank because of condition (c). �(1)1 is associated
with the stationary dynamics because ��(1)0X(1)

t selects the �rst r component in X(1)
t ,

and these are stationary by GRT. �(1)2 are the loadings of the remaining variables on
��(1)0X

(1)
t . We here consider a joint transformation of �

(1)
1 , �

(1)
2 .

For �(1)1 we consider the real Jordan decomposition of �(1)1 + Ir, see e.g. Horn and
Johnson (1985) p. 126, Theorem 3.1.11:

�
(1)
1 + Ir = RJR�1;

where J is the Jordan matrix described in the text and R is a real square invertible
matrix. Note that the above decomposition can be written �(1)2 = R (J � I)R�1.

For �(1)2 note that by assumption j := rk (�0?

�1�) = rk

�
�
(1)
2

�
, so that one can

rank-decompose �(1)2 into �(1)2 = ��0, say, for � and � full column rank p � r � j

matrices. We consider the QR decomposition of (�0�)1=2 �0,

(�0�)
1=2
�0 = Q�

where Q is j�j and orthogonal and � is j�r, upper triangular with positive diagonal
elements; this choice is unique see e.g. Horn and Johnson (1985) Theorem 2.6.1.
Denote by a the �rst element on the main diagonal of R�1R�10; this element is

positive because the �rst row in R�1 is nonzero due to the non-singularity of R�1.
We next consider the second transformation

H2 := diag
�
a�1=2R�1; H3

�
; H3 :=

�
� (�0�)

�1=2
Q : �? (�

0
?�?)

�1=2
�

see (10) and Wt := X
(2)
t := H2X

(1)
t ; note that H3 is orthogonal and H�1

2 =

diag
�
Ra1=2; H3

�
. X(2)

t follows a VAR(1)�X(2)
t = �(2)��(2)0(X

(2)0
t�1 : D

0
1t)

0+�
(2)
2 D2t+"

(2)
t

with
�(2) = ((J � I)0 : �0 : 0)0

��(2)0 = (Ir : 0 : a
�1=2R�1�01), �

(1)
2 := H�2, "

(2)
t = H2"

(1)
t � N(0; H2H

0
2), H2H

0
2 =

diag(a�1R�1R�10; Ip�r) =: diag(�; Ip�r),  := a�1=2R�1�01. In the above when j = r
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we assume that � = Ir and �? is dropped from the transformation. We have hence
show that �g (�) = f (�); this completes the proof.
Proof. of Theorem 4. We �rst verify that  (�g (�)) =  (�), i.e.  is �g 2 �G

invariant. Recall that when g(X) has matrix representation HXt, then �g maps � in
�
�
:= �g (�) = (H�, H 0�1�, �1, H�1�2, H
H 0). Note that �

�
? = H�?.

We next calculate  (�g (�));
�
J
�
; R

��
are the real Jordan pair of�

�
�0


�
�
���1=2

�
�0�

� �
�
�0


�
�
��1=2

+ I

where�
�
�0


�
�
���1=2

�
�0�

� �
�
�0


�
�
��1=2

=
�
�0H�1H
HH 0�1�

��1=2
�0H�1H�

�
�0H�1H
HH 0�1�

�1=2
= (�0
�)

�1=2
�0� (�0
�)

1=2
;

and hence
�
J
�
; R

��
= (J;R).

�
Q

�
; �

��
are functions of

�
�
�0
?


��1�
�
?
��1=2

�
�0
?


��1�
�
,

which is invariant, because it satis�es�
�
�0
?


��1�
�

?
��1=2

�
�0
?


��1�
� �
�
�0


�
�
��1=2

=
�
�0?


�1�?
��1=2

�0?

�1� (�0
�)

1=2
:

Hence
�
Q

�
; �

��
= (Q; �). Note that a

�
and hence �

�
:= a

�
R

��1R
��10 are also invari-

ant, being a function of R
�
, which is invariant. Moreover 

�
is a function of R

�
and

�
�0


�
�
�
, which are invariant. Finally �

�
:= H

�
2H

�
1�

�
2; by (10) we note that H

�
2 is

invariant, H
�
2 = H2, being a function of

�
J
�
; R

��
and

�
Q

�
; �

��
. From (9) one �nds

H
�

1 :=
�
� (�0
�)

�1=2
: 
�1�?

�
�0?


�1�?
��1=2�0

H�1

and hence �
�
= H2H1H

�1H�2 = H�2 =: �, i.e. �
�
is also invariant. This shows that

 is invariant:
In order to show that  is maximally invariant, we need to show that  

�
�
��
=

 (�) implies �
�
= �g (�) for some �g 2 �G. Now  

�
�
��
=  (�) implies f(�

�
) :=

'
�
 
�
�
���

= ' ( (�)) =: f(�), which are hence identical and on the same orbit as �
�

and � by Lemma 15; hence there exists a �g 2 �G such that �
�
= �g (�). This completes

the proof.
Proof. of Corollary 5. Simply note that Wt in (12) represents P'( ).
Proof. of Corollary 6. Note that p2=2 = (p� r)2 =2+r2=2+(p� r) r. One hence

has

d�1 � dz = (2p� r)r + p(p+ 1)=2� (2 br=2c+ 2r � 1 + r(r + 1)� 1)
= (3p� 2r)r + (p� r)2 =2 + r2=2 + p=2�

�
2 br=2c+ 3r � 2 + r2

�
= 3(p� r � 1)r + (p� r)2 =2 +

�
r2=2� br=2c

�
+ (p=2� br=2c) + 2:

the last expression shows that d�1 � dz > 0, because it is the sum of non-negative
terms, where some of these are strictly positive.
Proof. of Theorem 7. We �rst prove that f2(�) is on the same orbit of � for

� 2 �2. In order to do so, we construct a suitable g transformation onWt given in (12)
given by Yt := HWt with H = diag(H3; H4; Ip�j�r), H3 := diag(s1�

�1=2
11 ; :::; sr�

�1=2
rr ),

H4 := diag(s1; :::; sj) Note that H3 commutes with J , H3J = JH3, because both are
diagonal matrices. Hence Y1t := H3W1t = J(H3W1t�1 +H3D1t) +H3�1D2t +H3�1t.
The second block of variables reads Y2t := H4W2t = H4�H

�1
3 (H3W1t�1+H3D1t)+�2t.

The third block of variables in una¤ected. Note that H4�H
�1
3 is again an upper-

triangular matrix with all positive coe¢ cients on the main diagonal. Moreover � =
H3, �� = H�.
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Yt hence follows a VAR(1) process with the same J as Wt and a � matrix with
the same structure as Wt; the covariance of the errors diag(�; Ip�r) is now replaced
by diag(H3�H3, H4H4, Ip�r�j), because the Hi matrices are diagonal. Note that
H4H4 = Ij and that

H3�H3 =

0BBB@
1 s1�12s2 ::: s1�1rsr

s2�21s1
... sr�1�r�1;rsr

sr�r1s1 ::: sr�r;r�1sr�1 1

1CCCA
where s1�1lsl = �1lsl � 0 because s1 := 1. Hence H3�H3 is a correlation matrix
(symmetric and positive de�nite) with non-negative correlations in the �rst row and
column. This shows that there is a �g2 2 �G such that f2(�) = �g2 (f(�)). By Lemma
15, f(�) is on the same orbit as �, i.e. f(�) = �g (�), so that f2(�) = �g2 � �g (�) =: �g3 (�),
i.e. f2 (�) and � are on the same orbit.
In order to show that  2 is maximally invariant on �2, we need to show that

 2
�
�
��
=  2 (�) implies �

�
= �g (�) for some �g 2 �G, �; �

� 2 �2. Now  2
�
�
��
=  2 (�)

implies f2(�
�
) := '

�
 2
�
�
���

= ' ( 2 (�)) =: f2(�), which are hence identical and on
the same orbit as �

�
and � by the discussion above; hence there exists a �g 2 �G such

that �
�
= �g (�). This completes the proof.

We next give a lemma that is later used the proof of Theorem 8.

Lemma 16 Let � be a r�r positive de�nite real symmetric matrix; then there exists
a real upper triangular r � r matrix V with positive elements on the main diagonal
that satis�es V �V 0 = Ir.

Proof. De�ne D as a square matrix of order r with all zero elements except for
the ones on the minor diagonal, all equal to 1. Note that DD = I, and that for any
conformable A, DAD has the same elements of A arranged in reverse order, both
column- and row-wise. Let Q := D�D = PP 0 where P is the Choleski factor, a lower
triangular matrix with positive diagonal elements. From the Choleski decomposition
of Q one has P�1QP�10 = I, where P�1 is lower triangular with positive diagonal
elements. Pre- and post- multiplying by D one �nds DP�1QP�10D = DD = I.
Substituting the de�nition Q one concludes V �V 0 = I, where V := DP�1D is upper
triangular, with positive elements on the diagonal. This completes the proof.
Proof. of Theorem 8. The proof is the same as Theorem 7, substituting H3 with

V as given in Lemma 16 and H4 with the identity Ij. This completes the proof.
Proof. of Theorem 9. The same proof of Theorem 2 goes through.
Proof. of Corollary 10. This is immediate from Theorem 2.
Proof. of Theorem 11. LetM y

ij, S
y
ij indicateMij, Sij in Theorem 3 for RRR(Z

y
0t; Z

y
1t;Z

y
2t).

For notational convenience we let Lt := Z21;t, Kt := Z22;t, and let M�
ij := Mij:K . We

�nd that

Sy11 =

�
M�
11 M�

1L

M�
L1 M�

LL

�
; Sy10 =

�
M�
10 M�

1L

M�
L0 M�

LL

�
; Sy00 =

�
M�
00 M�

0L

M�
L0 M�

LL

�
;

Sy10S
y�1
00 Sy10 =

�
M�
10:LM

��1
00:LM

�
01:L +M�

1LM
��1
LL M�

L1 M�
1L

M�
L1 M�

LL

�
=

�
S10S

�1
00 S01 +M�

1LM
��1
LL M�

L1 M�
1L

M�
L0 M�

LL

�
:
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Where we have used the fact that M�
ij:L = Sij by the Lowell-Frisch-Waugh theorem.

The eigenvalue problem
���b�ySy11 � Sy10S

y�1
00 Sy10

��� = 0 thus reads����b�y� M�
11 M�

1L

M�
L1 M�

LL

�
�
�
M�
1LM

��1
LL M�

L1 + S10S
�1
00 S01 M�

1L

M�
L1 M�

LL

����� = 0:
The rank of M�

LL is assumed full. Using standard properties of determinants, and
setting Q :=M�

1LM
��1
LL M�

L1 + S10S
�1
00 S01, one �nds

0 =
���b�yM�

LL �M�
LL

��� ����b�yM�
11 �Q�

��b�y � 1�M�
1L

���b�y � 1�M�
LL

��1 ��b�y � 1�M�
L1

�����
=
���b�yM�

LL �M�
LL

��� ���b�yM�
11 �Q�

�b�y � 1�M�
1LM

��1
LL M�

L1

���
=
���b�yM�

LL �M�
LL

��� ���b�yS11 � S10S
�1
00 S01

��� : (23)

The �rst factor gives solutions b�y = 1, with multiplicity given by n21, the dimension
of M�

LL. The last factor in (23) is RRR(Z0t; Z1t;Z2t), see (6), which gives equality of
the b�yi eigenvalues di¤erent from 1 with the b�i eigenvalues.
Proof. of Corollary 12. Let Z21;t := Ut�1, Z

y
2t := Z22;t = D2t, and recall thateXt = (U

0
t : X

0
t�q+1)

0. Recall that RRR(Z0t; Z1t;Z2t) and RRR(Z
y
0t; Z

y
1t;Z

y
2t) have the

same eigenvalues, (except for the unit eigenvalues in modulo U). We wish to show
that RRR(Zy0t; Z

y
1t;Z

y
2t) and RRR( eZ0t; eZ1t;D2t) have the same eigenvalues by showing

that Zyit is a linear invertible transformation of eZit, i = 0; 1:
In fact Zy0t := (Z

0
0t : U

0
t�1)

0 = (�X 0
t : U

0
t�1)

0 and eZ0t := � eXt = (�U
0
t : �Xt�q+1);

similarly Zy1t := (Z 01t : U
0
t�1)

0 = (X 0
t�1 : D

0
1t : U

0
t�1)

0 and eZ1t := ( eX 0
1t�1 : D

0
1t)

0 =
(U 0t�1 : X

0
t�q : D

0
1t)

0. This completes the proof.
Proof. of Theorem 13. Combine Theorem 3 and Corollary 12.
Proof. of Theorem 14. Recall e"�t := e�1 (�2D2t + "t) + e�2 � 0. We �nd thatef(e�) = �g(e�) by proving that there exist a transformation eX�

t := H eXt = g
� eXt

�
that

implies ef(e�) = �g(e�). g is obtained in two multiplicative steps, H = H2H1. Consider
�rst (17) and the transformation eX(1)

t := H1
eXt with

H1 :=

�e� �e�0�e���1=2 : ��1e�? �e�0?��1e�?��1=2�0 ;
H�1
1 = �H 0

1. One �nds

� eX(1)
t := H1� eXt = H1e�� e�0 e�01 �� H�1

1 H1

I

�� eXt�1
D1t

�
+H1e"�t ;

= e�(1)� In+r 0
�e�0�e���1=2 e�01 �� eX(1)

t�1
D1t

�
+H1e"�t

where

e�(1) :=  e�(1)1e�(1)2
!
=

0B@
�e�0�e���1=2 e�0e��e�0?��1e�?��1=2 e�0?��1e�

1CA�e�0�e��1=2 :
Next consider the real Jordan decomposition of e�(1)1 + In+r = eR eJ eR�1 and the QR
decomposition of e�(1)2 = eQe��; the second transformation eX(2)

t := H2
eX(1)
t with H2 :=
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diag
�ea�1=2 eR�1 : dg(e��)�1 eQ0�; one �nds

� eX(2)
t =

 eJ � I

dg(e��)�1 eQ0e�(1)2
!�

In+r 0 ea�1=2 eR�1 �e�0�e���1=2 e�01 �� eX(1)
t�1
D1t

�
+He"t;

=

� eJ � Ie�
��

In+r 0 e �� eX(1)
t�1
D1t

�
+He"t:

This proves that ef(e�) = �g(e�) for �g 2 �G. We next show that e is invariant. This
is proved exactly in the same way as in the proof of Theorem 4 by showing thate�(1)1 :=

�e�(1)01 : e�(1)02

�0
is invariant, and that eJ , eR, eQ, e�, ea are functions of e�(1)1 . e is

a function of e�(1)1 and e�0�e� which is itself invariant. e� is proved to be invariant just
as in Theorem 4. Finally e� is a function of e�01e�, e�0�e�, eR, ea, which are all invariant.
From ef(e�) = �g(e�) for �g 2 �G one also concludes that e is maximal invariant.
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