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Abstract

This paper proposes a new approach for the speci�cation of multivariate
GARCH models for data sets with a potentially large cross-section dimension.
The approach exploits the spatial dependence structure associated with asset
characteristics, like industrial sectors and capitalization size. We use the
acronym SEARCH for this model, short for Spatial E¤ects in ARCH.
This parametrization extends current feasible speci�cations for large scale

GARCH models, while keeping the numbers of parameters linear with respect
to the number of assets. An application to daily returns on 20 stocks from
the NYSE for the period January 1994 to June 2001 shows the bene�ts of the
present speci�cation.
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1 Introduction

One of the most serious challenges faced by multivariate GARCH models is para-
meter parsimony for data sets with a large cross-section dimension; see e.g. the
review paper by Bauwens et al. (2003). In the most general GARCH speci�cations,
the number of parameters � i.e. the model dimension � is in fact quartic in the
number of assets, see e.g. Engle and Kroner (1995). This features has limited the
applicability of unrestricted GARCH models to systems of limited dimensions, i.e.
with up to a dozen assets.
Bollerslev (1990) proposed the constant conditional correlations model, CCC,

hence initiating a class of constrained models, whose dimension is quadratic in the
number of assets when employing the general speci�cation of McAleer and Ling
(2002). This class of models called CC in the following, increased the maximum
feasible system dimension in applications.1 Being quadratic in the cross�section
dimensions, however, it may be estimated for system with limited dimensions.
More recently Engle (2002) has proposed a dynamic version of the CC class, the

DCC. The DCC has the same number of parameters of the CCC plus a handful (2
in the basic version) of extra parameters that govern the dynamics of correlations.
The DCC model dimension is thus of the same order of magnitude as the CC class,
i.e. quadratic in the number of asset.
In a parallel strand of literature, Alexander (2001) and Van Der Weide (2002),

have proposed orthogonal GARCH models, OG in the following, where univariate
GARCH models are applied to an invertible linear transformation of deviations from
the conditional mean. When the orthogonal linear transformation is estimated, also
the OG model dimension is quadratic in the number of assets, despite a diagonal
speci�cation for the GARCH dynamics.
Both the CC and the OG classes contain restricted versions that are equivalent to

univariate models for each single asset; this reduces the model dimensions to be linear
in the cross-section dimension. However, under this restriction no attempt is made to
model the interaction between units (asset returns), which is of primary importance
in volatility models. The need for multivariate models is well documented also on
empirical grounds, see e.g. Bauwens et al. (2003).
Other speci�cations have been proposed in the literature; Factor GARCH have

been suggested by Engle et al. (1990), Lin (1992), Bollerslev and Engle (1993) and
Vronton et al. (2003). These models are more parsimonious than the ones which
do not impose a factor structure; some of the factor speci�cations are indeed linear
in the cross-section dimension. However the factor loadings and the latent factors
may be not easy to interpret without further characterization.
In this paper we propose a di¤erent approach, based on notions of proximity

derived from a sectoral classi�cation of assets. The present class of models is a
spatially-restricted multivariate ARCH speci�cation that borrows both from the
CC, the OG and the factor GARCH model classes. Asset returns are de�ned as �rst
neighbors when they share a number of characteristics, e.g. when the correspond-

1Chan, Hoti and McAleer (2003) generalized these models allowing for dynamic correlations.
This generalization increases the number of parameters, whose number however remains quadratic
in the number of assets.



ing �rms belong to the same industrial sector and/or capitalization class. Other
factor, both qualitative and quantitative, can be deduced from asset fundamentals
or derived from the analysis of balance-sheet data. This de�nes a spatial structure
that can be exploited to de�ne (parsimonious) GARCH speci�cations, which we call
SEARCH, short for Spatial E¤ects in ARCH.
Spatial econometrics has a long history, see e.g. Anselin (1988). Recent refer-

ences include Giacomini and Granger (2004), who study aggregation of time series,
Pesaran et al. (2004) who use spatial concepts to specify a world macro-model,
Baltagi et al. (2004), which contains applications of spatial statistics to panel
data models. However, applications of ideas from spatial statistics to multivari-
ate GARCH modelling are unknown to the authors; the present paper hence adds
a novel approach to design GARCH speci�cations.
The asymptotic properties of this model class can be deduced from the results

in Ling and McAleer (2003) and Comte and Lieberman (2003), as shown in Section
4 below.
We present an empirical application to a set of 20 stocks of the New York Stock

Exchange. We use daily data from January 1994 to June 2001. This sample choice
excludes the technology market bubble burst. The results show the relevance of
capitalization size and industrial sector in de�ning a proximity structure. The results
for SEARCH favorably compare with corresponding results for the CC model.
The rest of the paper is organized as follows. Section 2 presents the SEARCH

class, while Section 3 discusses its relations to the CC, DCC, OG classes. Section
4 analyzes the likelihood function and discusses asymptotics. Section 5 report the
application while Section 6 concludes. Proofs are placed in 2 �nal appendices.
In the paper we use the following operators and de�nitions: a := b or b =: a indi-

cates that a is de�ned by b; vec denotes the column stacking operator; vech indicates
the column stacking of the lower triangular portion of a matrix, including the main
diagonal; vecd(A) indicates a column vector containing the diagonal elements of a
matrix A; diag(A1; :::; An) indicates a matrix with A1, ..., An as blocks on the main
diagonal; when the diagonal blocks Ai are scalars, we collect a1; :::; an into a vector
a := (a1 : ::: : an)

0 and write diag(a) := diag(a1; :::; an). dg(A) is a matrix with o¤�
diagonal elements equal to 0 and diagonal elements equal to the ones on the diagonal
of A; hence diag (vecd (A)) = dg (A); �n indicates a n � 1 vector of ones and I is
the identity matrix; 1() is the indicator function and �ij is Kronecker�s delta, which
equals 1 for i = j and 0 otherwise; � indicates Hadamard�s element-wise product,
while 
 indicates Kronecker�s product, A 
 B = (aijB); calligraphic letters D, F ,
H, K,M, N are used to indicate various selection and duplication matrices, while
calligraphic A, B, C are used to indicate sets; in particular, Km;n is a commutation
matrix, i.e. a matrix with elements 0 and 1 that satis�es Kmnvec(A) = vec(A0) for
any m� n matrix A.

2 Search models for conditional variances

Consider an nx dimensional vector time series fxtgt2N and the associated �ltration
It := � (xt�q; q � 0). Let also xt := (y0t : z

0
t)
0 be partitioned into a n subvector of

variables of interest yt and a nz subvector of other information variables. We assume
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that xt has �nite second moments conditional on It�1. Indicate by Et�1 (�) :=
E (�jIt�1) the conditional expectation operator, and let �t := E (ytjIt�1) be the
conditional mean of yt.
Consider a parametric model for the conditional mean �t := Et�1 (yt), taken for

simplicity to be linear. Speci�cally let wt := (y0t�1 : ::: : y
0
t�p� ; z

0
t)
0, a nw � 1 vector

and
yt =: Et�1 (yt) + "t = �wt + "t; (1)

where "t := yt � �t is the n � 1 vector of deviations from the conditional mean. �
is a matrix of parameters, where �� := vec(�0) is the v� � 1 vector of parameters.
We indicate by�t the conditional variance covariance matrix of "t, �t := Vt�1 ("t) =

Et�1 ("t"0t). Assume that the cross section dependence of "t due to asset proximity
can be summarized in a linear relation of the form

"t = S"t + �t; (2)

where �t is a n � 1 vector of random variables with Et�1 (�t) = 0 and Vt�1 (�t) =
Et�1 (�t�0t) =: �t. Eq. (2) is similar to standard speci�cations in the structural VAR
literature, see e.g. Amisano and Giannini (1997). The S matrix, which describes
the contemporaneous inter-dependence of the elements in "t, is assumed to be of
spatial structure (to be de�ned in Subsection 2.1 below). Eq. (2) de�nes a spatial
autoregression (SAR) process with S of spatial structure, see Cressie (1993) eq.
(6.3.8) and reference therein.
A direct consequence of the assumption (2) is that

�t := Vt�1 ("t) = (I � S)�1 �t (I � S 0)
�1 .

provided I � S is invertible, which we assume in the following. Similarly to the CC
class, we assume that the errors �t in (2) have constant correlations, i.e.

�t = DtRDt (3)

where Dt = diag (�1;t; �2;t; :::�n;t) is a diagonal matrix with (possibly) time varying
standard deviations and R is a time invariant correlation matrix of the standardized
innovations  t := D�1

t (I � S)"t = D�1
t �t, Vt�1 ( t) = Et�1 ( t 0t) = R.

We next consider a diagonal GARCH speci�cation for D2
t . Let

ht := vecd
�
D2
t

�
=

0B@ �21;t
...
�2n;t

1CA ; et := vecd(�t�
0
t) =

0B@ �21;t
...
�2n;t

1CA (4)

where by the de�nition above ht = Et�1(et), so that et � ht is an innovation with
respect to It�1.
We assume the following GARCH(pE; pA) dynamics for ht driven by et:

ht = c+ E (L)ht�1 + A (L) et�1, (5)

E (L) :=
PpE

l=1ElL
l�1 and A (L) :=

PpA
l=1AlL

l�1, El, Al are n � n matrices, c is a
n-dimensional vector. The fact that et � ht is an innovation with respect to It�1
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allows to calculate multi-step ahead predictions on the conditional variances using
recursions.
The present conditional heteroscedasticity model (2)-(5) is closely related to the

CC and OG speci�cations. In fact choosing S = 0 and El, Al diagonal delivers the
CC model. Setting instead I � S to be an orthogonal matrix and R = In gives the
OG speci�cation. Hence (2)-(5) nests both the CC and OG speci�cation. However,
without further restrictions, model (2)-(5) has dimension that is quadratic in the
number of assets. Further restrictions are hence needed in order to render estimation
of the model feasible on large cross sections.
The SEARCH class of models is characterized as the submodel of (2)-(5) with

the property that (some of) the matrices S, El, Al, R (SEAR) which de�ne the
conditional heteroscedasticity (CH) features of the model, have spatial structure in
the sense de�ned in the next subsection.
In the following we indicate with � a v � 1 vector of parameters. Parameters

within � are partitioned into � = (�0�, �
0
S, �

0
EA, �

0
R)
0 where �S, �EA, �R are the

subvectors of parameters in the S, EA and R speci�cation. The dimension of the
subvectors �S, �EA, �R is indicated as vS, vEA, vR respectively, with v = v� + vS +
vEA + vR. The �EA parameters are further partitioned into c, �E, �A in an obvious
notation.

2.1 Spatial structure

In this subsection we de�ne matrices of spatial structure. This applies to some or
all the S, El, Al, R matrices, which are indicated in this subsection by the generic
symbol C. We say that C has spatial structure if it can be written as a linear
combination of some spatial weight matrices Wq, q = 1; :::;m, i.e. if

C = c0In +
mX
q=1

cqW
�
q (6)

for m � 1 and c0, c1,...,cm real scalars and W �
1 , ..., W

�
m pre-de�ned spatial weight

matrices.
A matrixW � = (w�ij) is called a spatial weight matrix, or simply a spatial matrix,

if it is has real entries contained in the closed interval [0; 1], and diagonal elements
equal to 0, i.e. 0 � w�ij � 1, vecd(W �) = 0. If the row-sums equal 1, W ��n = �n,
then the spatial matrix is called �normalized�.
A special case of a spatial matrix is the one containing �rst order neighbors

W (1) = (w
(1)
ij ), where the entries w

(1)
ij in row i are non-zero the j-th unit is a �rst

order neighbor of the i-th unit. A similar structure can be used to de�ne spatial lag
matrices of generic order q, W (q).
In the following, we use spatial matrices W � = (w�ij) where non-zero entries wij

indicate that the i-th and the j-th units belong to the same classi�cation group.
The classi�cation is based on one or more characteristics, called �factors�, borrow-
ing terminology from the statistical analysis of variance. Example of factors are
industrial sector and capitalization size. Further factors are de�ned by constructing
interactions among primary factors. Each factor de�nes a particular spatial matrix.
An example of this is given in Subsection 2.4 below.
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Other spatial proximity structures may be de�ned on the basis of one or more
variables. Consider a single ordinal variable, and let the units be ordered in increas-
ing or decreasing order. One may de�ne as �rst order neighbors of unit i in the
list, (either or both) the units preceding and following it. Each of these proximity
structures is associated with speci�c spatial matrices W �. An example of this is
given in Subsection 2.5 below.
Any combinations of the above constructions may be used to de�ne a spatial

structure for each of the matrices S, El, Al, R. In the following we use a categorical
classi�cation for industrial sector and capitalization size for the speci�cation of S
and an ordering based on capitalization within each class to characterized the spatial
structure of El, Al and R.

2.2 Generalized spatial structure

In order to allow for heterogeneity across units in the spatial speci�cation, we de�ne
�cq be a n � 1 vector �cq := (�cq ;1 : ::: : �cq ;n)0, when n is the dimension of W �

q . We
say that C has a generalized spatial structure if

cq = diag(�cq ;1 : ::: : �cq ;n) =: diag(�cq); (7)

q = 0; :::;m in (6). When one or more rows of W �
q have all 0 entries, we de�ne the

corresponding entries in �cq to be equal to zero, i.e. J
0W �

q = 0 implies J 0�cq = 0.
This speci�cation is also called the diagonal speci�cation, in constrast with the scalar
speci�cation when cq are scalars.
In (6) the elements �cq ;i represent (possibly di¤erent) loadings of each asset on

the same factor. For simplicity m is here assumed to be the same for all rows i, but
this format can easily accommodate di¤erent number of terms in the sum by setting
to zero appropriate elements cq;j. When cq;1 = ::: = cq;n the diagonal speci�cation
reduces to the scalar one.

2.3 Factors and levels

In (6) a subset of terms in
Pm

q=1 cqW
�
q may represent a single �factor�, where each

spatial matrix W � is associated with a level of the factor. In this subsection we
introduce notation for di¤erent parametrizations. An application of these terms is
given in the next subsection 2.4.
Assume that (6) represents g factors,

Pm
q=1 cqW

�
q =

Pg
h=1

Pmh

k=1 ch;kW
�
h;k, wherePmh

k=1 ch;kW
�
h;k represents the h-th factor, h = 1, ..., g. A classi�cation of the several

possible parameterizations of a single factor is the following.

� Heterogeneous speci�cation (HET): all the ch;k coe¢ cient are diagonal; in
this speci�cation the loadings on the levels of the factor are asset-speci�c.

� Mixed speci�cation (MIX): at least one ch;k coe¢ cient is scalar and at least
one ch;k coe¢ cient is diagonal; in this case some level of the factor has asset-
speci�c loadings, whereas some other level has homogeneous loadings.

7



Capitalization level !
Industrial sector # level 1 level 2 ... level `

sector 1 C11 C12 ... C1`
... ... ... ... ...

sector k Ck1 Ck2 ... Ck`

Table 1: Two-way classi�cation based on industrial sector and capitalization.

� Homogeneous speci�cation (HOM): all the ch;k coe¢ cient are scalar; in
this case the levels of the factor have the same loadings on all assets, and
these loadings are not necessarily equal.

� Restricted homogeneous speci�cation (RHOM) all the ch;k coe¢ cient are
scalar and equal; in this case all levels of the factor have the same loading on
all assets.

2.4 S speci�cation

In this subsection we discuss possible spatial speci�cations for the S matrix. S is
restricted to be of spatial nature with all diagonal elements equal to zero, in order
to avoid simultaneous e¤ects from "it to itself. We assume that

S =

mSX
i=1

siWi (8)

for an appropriate de�nition of the Wi spatial matrices. The elements si must
guarantee that I � S is invertible,2 but are not otherwise constrained. Note that in
general there is no need to restrict S to be symmetric or positive de�nite.
We next consider the speci�cation of the spatial matrices Wi in (8). We here

give one of the possible de�nitions of the spatial matrices Wi, that re�ects a two�
way classi�cation of the assets into k industrial sectors and ` capitalization classes.
Sector and size are hence �factors�; we also consider interaction between the two as
another �factor�.3

Consider an integer label q for each asset, where q 2 C�� := f1; 2; :::; ng. A
possible classi�cation is speci�ed in Table 1, where

Cij := fq 2 C�� : stock q belongs to sector i and capitalization level jg (9)

indicates the set of labels of the stocks that belong to industrial sector i and capi-
talization class j.
De�ne also the aggregated label sets for each sector Ci� := [`j=1Cij, for each

capitalization class C�j := [ki=1Cij and for the whole market C�� = [ki=1 [`j=1 Cij =
[ki=1Ci� = [`j=1C�j. One possible choice of spatial matrices is the following.

2Hence when mS = 1 in the scalar case, this implies that s1 should di¤er from the reciprocal
of the eigenvalues of W1.

3For simplicity we assume that the capitalization levels are the same for all industrial sectors,
even though this simpli�cation may be relaxed. We also assume that the classi�cation is �xed and
known throughout the sample and forecast periods.
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1. Market-wide spatial matrix: W�� := �n�
0
n � In.

2. Industrial sector i spatial matrix: Wi� := (wi�;ql) where wi�;ql := 1(q 2
Ci�) (1(l 2 Ci�)� �ql) for i = 1; :::; k.

3. Capitalization class j spatial matrix: W�j := (w�j;ql) where w�j;ql := 1(q 2
C�j) (1(l 2 C�j)� �ql) for j = 1; :::; `.

4. Interaction spatial matrices: Wij := (wij;ql) wherewij;ql = 1(q 2 Cij) (1(l 2 Cij)� �ql)
for i = 1; :::; k, j = 1; :::; `.

Several speci�cations can be obtained by making use of the above spatial matri-
ces. We here list two polar cases, labelled the heterogenous and homogeneous cases,
and a class of intermediate models.

2.4.1 HET

This is a saturated model where all classi�cation factors and interactions thereof
may have a di¤erent e¤ect. We assume

S = s��W�� +
kX
i=1

si�Wi� +
X̀
j=1

s�jW�j +
kX
i=1

X̀
j=1

sijWij: (10)

This speci�cation allows for heterogeneity across di¤erent classes Cij, C�j, Ci�. The
parameters to be estimated are s��, si� (i = 1, ..., k), s�j, (j = 1, ..., `), sij (i = 1,
..., k; j = 1, ..., `). For the scalar speci�cation the number of parameters is vS :=
k + `+ k`+ 1, while for the diagonal speci�cation vS := n(k + `+ k`+ 1).

2.4.2 RHOM

This is submodel of the previous model where all terms in each of the three sums in
(10) have the same coe¢ cient, i.e.

si� = s0� for all i; (11)

s�j = s�0 for all j; (12)

sij = s00 for all i and j: (13)

These restrictions imply homogeneous relations for di¤erent levels of the factors
and of the interactions. Corresponding to the restrictions in (11), (12), (13), de�ne
the following aggregate spatial matrices for all industrial sectors W0�, capitalization
levels W�0 and interactions W00 :

W0� :=
kX
i=1

Wi� W�0 :=
X̀
j=1

W�j W00 :=
kX
i=1

X̀
j=1

Wij: (14)

With these de�nition, the homogeneous model is de�ned as

S = s��W�� + s0�W0� + s�0W�0 + s00W00; (15)

where the parameters to be estimated are just vS = 4 for the scalar speci�cation,
and consist of s��, s0�, s�0, s00 in (15). For the diagonal speci�cation their number is
vS = 4n.
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2.4.3 Intermediate models and examples

Intermediate models are obtained by imposing a subset of the restrictions (11), (12),
(13); this results in models with an intermediate number of parameters, i.e. between
4 and k + `+ k`+ 1 for the scalar speci�cation.

Example 1 (HOM) Take k = 2, ` = 1 and two stocks for each class Cij, for a
total of 4 assets. The assets are ordered following Table 1: (In case ` > 1 we proceed
row-wise). This gives

W�� =

0BB@
1 1 1

1 1 1
1 1 1
1 1 1

1CCA W1� =

0BB@
1

1

1CCA W2� =

0BB@ 1
1

1CCA :

and the speci�cation S = s��W�� + s1�W1� + s2�W2� results in

S =

0BB@
a1 s�� s��

a1 s�� s��
s�� s�� a2
s�� s�� a2

1CCA ;

where ai := s�� + si�, i = 1; 2. Here and in the following we omit 0 entries unless
needed for clarity.

Example 2 (RHOM) Take k = 2, ` = 2 and two stocks for each class Cij, for a
total of 8 assets. The assets are ordered following Table 1 proceeding row-wise. This
gives

W�� =

0BBBBBBBBBB@

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

1CCCCCCCCCCA
W1�+W2� =

0BBBBBBBBBB@

1 1 1
1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1
1 1 1

1CCCCCCCCCCA
;

W�1+W�2 =

0BBBBBBBBBB@

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1CCCCCCCCCCA
2X
i=1

2X
j=1

Wij =

0BBBBBBBBBB@

1
1

1
1

1
1

1
1

1CCCCCCCCCCA
:
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and the speci�cation (15) results in the following structure for S:

S =

0BBBBBBBBBB@

s a a b b s�� s��
s a a b b s�� s��
a a s s�� s�� b b
a a s s�� s�� b b
b b s�� s�� s a a
b b s�� s�� s a a
s�� s�� b b a a s
s�� s�� b b a a s

1CCCCCCCCCCA
;

where s := s�� + s0� + s�0 + s00, a := s�� + s0�, b := s�� + s�0.

In the following we usually normalize the spatial matrices W to have row sums
equal to 1. In the above examples this normalization would just imply a rescaling
of the parameters, given that the row sums of the various W matrices are all equal.
This would not be the case if the number of assets in each class is di¤erent.

2.5 ARCH dynamics

We next consider the speci�cation of the matrix polynomials E (L) :=
PpE

l=1ElL
l�1

and A (L) :=
PpA

l=1AlL
l�1 in (5), i.e. ht = c + E (L)ht�1 + A (L) et�1. The main

interaction between classes Cij; C�j, Ci�, see (9), is addressed via the S-speci�cation.
The ARCH dynamics in (5) is hence assumed to re�ect possible dependencies within
classes Cij.
Many criteria may be applied to classify assets within each class Cij. Some

possibilities are given by earnings before income and taxes, dividend/price, div-
idend/earning ratios etc. In absence of further information, the single ordering
criterion within each class Cij may be given by capitalization level.
For simplicity, we here assume that a single criterion is used to order assets

within each class Cij. Without loss of generality, assume that assets within the
blocks for class Cij are ordered as in Examples 1 and 2, i.e. the �rst n11 assets
belong to the class C11, the next n12 belong to the class C12, and so forth, proceeding
row-wise with respect to Table 1, where nij indicates the number of assets in class
Cij, nij := # (Cij), and#(�) indicates the cardinality of the argument set. Obviously
n =

Pk
i=1

P`
j=1 nij.

Consider the partition of et into subvectors et := (e011;t, e
0
12;t, ..., e

0
1`;t, e

0
21;t,

...e0k`;t)
0, where eij;t is the subvector of et corresponding to the class Cij. Partition

also �t, c and ht conformably. We assume that the n � n matrices El, Al matrices
in E (L) :=

Pp
l=1ElL

l�1 and A (L) :=
Pq

l=1AlL
l�1 to be block diagonal, where

blocks are conformable with the partition of et. We indicate the blocks of El and
Al corresponding to eij;t�1 as Eij;l and Aij;l respectively; similarly we indicate the
corresponding blocks of E (L), A (L) as Eij (L), Aij (L).
We assume that assets within the subvector eij;t are ordered according to a single

ordering, which creates a spatial proximity within each block. We consider two main
EA-speci�cations; the �rst one is of spatial nature, the second one allows for a factor
structure. The latter case will be shown to be a special case of the former. In both
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cases the intercept cij is a linear function of some underlying vector of parameters
�cij ,

cij = Fij�cij : (16)

We note in passing that the standard requirements for second order stationarity
of GARCH processes apply, i.e. the roots of jI � E(L) � A(L)j = 0 must be
outside the unit circle. By the block-diagonal assumption of E(L) and A(L), this
corresponds to the requirement that the roots of

��Inij � Eij(L)� Aij(L)
�� = 0 are

outside the unit circle.

2.5.1 Spatial EA dynamics

We assume that Eij;l and Aij;l have a spatial nature, i.e. they are of the following
form:

Eij;l :=

mEij;lX
q=0

�ij;lqW
�
ij;q Aij;l :=

mAij;lX
q=0

�ij;lqW
�
ij;q; (17)

where �ij;lq and �ij;lq, are scalars or diagonal matrices. The matrices W �
ij;q for q > 0

are nij � nij spatial weight matrices that re�ect proximity according to the intra-
class ordering criterion. For the spatial EA dynamics we assume W �

ij;0 := Inij and
Fij = Inij in (16).
For a single ordering criterion, two possible choices for the spatial matrices W �

ij;q

are the following

W �
ij;q := U q0ij (18)

or W �
ij;q := U qij + U q0ij where Uij

nij�nij
:=

�
0 0

Inij�1 0

�
: (19)

In the case of a scalar speci�cation, this implies that the Eij;l and Aij;l matrices are
Toeplitz matrices.
These speci�cations have the following interpretation: the spatial structure within

each block relates each stock within eij;t with the preceding one in the list; this is
the case for speci�cation (18), which implies an lower triangular system.
Alternatively, consider speci�cation (19); each stock within eij;t is related to

the one preceding and the one following it in the list, which implies a symmetric
Toeplitz matrix for the scalar speci�cation. The lower triangular system can be
obtained from (18) simply reversing the ordering within the block, and hence it is
not treated separately.
The leading speci�cation of the GARCH dynamics is the GARCH(1,1) system,

which we consider in order to count parameters. Let mEAij := max(mEij;l ;mAij;l) �
nij for speci�cations (18) and (19). The parameters are cij, �ij;1q, �ij;1q for q = 0, ...,
mEAij , possibly with zero elements. This gives vEA =

Pk
i=1

P`
j=1

�
nij + 2 +mEl;ij +mAl;ij

�
for the EA-scalar speci�cation. If mEAij = mEA for all i, j, this number becomes
vEA = n+ 2 (1 +mEA) k`. The case with no spatial e¤ect corresponds to mEA = 0,
where the number of parameters is simply vEA = n+ 2k`.
For the EA-diagonal speci�cation one has to distinguish between speci�cations

(18) and (19). In case of (18), the �rst row of U is a zero vector, because the �rst
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asset has no preceding asset in the classi�cation. This implies that the �rst elements
in �ij;1q is constrained to 0 and the remaining nij � 1 elements are free. The same
applies to �1q;ij.
When mE

ij;l
= mAij;l = mEA this gives a total number of parameters for the

EA-diagonal speci�cation equal to vEA =
Pk

i=1

P`
j=1 (nij + 2 (nij � 1)mEA)) =

n + 2 (n� k`)mEA. For the EA-diagonal speci�cation (19) one has instead vEA =Pk
i=1

P`
j=1 nij (1 + 2mEA) = n (1 + 2mEA) : Intermediate cases are characterized by

an intermediate number of parameters.
The conditions for positive de�niteness of the conditional variance matrix require

the EA dynamics to deliver always positive de�nite conditional variances ht . A
su¢ cient condition for this is that the c, � and � parameters to be positive.

2.5.2 Factor EA dynamics

In this subsection we consider a factor GARCH model for the dynamics within
each class Cij, with a time-varying component driven a lower-dimensional GARCH
process. This speci�cation implies common features in variance in the sense of Engle
and Kozicki (1993).
In Appendix A we show that a GARCH(1,1) speci�cation that embodies this

factor structure is given by

hij;t = �ij;?qij + 

�

ij;?hij2;t; (20)

hij2;t = !ij + �ij�
0
ijeij;t�1 + �ijhij2;t�1 (21)

where qij is nij�rij�1 and !ij is rij�1, 

�
ij;? := 
ij;?(�

0
ij
ij;?)

�1 and hij2;t := �0ijhij;t,
both of dimension rij � 1, where rij < nij.
Often one wishes to specify a one-factor model for each class Cij, of the GARCH

type, rij = 1, possibly pre-specifying also 
ij and �ij as follows

�ij = 
ij;? = �nij . (22)

This leaves nij � 1 free elements to estimate in qij in (20) and 3 parameters in (21),
given by !ij, �ij, �ij. Overall this EA-scalar speci�cation has number of parameters
in the ARCH dynamics equal to vEA =

Pk
i=1

P`
j=1 (nij + 2) = n + 2k`. Note that

the EA-diagonal speci�cation is not available in this case, because in this case the
E(L) and A(L) polynomial do not present a spatial nature.
Under constraint (22) �ij = 
ij;? = �nij , one can choose �ij;? as �ij;? =

�
Inij � U

�
Qij =:

bij, where U is de�ned in (19) and Qij is the nij � (nij � 1) matrix containing the
�rst nij � 1 columns of Inij . Speci�cation (20) (21) becomes

hij;t = bijqij + n�1ij �nijhij2;t;

hij2;t = !ij + �ij�
0
nij
eij;t�1 + �ijhij2;t�1:

Note that by construction hij2;t := �0nijhij;t because �
0
nij
bij = 0. Let also Jij :=

1
nij
�nij �

0
nij
= �nij

�
�0nij �nij

��1
�0nij . Substituting the second equation into the �rst one

and setting hij2;t�1 := �0nijhij;t�1 one �nds

hij;t = Fijc�ij + (�ijJij)hij;t�1 + (�ijJij) eij;t�1; (23)
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where �cij :=
�
q0ij : !ij

�0
is nij � 1 and Fij :=

�
bij : n

�1
ij �nij

�
This shows that the

factor EA speci�cation is a di¤erent submodel of (5) than (17) with

Eij;1 = �ijJij; Aij;1 = �ijJij, (24)

and Fij :=
�
bij : n

�1
ij �nij

�
in (16).

Formally we can de�ne W �
ij;0 := Jij and consider (24) a special case of the scalar

speci�cation (17) with mEij;1 = 0, mAij;1 = 0, W
�
ij;0 := Jij and Fij :=

�
bij : n

�1
ij �nij

�
.

In the following we treat the factor EA speci�cation as a special case of the EA
spatial dynamics (17) for this particular choice of mEij;1, mAij;1, W

�
ij;0, Fij.

2.6 R speci�cation

Consider next the matrix R, a positive de�nite, symmetric matrix with ones on the
main diagonal. Again assuming the same ordering of the blocks as in the previous
subsection, we assume that R is block diagonal with diagonal blocks Rij, where the
subscripts ij refer to the class Cij.
As in the previous subsection recall that assets are ordered within the subvector

eij;t according to a single ordering critierion. Within each diagonal block Rij, we
consider the following spatial speci�cation:

Rij = Inij +

mRijX
q=1

�ij;qW
�
ij;q where W �

ij;q := U qij + U q0ij ; (25)

and Uij is de�ned in (19), mRij � nij � 1. Note that the spatial nature of the R
speci�cation matches the one for the EA dynamics. In fact both re�ect the same
intra-class classi�cation.
For example for nij = 4 one has

Rij =

0BB@
1 �ij;1 �ij;2 �ij;3
�ij;1 1 �ij;1 �ij;2
�ij;2 �ij;1 1 �ij;1
�ij;3 �ij;2 �ij;1 1

1CCA :

The number of parameters in the R-scalar speci�cation (25) is nij � 1 for each
class Cij, for a total number of parameters equal to vR =

P
i;j (nij � 1) = n � k`.

Note that the R-diagonal speci�cation does not make sense, given the symmetry of
each block Rij. We hence consider only the scalar R speci�cation.
A special case of (25) is given by the spatial autoregression of order one, where

�ij;q = �qij for some scalar �ij. In this case the number of parameters reduces to 1
for each class Cij, for a total number of parameters equal to vR = k`.

2.7 Extensions

A number of possible extensions and variations can be considered on the basic
scheme proposed in the previous sub-sections. We here list a few. These extensions
go beyond the scope of the present paper, and they are not considered further, even
if they well deserve attention in future research on the issue.
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1. One may consider a conditional spatial autoregressive (CAR) scheme in place
of S for the spatial autoregression de�ned in (2), see also Cressie (1993) eq.
(6.3.13) and (6.3.8) respectively for de�nitions. The CAR scheme is more re-
strictive than the SAR one, but represents an important alternative approach.

2. The GARCH speci�cation for the dynamics of the conditional variances can
be easily extended to allow for asymmetries in the news impact curve, non-
linear transformations of the input and output of the GARCH dynamics. The
latter transformations, however, come at the expense of preventing the use of
recursion in the multi-step ahead prediction of variances.

3. More complicated spatial weight matricesW may be de�ned from multivariate
metric distances computed on the basis of quantitative indicators. For example
one may de�ne W = (wij) with wij = 1=dij, i 6= j, wii = 0, where dij is a
metric distance between units i and j. Di¤erent distances dij can be de�ned
on the analysis of balance�sheet data.

4. The two-way classi�cation used in the S-speci�cation may be directly extended
to more complicated multi-way classi�cations. More (or less) than 2 factors
may be used in the factorial design in the de�nition of the matrices S, El, Al
and R. One may expect that di¤erent spatial classi�cations and orderings may
give rise to non-nested SEARCH models. This raises the question of testing
non nested speci�cations in the present context.

5. The present speci�cation constrains R and S to be time-invariant. This is the
simplest option, which could be relaxed in many ways. One may e.g. allow
the parameters �S in S to be time-varying, possibly with GARCH dynamics.
A time-varying spatial structure of S could model periods of higher and lower
spatial dependence.

3 Relation with other speci�cations

In this section we discuss the relation of the SEARCH model with other GARCH
speci�cations, including the CC and the OG speci�cations. The general model we
consider, which we call the generalized variance model GV, consists of the following
general speci�cation of the �rst and second conditional moments

yt =: Et�1 (yt) + "t = �wt + "t;

�t := Et�1 ("t"0t) = V DtRDtV
0; (26)

ht := vecd
�
D2
t

�
= c+ E (L)ht�1 + A (L) et�1;

et := vecd
�
V �1"t"

0
tV

�10� ;
and Dt is a diagonal matrix. We assume that the process is second order stationary,
so that � := E ("t"0t) is also well de�ned. We �rst show in Subsection 3.1 how several
di¤erent speci�cations are nested within (26). In subsection 3.2 we compare model
dimensions.
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3.1 CC, OG, factor GARCH and SEARCH

The general speci�cation (26) nests various submodels. Speci�cally:

1. When taking R = I and E(L), A(L) diagonal and V = P�1=2, with P and
� respectively equal to the matrix of eigenvectors and eigenvalues of �, one
obtains the standard OG speci�cation. The parameters to be estimated consist
of the diagonal elements in E(L), A(L) and the n(n+1)=2 free elements in V .

2. When taking R = I and E(L), A(L) diagonal, V equal to P�1=2U0, with P
and � respectively equal to the matrix of eigenvectors and eigenvalues of �,
and U0 as an orthogonal matrix, one obtains the generalized OG speci�cation
of van Der Weide (2002). The parameters are the same as in the OG with the
addition of n(n� 1)=2 parameters in U0.

3. When taking R = I and E(L), A(L) diagonal, and V lower triangular with
diagonal elements equal to 1, one obtains the full factor GARCH model of
Vrontos et al (2003). The number of parameters in the GARCH dynamics is
n (1 + pA + pE) plus the n(n� 1)=2 unrestricted elements in V .

4. When taking V = I and E(L), A(L) diagonal, R unrestricted, one obtains the
standard CC speci�cation. The number of parameters is n(1+ pA+ pE) in the
ARCH dynamics with the addition of n(n� 1)=2 parameters in R.

5. Consider the k-factor GARCH model of Engle, see Bollerslev and Engle (1993)
eq. (12),

�t = 	+ C�tC
0

where 	 is an n � n matrix (not necessarily diagonal), C is n � r and of full
column rank, �t = diag (h1t),

h1t = E1 (L) vecd
�
C
0
�tC

�
+ A1 (L) vecd

�
C
0
"t"

0
tC
�
. (27)

Here C := C(C 0C)�1 for any matrix C. The matrix polynomials E1 (L) :=PpE
i=1E1iL

i and A1 (L) :=
PpA

i=1A1iL
i are assumed to have diagonal structure.

It is simple to verify, using orthogonal projections, that the model may be
written as

�t = V (� + diag (�t; 0))V
0

with V = (C : C?). When � is diagonal, this model is in the format (26) with
R = I, V = (C : C?) and E (L) = diag (E1 (L) ; 0), A (L) = diag (A1 (L) ; 0).
Note in fact that �t = V �1"t =

�
C : C?

�0
"t in et := vecd (�t�0t), so that this

conforms with the de�nition of the innovations in (27). With � diagonal, the
parameters to be estimated are �, C and the elements on the diagonal of
E1 (L) and A1 (L), for a total of n(r + 1) + r(1 + pA + pE) parameters.

6. SEARCH speci�cations are obtained as the special cases where V := (I � S)�1

and S, E(L), A(L), R are constrained to have a spatial structure. The para-
metrization of the SEARCH has been described at length in Section 2.

16



More general multivariate GARCH speci�cations are also reported here for com-
parison. Consider the vech GARCH formulation, see Engle and Kroner (1995); this
is given by

vec (�t) = vec (C) +

pEX
i=1

E�i vec (�t�i) +

pAX
i=1

A�ivec
�
"t�i"

0
t�i
�
: (28)

Let D be the n2 � u duplication matrix, u := n (n+ 1) =2, that satis�es vec (�t) =
D vech (�t). Given the symmetry of �t, the parameters in the GARCH vech spec-
i�cation are constrained to satisfy vec (C) = D vech (C) (symmetry of C), E�i =
DE�

iD
0
, A�i = DA

�
iD

0
where E

�
i and A

�
i are u� u.

In order to ensure the positive de�niteness of �t, the BEKK speci�cation more-
over requires

E�i =

mE�
iX

j=1

(Eij 
 Eij) and A�i =

mA�
iX

j=1

(Aij 
 Aij) (29)

where Eij and Aij are n � n real matrices. In the following we take for simplicity
mE�i

= mA�j
=: mEA for all i and j.

We next consider model dimensions.

3.2 Model dimensions

The models surveyed in the previous subsection have very di¤erent dimensions. The
model dimensions vare decomposed into the number of parameters in the conditional
mean speci�cation v1 and in the number of parameters in the conditional variance
v2; v = v1 + v2.
The di¤erent speci�cations are compared for: an equal number of parameters

for the conditional mean speci�cation v1; an equal number of lags in the GARCH
speci�cation, indicated as pE and pA; for an equal number of terms in the SEARCH
speci�cation of Eij and Aij, indicated as mEij = mAij = mEA for all i and j. This
numbermEA is assumed to coincide also withmE�i

= mA�i
in the BEKK speci�cation

(29).
The model dimensions v2 for the conditional variances are compared in Table 2.

The following remarks are in order.

1. The SEARCH speci�cations are linear in n, the number of assets.

2. The only other speci�cation that is also linear in n is the factor GARCH,
assuming that the number of factors r is independent of n.

3. The dimension of the OG class is quadratic in n, due to the estimation of the
n� n matrix of eigenvectors V of �. This also holds for the generalized OG,
which has more parameters.

4. The unrestricted CC estimates the parameters in the correlation matrix R
unrestrictedly, and this makes the model quadratic in n.
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5. One could also consider a constrained version of the BEKK speci�cation, re-
stricting the parameters Eij, Aij in (29) to be of spatial nature, in the sense
of Section 2. This would reduce the number of parameters in E�i and A

�
i to be

linear in n. However the model dimension would still be quadratic in n when
the constant matrix C is estimated unrestrictedly. When also C is restricted
to be of spatial nature, the model dimension becomes linear in n. However
the requirement that C is of spatial nature may be too restrictive.

4 Likelihood based inference

In this section we consider (quasi-) maximum likelihood, QML, estimation of the
SEARCH model with the following GARCH(1,1) speci�cation

yt =: Et�1 (yt) + "t = �wt + "t;

�t := Et�1 ("t"0t) = (I � S)�1DtRDt (I � S 0)
�1
;

ht = c+ Eht�1 + Aet�1:

S =

mSX
i=1

siWi E = diag (E11; E12; :::; Ek`)

A = diag (A11; A12; :::; Ak`) R = diag (R11; R12; :::; Rk`)

and the speci�cation of the blocks Eij, Aij is de�ned in (17) or (20) and (21) and
the one for Rij in (25).4

The parameter vector � is partitioned as � = (�0� : �
0
S : �

0
EA : �

0
R)
0 where the

subvectors contain parameters in the �, S, EA and R speci�cations, see Section 2.
The �EA subvector is partitioned as �EA = (�0c : �

0
E : �

0
A)
0, where for the spatial-

EA speci�cation in Subsection 2.5.1 �c contains cij, whereas for the factor EA
speci�cation, c contains c�ij, see Subsection 2.5.2 and Appendix B.
When "t is assumed conditionally Gaussian, the log-likelihood function is lnL(�) =PT
t=1 ln ft (�), where ln ft (�) := ln f (ytjIt�1; �) is given by

ln ft (�) = �
1

2

�
ln det (�t) + tr

�
��1t "t"

0
t

��
= �1

2
(f1t + f2t) ; say

with
f1t := ln det (�t) = �2 ln det (I � S) + ln det (R) + ln det

�
D2
t

�
and

f2t := tr
�
��1t "t"

0
t

�
= tr

�
��1t (I � S) "t"

0
t(I � S 0)

�
=

= tr
�
R�1D�1

t �t�
0
tD

�1
t

�
= tr

�
R�1 t 

0
t

�
:

Derivatives of ln ft (�) with respect to the parameters in � = (�0� : �
0
S : c

0 : �0E : �
0
A :

�0R)
0 are given in Appendix B.
In the following subsections we discuss identi�cation in Subsection 4.1. In Sub-

section 4.2 we present possible ways to maximize the Gaussian likelihood, while in
Subsection 4.3 we discuss LM tests for SEARCH.

4Extensions to ARCH dynamics of higher orders are straightforward and hence omitted.
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Model:
v2 (num. of par. in Vt�1("t))

Order q in
v2 = O (nq)

Leading term in n

GARCH vech, eq. (28):
1
4
(pE + pA)n

2 (n+ 1)2 + 1
2
n (n+ 1)

4 1
4
(pE + pA)n

4 +O(n2)

BEKK, eq. (29):
mEA (pE + pA)n

2 + 1
2
n (n+ 1)

2
�
mEA (pE + pA) +

1
2

�
n2 +O(n)

CC:
(1 + pE + pA)n+

1
2
n (n+ 1)

2 1
2
n2 +O(n)

OG:
(pE + pA)n+

1
2
n (n+ 1)

2 1
2
n2 +O(n)

GOG:
(pE + pA)n+ n2

2 n2 +O(n)

r-factors GARCH, eq. (27):
(pE + pA + n) r + n

1 (r + 1)n+O(1)

SEARCH
diag, hetero S, spatial EA:
n ((k + 1) (`+ 1) + 2 + 2mEA)� k`

1 (k`+ `+ k + 3 + 2mEA)n+O(1)

diag, hetero S, factor EA:
n (k + 1) (`+ 1) + 2n+ k`

1 (k`+ `+ k + 3)n+O(1)

diag, homo S, spa EA:
n (6 + 2mEA)� k`

1 (6 + 2mEA)n+O(1)

diag, homo S, factor EA:
6n+ k`

1 6n+O(1)

scalar, hetero S, spatial EA:
(k + 1) (`+ 1) + 2n+
+(1 + 2mEA) k`

1 2n+O(1)

scalar, hetero S, factor EA:
(k + 1) (`+ 1) + 2n+ k`

1 2n+O(1)

scalar, homo S, spatial EA:
k + `+ 1 + 4 + n (2 + 2mEA)

1 2 (1 +mEA)n+O(1)

scalar, homo S, factor EA:
(k + 1) (`+ 1) + 4 + 2n+ k`

1 2n+O(1)

Table 2: Model dimensions as a function of n; the lower panel contains SEARCH
speci�cations.
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4.1 Identi�cation

Identi�cation in volatility models has been addressed in Sentana and Fiorentini
(2001) and more recently in Lucchetti (2004). We note that, when the ARCH
dynamics is shut down, El = 0, Al = 0, for the SEARCH speci�cation in S, c, and
R to be identi�ed, one needs to have nij > 2. In the following we assume that
models are identi�ed.

4.2 Maximization

The Gaussian likelihood is well de�ned and continuously di¤erentiable wrt the pa-
rameters � = (�0� : �

0
S : �

0
c : �

0
E : �

0
A : �

0
R)
0. This allows to perform QML estimation

using gradient methods, like BGFS, or even of Newton-Raphson type. These meth-
ods require to perform the maximization of the likelihood jointly wrt to all the
parameters.
For a large cross-section dimension n, this feature may be seen as a cost in terms

of speed of computations, and simpler methods may be sought. In the next sub-
section we describe a alternating algorithm that may be employed to maximize the
likelihood which requires considerably fewer computations in each iteration (possibly
at the expense of more iterations).
The switching algorithm is based on the alternating maximization of the like-

lihood with respect to two disjoint and complementary subset of parameters. In
particular we consider the following steps:

1. For �xed �, S consider each single block hij;t in turn and maximize wrt the
parameters in cij, Eij, Aij, Rij.

2. For �xed c, E, A, R, maximize wrt �, S.

We now illustrate computations for each step. Consider step 1. In f1t the only
part that depends on parameters is ln det (D2

t ) =
Pk

i=1

P`
j=1 f1ij;t where f1ij;t =Pnij

q=1 lnhijq;t and hijq;t is the q-th element in hij;t. Note also that �t = (I � S) "t are
known constants in f2t, which, thanks to the block diagonal structure of R and the
diagonal structure of Dt, decomposes into

f2t = tr
�
R�1D�1

t �t�
0
tD

�1
t

�
=

kX
i=1

X̀
j=1

f2ij;t

where f2ij;t = �0ij;tD
�1
ij;tR

�1
ij D

�1
ij;t�ij;t. Further note that ln ft (�) depends on �cij , Eij,

Aij, Rij only through f1ij;t and f2ij;t, so that one may write

ln ft (�) = c+

kX
i=1

X̀
j=1

fij;t fij;t := �
1

2
(f1ij;t + f2ij;t)

and maximization of
PT

t=1 ln ft (�) wrt cij, Eij, Aij, Rij is obtained by considering
the separate subsystems consisting of "ij;t and hij;t. This step can take advantage of
existing software for the estimation of GARCH processes.
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Next we consider the second step, which maximize wrt �, S for �xed c, E, A, R.
In this step the maximization involves all the cross section. However, the number
of parameters is here limited to the parameters of the conditional mean and S. In
particular the number vS of parameters is very small, speeding up calculations.
As with any alternating algorithm, this switching algorithm ensures that the

likelihood is increased in each step.

4.3 LM tests

The asymptotic theory for the quasi maximum likelihood (QML) estimator follows
directly from the results in Ling and McAleer (2003), see also Comte and Lieber-
man (2003). Under second order stationarity requirements and under the assump-
tion of the existence of moments up to order 8, the QML estimator is

p
T asymp-

totically Gaussian with covariance matrix A�10 B0A
�1
0 where A0 := E

�
@2 ln ft(�0)
@�@�0

�
,

B0 := E
�
@ ln ft(�0)

@�
@ ln ft(�0)

@�0

�
under regularity conditions.

These asymptotics provide the basis for the development of LM tests for SEARCH
e¤ects. We consider the univariate GARCH speci�cation as a starting point. This
corresponds to setting S = 0, E1 = diag (�1; ::::; �n), A1 = diag (�1; ::::; �n), R = I.
Let e� be the corresponding restricted QML estimator of �.
We consider the LM statistics

LM = �0X(X 0X)�1X 0� where X :=

0@@ ln f1
�e��

@�
: ::: :

@ ln fT

�e��
@�

1A0

; (30)

and � is a vector of ones and e� is the restricted ML estimator, where the expressions
for G are given in Appendix B. This is the usual outer-product of the gradient
(OPG) form of LM tests, which can be performed using arti�cial regression.
Under the regularity condition for the QML estimator, LM converges to a �2

with degrees of freedom equal to the number of constraints.
A di¤erent LM test can be applied for nested SEARCH speci�cations. As an

example, one can derive LM tests for (some or all) the homogeneity restrictions
(11), (12), (13) based on the estimation of the homogeneous S speci�cation (15).
Indicate in fact with e� the ML estimator of a SEARCH speci�cation (15). One
can test the hypotheses (11), (12), (13) jointly by employing the test statistics (30).
Alternatively each of these restrictions may be tested using the appropriate subset
of the score vector. These LM test can be robusti�ed by using the technique in
Bollerslev and Wooldridge (1992).

5 Empirical application

This section present an empirical application of the proposed models. We selected
20 assets from the New York Stock Exchange; the stocks are listed in Table 3. The
data were downloaded from Yahoo!Finance. The market capitalization refers to the
beginning of September 2004, while the downloaded series cover the range January
1994 to June 2001.
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Ticker Asset Sub-sector Cap. Cij
DD E.I. Du Pont De Nemours & Co.a CPR 42600 C11
DOW Dow Chemical Co.a CPR 40200 C11
KMB Kimberly-Clark Corpa PPP 33700 C11
AA Alcoa Inc.a MM 28600 C11
NEM Newmont Mining Corp. a GS 19400 C11
VAL The Valspar Corp.b CM 2500 C12
SON Sonoco Products Co.b PPP 2500 C12
SMG The Scotts Co.b CM 2100 C12
BOW Bowater Inc.b PPP 2000 C12
LZ Lubrizol Corp.b CM 1900 C12
HIN Honeywell International Inca AD 31300 C21
ITW Illinois Tool Works Inc.a MCG 28100 C21
LMT Lockheed Martin Corp.a AD 24300 C21
NOC Northrop Grumman Corp.a AD 18400 C21
DE Deere and Co-a CAM 15700 C21
TOL Tell Brothers Inc.b CS 3400 C22
SPW SPX Corp.b MCG 2700 C22
ATK Alliant Techsystems Inc.b AD 2200 C22
HOV Hovnanian Enterprises Inc.b CS 2200 C22
JEC Jacobs Engineering Group Inc.b CS 2200 C22

Table 3: Assets included in the analysis; top 2 panels: Basic Materials, bottom
2 panels: Capital Goods. a: Index SP500, b: Index SP400. Sub-sectors: AD:
Aerospace & Defense; CAM: Constr. & Agric. Machinery; CM: Chemical Manu-
facturing; CPR: Chemicals-Plastics & Rubber; CS: Construction & Services; GS:
Gold & Silver; MCG: Misc. Capital Goods; MM: Metal Mining; PPP: Paper &
PaperProducts.
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Missing data across assets were replaced with a zero return in order to get an
homogeneous sample. The data were also corrected for stock splits and dividends.
The analysis was then performed on the log-returns rt = ln pt � ln pt�1.
The estimation period covered January 1994 to December 1999 while the sub-

sample from January 2000 to June 2001 was used for out-of-sample analysis. The
two sample periods include 1513 and 377 dates, respectively.
The conditional mean speci�cation included the following information variables

zt: the lagged log-returns of the Standard & Poor�s 500 Index, the lagged �rst
di¤erence of the 3 Months Treasury Bills and of the 10 Years Notes, the lagged
log-returns of Oil Prices (Texas), a set of dummy variables for the day of the week
e¤ect and the January e¤ect.
For computational simplicity, we �xed � at the estimated values from the ML

(OLS) estimation on the conditional mean with conditional homoscedasticity. We
calculated deviations from the conditional mean, and �tted a simple CC model on
them, with an unrestricted R matrix.
We next speci�ed a SEARCH model with homogeneous S speci�cation (15),

with spatial matrices de�ned as in (14). The classi�cation was based on industrial
sector and capitalization level, as described in Subsection 2.4. The four classes
Cij thus corresponded to the following associations. C11: Basic materials - Large
capitalization, C12: Basic materials - Medium capitalization , C21: Capital goods
- Large capitalization, C22 : Capital goods - Medium capitalization. Assets within
each class Cij were ordered on the basis of capitalization level.
We next calculated the LM test against a SEARCH speci�cation with homo-

geneous and scalar S, and scalar spatial EA speci�cation, leaving R unrestricted.
The LM test has been computed in the robusti�ed version suggested by Bollerslev
and Wooldridge (1992). This gave a LM test statistic of 517:761, which, when com-
pared with a �2 (44), gives a p-value inferior to 10�5, thus suggesting the presence
of signi�cant spatial e¤ects.
We next estimated a SEARCH model with scalar S-speci�cation and scalar spa-

tial EA speci�cation, constraining R to the speci�cation (25). The homogeneous-
scalar-S and scalar-EA model includes 56 coe¢ cients (4 in S, 20 in c, 8 in E and
in A and 16 in R).
The estimated coe¢ cients were obtained by QML using the BFGS algorithm and

the analytical gradients included in the Appendix B. The coe¢ cients standard errors
were computed with the sandwich estimator. The estimates and asymptotic stan-
dard errors are reported in Tables 4. It can be seen that spatial e¤ects are present
and signi�cant. Graphs of the estimated conditional variances and covariances for
the SEARCH and CCC speci�cations are reported in Fig. 1 to Fig. 4.
We also considered the diagonal speci�cations for S and EA. A robust LM

test for the given speci�cation against a homogeneous diagonal S speci�cation with
scalar-EA speci�cations was considered; the test implies 56 constraints. The LM
statistic was equal to 180.628 with an p-value less than 10�5 when compared with
a �2(56) distribution. This evidence points to the generalization of S to a more a
HET speci�cation.
We also considered an LM test of the speci�cation in Tables 4 and ?? against

a homogeneous scalar S speci�cation, with a diagonal EA speci�cation. The test
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S s�� s�0 s0� s00
0:02 0:01 0:01 �0:03

(462:53) (160:72) (129:66) (�394:39)
c c11;1 c11;2 c11;3 c11;4 c11;5

0:20 0:10 0:20 0:24 0:46
(30:83) (91:75) (74:66) (79:50) (30:73)
c12;1 c12;2 c12;3 c12;4 c12;5
0:44 0:18 0:44 0:53 0:69
(62:71) (50:22) (59:59) (58:85) (61:80)
c21;1 c21;2 c21;3 c21;4 c21;5
0:52 0:35 0:21 0:16 0:89
(93:60) (79:98) (61:42) (63:87) (96:82)
c22;1 c22;2 c22;3 c22;4 c22;5
0:80 0:71 0:34 1:31 0:45

(104:11) (100:69) (85:95) (109:07) (99:44)
E �11;0 �12;0 �21;0 �22;0 �11;1 �12;1 �21;1 �22;1

0:81 0:75 0:53 0:69 0:00 0:00 0:10 0:00
(150:35) (230:55) (119:49) (329:16) (0:00) (0:00) (62:78) (0:00)

A �11;0 �12;0 �21;0 �22;0 �11;1 �12;1 �21;1 �22;1
0:11 0:10 0:16 0:15 0:01 0:01 0:00 0:00
(47:11) (107:46) (142:42) (184:94) (15:21) (48:43) (37:13) (23:30)

R �11;1 �11;2 �11;3 �11;4 �12;1 �12;2 �12;3 �12;4
0:15 0:10 0:09 �0:02 0:03 0:03 0:07 0:09

(404:01) (236:51) (185:24) (�18:20) (74:04) (71:19) (151:64) (123:76)
�21;1 �21;2 �21;3 �21;4 �22;1 �22;2 �22;3 �22;4
0:16 0:11 0:16 0:16 0:04 0:03 0:11 0:08

(402:57) (260:61) (297:79) (212:13) (134:16) (59:06) (243:67) (115:30)

Table 4: SEARCH estimates; t-ratios in parenthesis, cij;h are the estimates of the
GARCH intercept for asset h in class Cij.
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Figure 1: Estimates and forecasts of element (1; 1) of �t for the CCC and the
SEARCH models.
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Figure 2: Estimates and forecasts of element (2; 2) of �t for the CCC and the
SEARCH models.
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Figure 3: Estimates and forecasts of element (1; 5) of �t for the CCC and the
SEARCH models.
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Figure 4: Estimates and forecasts of element (1; 10) of �t for the CCC and the
SEARCH models.
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Model log-Lik number of parameters in �t

SEARCH �31879:321 4 20 8 8 16 = 56
S c E A R

CCC �31258:465 60 190 = 250
GARCH R

DCC �31257:704 60 190 2 = 252
GARCH R DCC

OGARCH �31974:045 40 210 = 250
GARCH FL

Table 5: Log-likelihood values

implies 64 equality restrictions; the test statistics results was equal to 179.565 with
a p-value less than 10�5. Also this test points to a HET speci�cation.
A LM test against an heterogeneous S speci�cation was computed; this gave

a �2(5) test statistics of LM=112.766, with a p-value less than 10�5. A similar
test against an heterogeneous S speci�cation with diagonal EA speci�cation was
computed; this gave a �2(69) test statistics of LM=270.031, with a p-value less
equal to 10�5.
These speci�cation tests call for HET generalizations of the spatial speci�cation

reported in Tables 4 and ?? to diagonal and heterogeneous speci�cations. These
speci�cations were not estimated due to time constraints and will be added in a
future version of this paper.
In order to compare the SEARCH model to alternative multivariate GARCH

speci�cations we estimated also a Full Factor OGARCH model and a DCC model,
in addition to the CCC. The DCC provided estimated values very close results to
the CCC model which was preferred by a LM test. Table 5 reports the maximized
log-likelihoods of the various models; note that in general models are non-nested.
One can note that the SEARCH model, with a maximize log-likelihood comparable
with the OG and inferior to the models in the CC class, has much fewer parameters.
The literature on the diagnostic checking of multivariate GARCH models in-

cludes statistics based on the standardised residuals, as in Ling and Li (1997), Tse
and Tsui (1999), Wong and Li (2002), Duchesne and Lancette (2003), and Duchesne
and Roy (2004). Di¤erent approaches include a residaual based analysis, Tse (2002)
and a multivariate Portmanteau statistics, Hosking (1980). Apart the last one,
the various approache su¤er form loss of power or inconsistency against alternative
models.
In order to compare the estimated models, SEARCH, CC and OGARCH we use

simple Ljung-Box tests on the univariate standardised residuals and the multivariate
Portmanteau of Hosking (1980). These statistics are not reported for brevity but
we focus instead on the worst cases and on the rejections of the LB null hypothesis
of absence of autocorrelations in squared standardized residuals.
For each model we computed the LB p-values for each single asset for lag lenght

from 1 to 20. We then averaged the p-values over the 20 lags and selected the
asset which presented the lowest average p-value; this was asset NEM for all models.
Results are in Fig. 5. One observes that the OG provides the worst results while
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Figure 5: p-values of the univariate LB autocorrelation tests performed on squared
standardized residuals of asset NEM for the CCC, OGARCH and SEARCH models.
The asset NEM was selected as the ones with minimal p-values across lags 1 to 20
for each of the 3 models.

SEARCH dominates the CCC.
The same exercise was perfomed selecting the asset with minimal p-value across

lags 1 to 20. Results are presented in Fig. 6. OG still provides the worst results while
SEARCH and CCC have similar performances, with SEARCH doing marginally
better. The same results may be summarized by calculating the number of rejections
of the univariate LB tests for each model; these are reported in Fig. 7. One observes
that the OG provides the worst results with SEARCH doing marginally better than
CCC.
Furthermore, we computed the multivariate Portmanteau test which rejected

the null hypothesis for all models. The "omnibus" multivariate normality test of
Doornik and Hansen (1994) was also computed on standardized residuals. Also
this test rejected the null of normality for all models. This indicates that the none
of the estimated models is able to capture the multivariate volatility dependence
completely.
The models may also be compared in terms of value-at-risk measures, in order

to asses their forecast ability. In this case the attention is on the out-of-sample
estimated variances. We consider an equally weighted portfolio and computed its
returns and its variances with the various �tted models. Then, we used a back-
testing approach computing exceptions, the tests of Kupiec (1995) and Christo¤ersen
(1998), and the ones based on the speci�cation of loss functions.

Consider the former. Table 6 reports the number of exceptions and the tests
of Unconditional Coverage (UC), Independence (I) and Conditional Coverage (CC).
The exceptions are above the VaR con�dence level in all cases except for the OG
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Figure 6: p-values of the univariate LB autocorrelation tests performed on stan-
dardized residuals for the CCC, OG and SEARCH models. The selected asset was
asset HOV for the CCC and the SEARCH, and asset NEM for the OG. The assets
were selected as the ones with minimal p-value across lags 1 to 20.
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Figure 7: Number of rejections (out of 20) of the univariate LB autocorrelation tests
performed on standardized residuals for the CCC, OGARCH and SEARCH models,
by lag.
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CCC DCC OG SEARCH
Exceptions (VaR signi�cance level)

Num. (1%) 5 5 0 8
Fraction 0.013 0.013 0.000 0.021
Num. (5%) 28 27 3 34
Fraction 0.074 0.071 0.008 0.090

Tests (VaR signi�cance level)
UC (1%) 0.368 0.368 7.578 3.626
UC (5%) 4.095 3.290 21.364 10.460
I (1%) 3.559 3.559 0.000 1.858
I (5%) 1.536 1.868 5.576 2.579
CC (1%) 3.926 3.926 7.578 5.484
CC (5%) 5.630 5.158 26.940 13.039

Table 6: Conditional and unconditional coverage tests; signi�cant values in italics.

model, which provides the highest forecasted variances, and, as a consequence the
widest VaR bands. Rejection of the null hypothesis is reported in italics. UC, I
and CC tests are asymptotically distributed as a �2 with one degree of freedom for
the UC and I test, while with 2 degrees of freedom for the CC test. There is some
evidence of dependence among exceptions for the SEARCH and OG model for the
5% VaR.
We next considered the evaluation based on loss function. The following loss

functions were calculated, where vt indicates the value-at-risk and ut the univariate
prediction error:

LEj;t :=

�
LFj;t ut < vt
0 ut � vt

;

LF0;t := 1 + (ut � vt)
2 ; LF1;t :=

����1� ����utvt
�������� ;

LF2;t :=
(jutj � vt)

2

jvtj
; LF3;t := jut � vtj :

LE0;t was suggested by Lopez (1999), while Caporin (2003) proposed LFi;t, LEi;t,
i = 1, 2, 3. Note that the LFi;t functions weight all observations, while LEi;t assign
positive loss only to exceptions to the value-at-risk measure. Table 7 reports the
summed losses over the forecasting period. The minimal value for the various losses
is obtained either by the DCC for by the SEARCH.
The loss functions signal a preference for the DCC if computed only on the

exceptions, i.e. using LEi;t, if one excludes the OG given its very wide value-at-risk
bands. A di¤erent picture emerges, however, when using the loss functions LFi;t, as
designed in Caporin (2003). The purpose of the LFi;t functions is to mesure how
far the value-at-risk is from the realised return series, monitoring the opportunity
cost of the value-at-risk. For these loss functions, there is a clear preference for the
SEARCH, implying that the SEARCH-based value-at-risk is closer to the returns
series. This ensures a smaller value-at-risk band without excessively increasing the
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Loss Function and VaR level CCC DCC OG SEARCH
LE0 1% 7.314 7.004 0.000 11.307
LE0 5% 40.126 38.117 4.088 48.960
LE1 1% 1.163 1.033 0.000 1.581
LF1 1% 234.179 236.495 290.668 227.796
LE1 5% 7.811 7.060 0.732 10.116
LF1 5% 206.026 207.155 258.786 202.771
LE2 1% 0.901 0.760 0.000 1.383
LF2 1% 426.454 441.743 1099.251 386.386
LE2 5% 6.859 6.150 0.474 9.037
LF2 5% 253.060 260.201 652.482 234.025
LE3 1% 2.894 2.635 0.000 3.672
LF3 1% 960.741 980.700 1735.604 909.088
LE3 5% 13.605 12.570 1.729 16.522
LF3 5% 707.050 719.457 1235.260 675.261

Table 7: Summed loss functions over forecasting period; minimal values are reported
in italics.
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Figure 8: Returns on an equally weighted portfolio and the 1% value-at-risk for the
CCC and SEARCH models
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value-at-risk exceptions. Fig. 8 reports the portfolio returns and the CCC and
SEARCH 1% VaR bands.
These results could be further extended allowing for changes in the portfolio

composition in order to extend the model comparison to the portfolio weights evo-
lution.

6 Conclusions

In this paper we have presented a spatial multivariate ARCH speci�cation, called
SEARCH, which employs spatially restricted parameter matrices to obtain a model
dimension that is linear in the number of assets n.
An application to daily returns on 20 stocks from the NYSE for the period

January 1994 to June 2001 shows the bene�ts of the present speci�cation.
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A Appendix A: Factor Arch representation

In this appendix we motivate the restriction of a multivariate GARCH speci�cation
implied by requiring the ARCH component to be common, see e.g. Engle and
Bollerslev (1993) and reference therein for the de�nition of common features in
volatility. We here take the feature to be time-varying conditional variances.
Consider the GARCH process

h�t = c� + A�(L)e�t�1 + E�(L)h�t�1 (31)

where h�t and e
�
t are n

� � 1. Here all variables and matrices are starred, in order to
distinguish them from the ones in the main text. We �rst give basic de�nition.
The GARCH process (31) is called non-trivial if A�(L) is not identically zero.

We say that the GARCH process is driven by a subset ��0e�t�1 of e
�
t�1 if

A�(L) = Ay(L)��0

for a n� � r� polynomial matrix Ay(L) with r� < n�. We say that h�t has GARCH
common features, GARCH�CF, if it is non-trivial and if there exists a non-zero
matrix n� � k� matrix 
� such that 
�0h�t is constant, for an appropriate choice of
h�0.

Proposition 3 The following are su¢ cient conditions for a non-trivial GARCH
process (31) to be driven by a subset ��0e�t�1 of e

�
t�1, which itself follows a GARCH

process, and to present common features:

(
� : ��) is a full rank square n� � n� matrix (32)

(
� : ��)0E�(L) =

�
E1(L)


�0

E2(L)�
�0

�
(33)

A�(L) = Ay(L)��0 (34)


�0Ay(L) = 0 (35)

with E1(L) a k��k� and E2(L) a r�� r� matrix polynomials, where E1(L) is stable.

Note that (33) can be described as the conditions that 
� and �� are matrices of
left eigenvectors of E�(L).
A leading example is the GARCH(1,1) process

h�t = c� + A�e�t�1 + E�h�t�1 (36)

for which the above conditions (33) (34) (35) translate into the following conditions:

(
� : ��)0E� =

�
E1


�0

E2�
�0

�
A� = Ay��0


�0Ay = 0

which can be imposed in a restricted parametrization of the GARCH(1,1) process
as speci�ed by the following proposition.
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Proposition 4 Under the conditions (32) (33), (34), (35), the GARCH(1; 1) process
(36) admits the following factorial representation

h�t = ��?q
� + 


�

?h
�
2;t; (37)

h�2;t = c�2 + ae�2;t�1 + E�2h
�
2;t�1 (38)

where c�2 := ��0c�, � := ��0Ay, q� := (
�0��?)
�1 (I � E�1)

�1 
�0c�, 

�
? := 
�?(�

�0
�?)
�1,

h�2;t := ��0h�t�1, e
�
2;t := ��0e�t�1. The GARCH(1; 1) process for h

�
2;t, e

�
2;t is stable (i.e.

covariance stationary) i¤ the eigenvalues of �+ E�2 are less than 1 in modulus.

The decomposition in (37) separates the time-invariant part ��?q
� of the condi-

tional variance and the time-varying part given in (38). We also observe that the
unconditional variance, under the given condition for stability of the process for h�2;t,
e�2;t , is

E (h�t ) = ��?q
� + 


�

?(I � �� E�2)
�1��0c�;

with a contribution from both components.
Proof. Consider the projection identity

In� = ��?(

�0��?)

�1
�0 + 
�?(�
�0
�?)

�1��0

which holds thanks to (32), and pre-multiply h�t by its r.h.s.. Let h
�
1t := 
�0h�t and

h�2t := ��0h�t so that the following decomposition applies:

h�t =
�
��?(


�0��?)
�1 : 
�?(�

�0
�?)
�1�� h�1t

h�2t

�
:

We wish to show that h�1t can be made constant by an appropriate choice of h
�
0 and

that h�2t is driven by a GARCH process for �
�0et. We �rst consider h�1t.

h�1t = 
�0
�
c� + E�h�t�1

�
= 
�0c� + E�1


�0h�t�1 =: c
�
1 + E�1h

�
1t�1

where c�1 := 
�0c� and the eigenvalues of E�1 are all less than one in modulus by the
requirement of stability of E�1(L) = E�1 . Solving backwards one obtains

h�1t =

 
t�1X
i=0

E�i1

!
c�1 + E�t1 h

�
10

By choosing h�10 = (
P1

i=0E
�i
1 ) c

�
1 = (I � E�1)

�1 c�1 one obtains

h�1t =

 
t�1X
i=0

E�i1

!
c�1 + E�t1

 1X
i=0

E�i1

!
c�1 =

 1X
i=0

E�i1

!
c�1 = h�10 = (I � E�1)

�1 c�1;

which is constant. Next consider h�2t

h�2t = ��0
�
c� + A�e�t�1 + E�h�t�1

�
= ��0c� + ��0Ay��0e�t�1 + E�2�

�0h�t�1 =

=: c�2 + ���0e�t�1 + E�2h
�
2t�1
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where � := ��0Ay. This de�nes a GARCH(1,1) for ��0e�t�1, where Et�1 (��0e�t ) = h�2t =
��0Et�1 (e�t ), where h�t := Et�1 (e�t ). Hence

h�t = ��?q
� + 


�

?h
�
2;t;

h�2;t = c�2 + �e�2;t�1 + E�2h
�
2;t�1

where q� := (
�0��?)
�1 (I � E�1)

�1 
�0c�, 

�
? := 
�?(�

�0
�?)
�1, e�2;t := ��0e�t�1, h

�
2;t :=

��0h�t�1. The conditions for covariance stationarity of e
�
2;t := ��0e�t�1, h

�
2;t := ��0h�t�1

are the usual ones.
We conclude this Appendix by showing how one can aggregate (23) at the system

level. Let q := (q011 : ::: : q
0
`k)

0, h2;t := (h0112;t : ::: : h
0
`k2;t)

0, ! := (!11 : ::: : !`k)
0,

� := (�11 : ::: : �`k)
0, � := (�11 : ::: : �`k)

0, b := diag (bij), N := diag
�
�nij
�
,

N := diag
�

1
nij
�nij

�
�� := diag (�), �� := diag (�). Note also that as h2;t = N 0ht.

Collecting various blocks i; j, one �nds5

ht = bq +Nh2;t;

h2;t = ! + ��N 0et�1 + ��h2;t�1:

Substituting the second equation into the �rst one gets

ht =
�
b : N

�� q
!

�
+
�
N��N 0�ht�1 + �N��N 0� et�1

which is of the form ht = c+ Eht�1 + Aet�1 for

c =
�
b : N

�
c�; A = N��N 0 E = N��N 0; (39)

with c� := (q0 : !0)0.

B Appendix B: Derivatives of the likelihood func-
tion

In this Appendix we give details on the calculation of derivatives for the most general
diagonal SEARCH model. When g(x) := (g1(x) : :::gn(x))0 is a n � 1 di¤erentiable
function of the m�1 vector x := (x1 : ::: : xm)0, we indicate by @g(x)=@x0 the n�m
matrix with lq element given by @gl(x)=@xq. When "t is assumed conditionally
Gaussian, the log-likelihood function is lnL(�) =

PT
t=1 ln ft (�), where ln ft (�) :=

ln f (ytjIt�1; �) is given by

ln ft (�) = �
1

2

�
ln det (�t) + tr

�
��1t "t"

0
t

��
= �1

2
(f1t + f2t) ; say (40)

with

f1t := �2 ln det (I � S) + ln det (R) ; f2t := 2 ln det (Dt) + tr
�
��1t "t"

0
t

�
5One possible generalization of the present factor structure could be to assume that the matrices

a� and �� are not necessarily diagonal.
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where

tr
�
��1t "t"

0
t

�
= tr

�
��1t (I � S) "t"

0
t(I � S 0)

�
= tr

�
R�1D�1

t �t�
0
tD

�1
t

�
= tr

�
R�1 t 

0
t

�
:

We �nd derivatives of ln ft (�) for the diagonal S, E, A, parameterizations, which
nest the scalar ones, and for the general R speci�cation (25). The scalar S, E, A,
speci�cations are obtained as restrictions of the corresponding diagonal speci�ca-
tions. In fact let �u indicate the m � 1 subvector of parameters contained on the
diagonal of a m�m matrix; examples of �u are �si, ��ij;q , ��ij;q . The scalar speci�-
cations are obtained by constraining �u to �u = �m'u where �m is the m� 1 vector
of ones and 'u is a scalar parameter, so that d�u = �md'u. Hence @ ln ft=@'u =
(@ ln ft=@�u) �m, i.e. the derivatives wrt 'u are obtained by summing the correspond-
ing derivatives wrt �u.
Similarly the case �ij;q = �qij is obtained as a restriction of (25). One �nds

d�ij;q = q�q�1ij d�ij and hence the derivatives wrt �ij are weighted derivatives wrt �ij;q,

@ ln ft (�) =@�ij =
Pnij�1

q=1 q�q�1ij @ ln ft (�) =@�ij;q. For the spatial EA speci�cation,
we use the de�nition W �

ij;q = U qij + U q0ij , see (19). The derivatives for the diagonal
EA speci�cation withW �

ij;q = U qij in (18) is analogous, except that the �rst elements
in ��ij;q is constrained to 0, i.e. ��ij;q = (0 : Inij�1)

0'u, where 'u is a nij � 1 vector
of free parameters, so that @ ln ft=@'u =

�
@ ln ft=@��ij;q

�
(0 : Inij�1)

0.

B.1 Parametrization

The model we consider is given by the diagonal SEARCH speci�cation with

S :=

qX
i=1

siWi; c :=
kX
i=1

X̀
j=1

Mijcij; E :=
kX
i=1

X̀
j=1

mEijX
q=0

Mij�ij;qW
�
ij;qM0

ij;

A :=
kX
i=1

X̀
j=1

mAijX
q=0

Mij�ij;qW
�
ij;qM0

ij; R :=
kX
i=1

X̀
j=1

mRijX
q=0

Mij�ij;qW
�
ij;qM0

ij

whereMij := (0 : Inij : 0)
0 is a n � nij matrix with all zero entries except for the

block corresponding to Cij, with corresponding block entries equal to Inij .
Let also H denote the elimination matrix that satis�es H0vec(D) = vecd(D) or

vec(D) = H vecd(D), with D a n � n diagonal matrix, see Magnus (1988), section
7.3 p. 109. Similarly let Hij be the same type of matrix when D is nij � nij. Let
moreover Rij :=Mij 
Mij.
The parameters � are grouped into subvectors �l, where l 2 A := f�; S; c; E;A;Rg.

The typical parameter subvector of �S is indicated as �si, where si := diag (�si); �cij
is a typical element in �c, where cij := Fij�cij ; ��ij;q is a typical subvector of �E,
where �ij;q := diag

�
��ij;q

�
, ��ij;q is a subvector of �A, with �ij;q := diag

�
��ij;q

�
and

�ij;q is a scalar element of �R.
Consider derivatives of vec�0, vecS, c, vecE, vecA, vecR with respect to the typ-

ical parameters ��, �si, �cij , ��ij;q , ��ij;q , �ij;q. One immediately �nds from de�nitions
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above that

@vec (�0)

@�0�
= In;

@vec (S)

@�0si
= (W 0

i 
 In)H;

@c

@�0cij
=Mij

@cij
@�0cij

;
@vec (E)

@�0�ij;q
= Rij

@vec (Eij)

@�0�ij;q
; (41)

@vec (A)

@�0�ij;q
= Rij

@vec (Aij)

@�0�ij;q
;

@vec (R)

@�ij;q
= Rij

@vec (Rij)

@�ij;q
:

where

@cij
@�0cij

= Fij;
@vec (Eij)

@�0�ij;q
=
�
W �0
ij;q 
 Inij

�
Hij; (42)

@vec (Aij)

@�0�ij;q
=
�
W �0
ij;q 
 Inij

�
Hij;

@vec (Rij)

@�ij;q
= vec

�
W �
ij;q

�
:

Moreover we wish to calculate @vec (�t) =@�0q for a generic q 2 A. De�ne

vec (�t) = vec
�
(I � S)�1DtRDt (I � S 0)

�1
�
=: g� ('; ht)

where ' are the parameters that enter g�t for �xed ht, see the section on �rst deriv-
atives. We �rst calculate dg�t ('; dht) as follows

dg�t ('; dht) =
1

2
vec
�
(I � S)�1

�
diag (dht)D

�2
t �t + �tD

�2
t diag (dht)

�
(I � S 0)

�1
�

=
1

2

��
(I � S)�1 
 (I � S)�1

� �
�tD

�2
t 
 I + I 
 �tD�2

t

��
Hdht

=: H1tdht, say.

We next calculate dg� (d'; ht) as follows

dg�t (d'; ht) = vec((I � S)�1 dS�t + �tdS
0 (I � S)�1 + (I � S)�1DtdRDt (I � S 0)

�1
)

=
��
(I � S)�1 
 �t

�
Knn +

�
�t 
 (I � S)�1

��
d (vec (S))��

(I � S)�1Dt 
 (I � S)�1Dt

�
d (vec (R))

= H2td (vec (S)) +H3td (vec (R)) , say.

Finally, collecting terms and considering a generic parameter �q one �nds

@vec (�t)

@�0q
= H1t

@ht
@�0q

+H2t
@vec (S)

@�0q
+H3t

@vec (R)

@�0q
; (43)

where H1t, H2t, H3t are de�ned above.

B.2 First order derivatives

In (40) f1t := f1t (�1) is the time-invariant part of ln ft (�), where �1 collects the
parameters �S, �R that appear in f1t. Conversely f2t is the time-varying part of
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ln ft (�); observe that f2t depends directly on some parameters �2 and also on ht,
which is itself a function of � (except for �R); we write f2t := f2t(�2; ht).
We next introduce notation for di¤erentials, which follows Magnus and Neudecker

(1999). The di¤erential of f2t is for instance indicated as df2t(�2; ht; d�2; dht); this
by de�nition can be decomposed into

df2t(�2; ht; d�2; dht) = df2t(�2; ht; d�2; 0) + df2t(�2; ht; 0; dht):

Obviously this decomposition applies to all partitions of the parameter vector �. In
the following we use the shorthands df2t(d�2; ht) or df2t(d�2) for df2t(�2; ht; d�2; 0)
and df2t(�2; dht) or df2t(dht) for df2t(�2; ht; 0; dht). We use similar shorthands for
other functions and subvectors of parameters, like in df1t(d�). We �nd

d ln ft (�) = �
1

2
(df1t(d�1) + df2t (�2; dht) + df2t (d�2; ht)) =

=
X
l2A

g0l;td�i + tr (Bt diag (dht)) with

df2t (�2; dht) = tr
��
I �  t 

0
tR

�1�D�2
t diag (dht)

�
=: �2 tr (Bt diag (dht)) (44)

and
P

l2A g
0
l;td�i := �2�1 (df1t(d�1) + df2t (d�2; ht)), Bt := �2�1 (I �  t 

0
tR

�1)D�2
t .

In (44) we have used the de�nition ht := vecd (D2
t ), which implies dD

2
t = diag (dht),

and
dDt =

1

2
D�1
t dD

2
t =

1

2
D�1
t diag (dht)

which follows from the dD2
t = 2DtdDt (thanks to diagonality of Dt).

In Subsection B.2.1 we describe the contributions gl;t to the various derivatives
that appear in the di¤erential above; in Subsection B.2.2 we calculate the di¤erential
of ht, which is the used in Subsection B.2.3 to derive recursions for the �rst order
derivatives.

B.2.1 Contributions gl;t

We�rst consider �� := vec (�0); one �nds df1t(d�) = 0, df2t (d�; ht) = �2 tr
�
��1t "tw

0
td�

0�
and hence

g0�;td�� = tr
�
��1t "tw

0
td�

0� = vec �wt"0t��1t �0 d��: (45)

Consider next �si where si := diag (�si) appears in S :=
PmS

i=1 siWi. Hence
dS = diag (d�si)Wi and one �nds df1t(dS) = 2 tr

�
dS (I � S)�1

�
, df2t (dS; ht) =

�2 tr
�
dS"t"

0
t�

�1
t (I � S)�1

�
and hence

g0si;td�sq = tr
�
diag (d�si)Wi

��
"t"

0
t�

�1
t � I

�
(I � S)�1

��
(46)

= vecd
�
Wi

��
"t"

0
t�

�1
t � I

�
(I � S)�1

��0
d�si

Consider next �ij;q; df1t(dR) = tr (R�1dR), df2t (dR; ht) = � tr (R�1 t 0tR�1dR)
and hence

g�ij;qd�ij;q = �
1

2
tr
��
R�1 �R�1 t 

0
tR

�1�MijW
�
ij;qM0

ijd�ij;q
�
=

=
1

2

�
 0ij;tR

�1
ij W

�
ij;qR

�1
ij  ij;t � tr

�
R�1ij W

�
ij;q

��
d�ij;q (47)
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where also here we have used the block-diagonal structure of R. In (47) the term
dht does not appear because ht is not a function of R.
We note that g0E;td�E = g0A;td�A = g0c;td�c = 0, because ln ft depends on �E, �A,

�c only through ht.

B.2.2 Contributions from ht

Consider the di¤erential of ht with respect to �, S, cij, Eij, Aij

dht = Edht�1 � 2A vecd
�
�t�1w

0
t�1d�

0 (I � S 0)
�
; (48)

dht = Edht�1 � 2A vecd
�
dS"t�1�

0
t�1
�

(49)

dhij;t = Eijdhij;t�1 + dcij; (50)

dhij;t = Eijdhij;t�1 + dEijhij;t�1; (51)

dhij;t = Eijdhij;t�1 + dAijeij;t�1; (52)

where we have used the block-diagonal structure of E and A.
We next introduce further notation, in order to write derivatives in a compact

form. Recall that the di¤erential (44) is of the form d ln ft = tr (Bt diag (dht)) +P
l2A g

0
l;td�i. Consider a subvector �l, l 2 A, and apply the chain rule one obtains

the 1� vl vector

@ ln ft
@�0l

= g0l;t + vec(B
0
t)
0H@ht
@�0l

=: g0l;t + vec(B
0
t)
0HKl;t; (53)

where Kl;t := @ht=@�
0
l is n � vl. Note that Kl;t := @ht=@�

0
l may depend on a single

block Cij when �l belongs to the EA or R speci�cations. Hence we let

Kl;t =: NlK
�
l;t

where Nl has dimensions n � nk;l and K�
l;t is of dimension nk;l � vl. For l = �, S

one has nk;l = n, Nl = In, K�
l;t = @ht=@�

0
l. For l 2 fc, E, A, Rg one has nk;l = nij,

Nl =Mij, K�
l;t = @hij;t=@�

0
l. We further note that eq. (48) to (52) imply that K

�
l;t

satis�es recursions
K�
l;t = FlK

�
l;t�1 + Pl;t (54)

where Pl;t is of the same dimensions of K�
l;t, i.e. nk;l � vl. We here derive Fl, Pl;t for

the various parameters �l. Note that F�ij;q = P�ij;q ;t = 0.

B.2.3 Terms Fl and Pl;t

For ��, from (48) one has N� = In, F� = E and

P�;t = �2AH0 �(I � S)
 �t�1w
0
t�1
�
: (55)

For �si from (49) one �nds Nsi = In, Fsi = E and

Psi;t = �2A
�
In � �t�1"

0
t�1Wi

�
= �2A dg

�
�t�1"

0
t�1Wi

�
where the property H0 (A
B)H = A � B has been used, see e.g. Magnus (1988)
Theorem 7.7 page 113.
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�i gi;t Fi Pi;t
�� vec(wt�1"

0
t�1�

�1
t ) E �2AH0 �(I � S)
 �t�1w

0
t�1
�

�si vecd
�
Wi

��
"t"

0
t�

�1
t � I

�
(I � S)�1

��
E �2A dg

�
�t�1"

0
t�1Wi

�
�cij 0 Eij Fij
��ij ;q 0 Eij dg

�
W �
ij;qhij;t�1

�
�Aij ;q 0 Eij dg

�
W �
ij;qeij;t�1

�
�ij;q

1
2

�
 0ij;tR

�1
ij W

�
qR

�1
ij  ij;t � tr

�
R�1ij W

�
q

��
0 0

Table 8: First derivatives in the format (53) for a diagonal speci�cation.

For the EA parameters, from (50), (51), (52) one �nds that N�ij;q = N�ij;q =
Ncij :=Mij, F�ij;q = F�ij;q = Fcij = Eij. The elements Pl;t are seen to be

P�ij ;q ;t =
�
h0ij;t�1 
 Inij

� @vec (Eij)
@�0�ij;q

;

P�ij;q ;t =
�
e0ij;t�1 
 Inij

� @vec (Aij)
@�0�ij;q

; Pcij ;t =
@cij
@�0cij

; (56)

where the partial derivatives are given in (42). Collecting terms and using the
property of Hij given e.g. in Magnus (1988) Theorem 7.7. (vi) page 113, one �nds
the results summarized in Table 8, where we report gl;t, Fl and Pl;t for various
subvectors of parameters.

B.3 Second order derivatives

In this subsection we consider second order derivatives. Applying standard proper-
ties of the vec operator to (53) one sees that

@ ln ft (�)

@�i@�0j
=
�
vec (B0

t)
0HN i 
 Ivi

�
Knk;i;viVij;t +K 0

i;tH0@vec (B
0
t)

@�0j
+
@gi;t
@�0j

: (57)

where Vij;t := @ki;t=@�
0
j, ki;t := vec(K�

i;t). Given recursions (54), see Table 8, one
�nds for pit := vec (Pi;t) that ki;t = (Ivi 
 Fi) ki;t+pi;t =

�
K�0
i;t�1 
 Ink;i

�
vec (Fi)+pi;t,

from which

dki;t = (Ivi 
 Fi) dki;t +
�
K�0
i;t�1 
 Ink;i

�
vec (dFi) + dpi;t

and thus

Vij;t := (Ivi 
 Fi)Vij;t�1 +
�
K�0
i;t�1 
 Ink;i

� @vec (Fi)
@�0j

+
@pi;t
@�0j

:

We note that Fl equals E, Eij or 0, see Table 8. Hence all partial derivatives
@vec (Fi) =@�

0
j = 0 for j 2 f�, S, c, A, Rg. For �ij;q, the expression @vec (Eij) =@�0�ij;q

is given in (42).
In order to calculate (57) we hence need to calculate @vec (B0

t) =@�
0
j , @pi;t=@�

0
j,

and @gi;t=@�0j for all pairs �i, �j, where i, j 2 A.
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B.3.1 Derivatives of Bt

Consider the di¤erential B0
t := 2

�1D�2
t (R�1 t 

0
t � I)

vec (dB0
t) =

1

2
vec(D�2

t R�1
�
d t 

0
t +  td 

0
t � dRR�1 t 0t

�
�

�
�
R�1 t 

0
t � I

�
D�2
t diag (dht)D

�2
t )

= C1td t + C2td (vecR) + C3tdht, say,

where

C1t := 2
�1 �� t 
D�2

t R�1
�
+
�
D�2
t R�1 t 
 In

��
C2t := �2�1

�
 t 

0
tR

�1 
D�2
t R�1

�
;

C3t := 2
�1 �D�2

t 

�
I �R�1 t 

0
t

�
D�2
t

�
H:

Recall that  t := D�1
t (I � S) "t = D�1

t �t so that

d t = �D�1
t dDt t �D�1

t dS"t �D�1
t (I � S) d�wt�1 =

= �1
2
diag (dht)D

�2
t  t �D�1

t dS"t �D�1
t (I � S) d�wt�1 = (58)

= �1
2
diag

�
D�2
t  t

�
dht �

�
"0t 
D�1

t

�
d (vecS)�

�
w0t�1 
D�1

t (I � S)
�
Knw;nd (vec�0)

= C4tdht + C5td (vecS) + C6td (vec�
0) , say.

where diag
�
D�2
t  t

�
dht =

�
 0t 
D�2

t

�
Hdht. Substituting

vec (dB0
t) = (C1tC4t + C3t) dht + C1tC5td (vecS) + C1tC6td (vec�

0) + C2td (vecR)

Hence, naming C�t := C1tC4t + C3t, one �nds

@vec (B0
t)

@�0�
= C�t

@ht
@�0�

+ C1tC6t;
@vec (B0

t)

@�0si
= C�t

@ht
@�0si

+ C1tC5t
@vec (S)

@�0si
@vec (B0

t)

@�0l
= C�t

@ht
@�0l

; l 2 f�ij;q; �ij;q; cijg

@vec (B0
t)

@�ij;q
= C2t

@vec (R)

@�ij;q

where @ht=@�0i appears in Subsections B.2.2 and B.2.3 and basic derivatives are given
in (41) (42).

B.3.2 Derivatives of pl;t

Consider P�;t = �2AH0 �(I � S)
 �t�1w
0
t�1
�
, with di¤erential

dP�;t = �2dAH0 �(I � S)
 �t�1w
0
t�1
�
+ 2AH0 �dS 
 �t�1w

0
t�1
�
+

+ 2AH0 �(I � S)
 dS"t�1w0t�1
�
� 2AH0 �(I � S)
 (I � S) d�wt�1w

0
t�1
�
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Vectorizing, using Theorem 10 in Magnus and Neudecker (1988), p. 47 or Chapter
13.14, we �nd

@p�;t
@�0�ij;q

= C7t
@vec (A)

@�0�ij;q
;

@p�;t
@�0si

= C8t
@vec (S)

@�0si
;

@p�;t
@�0�

= C9t

where

C7t := �2
��
(I � S 0)
 wt�1�

0
t�1
�
H
 In

�
;

C8t :=
�
Iv� 
 2AH0� (In 
Knwn 
 In) (

�
In2 
 vec

�
wt�1�

0
t�1
��
+

+ (vec (I � S)
 Innw))
�
wt�1"

0
t�1 
 In

�
;

C9t := �
�
Iv� 
 2AH0� (In 
Knwn 
 In) (vec (I � S)
 Innw)

�
wt�1w

0
t�1 
 (I � S)

�
Knwn;

see also (41) (42). All other derivatives are zero.
Consider next Psi;t = �2A dg

�
�t�1"

0
t�1Wi

�
, with di¤erential

dPsi;t = 2A dg
�
dS"t�1"

0
t�1Wi

�
+ 2A dg

�
W 0
i"t�1w

0
t�1d�

0 (I � S 0) + �t�1w
0
t�1d�

0Wi

�
�

� 2dA dg
�
�t�1"

0
t�1Wi

�
:

Using the propertyHH0vec(A) = vec (dg (A)), see Theorem 7.3 (ii) in Magnus (1998)
p. 110 one �nds

@psi;t
@�0�ij;q

= C12t
@vec (A)

@�0�ij;q
;

@psi;t
@�0sj

= C10t
@vec (S)

@�0sj
;

@psi;t
@�0�

= C11t;

where

C10t := 2 (In 
 A)HH0 �Wi"t�1"
0
t�1 
 In

�
;

C11t := 2 (In 
 A)HH0 ��(I � S)
Wi"t�1w
0
t�1
�
+
�
Wi 
 �t�1w

0
t�1
��
;

C12t := 2
�
dg
�
�t�1"

0
t�1Wi

�

 In

�
;

and see (41) (42). Next observe that Pc;t and P�ij;q ;t do not depend on parameters,
so that @pi;t=@�0j = 0 for all j 2 A, i = c, R.
Consider next P

�ij ;q
;t = dg

�
W �
ij;qhij;t�1

�
, with di¤erential dP

�ij ;q
;t = dg

�
W �
ij;qdhij;t�1

�
.

We obtain for a generic parameter subvector �l

@p
�ij ;q

;t

@�0l
= HijW

�
ij;q

@hij;t
@�0l

where the derivatives @ht=@�0l appears in Subsections B.2.2 and B.2.3.
Consider next P�ij ;q ;t = dg

�
W �
ij;qeij;t�1

�
, with di¤erential dP�ij ;q ;t = dg

�
W �
ij;qdeij;t�1

�
where deij;t�1 = 2vecd

�
d�ij;t�1�

0
ij;t�1

�
and

d�ij;t�1 =M0
ijd�t�1 = �M0

ij (dS"t�1 + (I � S) d�wt�1) ;
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so that

deij;t�1 = �2H0
ij

�
�ij;t�1 
 Inij

�
M0

ij

��
"0t�1 
 In

�
vec (dS) +

�
(I � S)
 w0t�1

�
vec (d�0)

�
(59)

We hence obtain

@p�ij ;q ;t

@�0sl
= �2HijW

�
ij;qH0

ij

�
�ij;t�1 
 Inij

�
M0

ij

�
"0t�1 
 In

� @vec (S)
@�0sl

@p�ij ;q ;t

@�0�
= �2HijW

�
ij;qH0

ij

�
�ij;t�1 
 Inij

�
M0

ij

�
(I � S)
 w0t�1

�
:

and all other derivatives are zero.

B.3.3 Derivatives of gl;t

In order to calculate derivatives of gl;t we need @vec
�
��1t

�
=@�0q for a generic �q; one

has

@vec
�
��1t

�
@�0q

= �
�
��1t 
 ��1t

� @vec (�t)
@�0q

=: G1t
@ht
@�0q

+G2t
@vec (S)

@�0q
+G3t

@vec (R)

@�0q
; (60)

where Git := �
�
��1t 
 ��1t

�
Hit and Hit are de�ned in (43).

Consider �rst g�;t = vec
�
wt�1"

0
t�1�

�1
t

�
, with di¤erential

dg�;t = vec
�
�wt�1w0t�1d�0��1t + wt�1"

0
t�1d�

�1
t

�
:

We obtain

@g�;t
@�0q

= �
�
��1t 
 wt�1w

0
t�1
� @vec (�0)

@�0q
+
�
In 
 wt�1"

0
t�1
� @vec ���1t �

@�0q

= G4t
@vec (�0)

@�0q
+G5t

@vec
�
��1t

�
@�0q

, say.

Substituting and letting G6t := G5tG1t, one �nds

@g�;t
@�0�

= G6t
@ht
@�0�

+G4t;
@g�;t
@�0si

= G6t
@ht
@�0si

+G5tG2t
@vec (S)

@�0si
@g�;t
@�0l

= G6t
@ht
@�0l
, l 2 f�ij;q; �ij;q; cijg

@g�;t
@�ij;q

= G5tG3t
@vec (R)

@�0q
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Consider now gsi;t := vecd
�
Wi

��
"t"

0
t�

�1
t � I

�
(I � S)�1

��
, with di¤erential

dgsi;t := vecd(Wi(d"t"
0
t�

�1
t (I � S)�1 + "td"

0
t�

�1
t (I � S)�1 + "t"

0
td�

�1
t (I � S)�1+

+
�
"t"

0
t�

�1
t � I

�
(I � S)�1 dS (I � S)�1))

= H0
�
(I � S 0)

�1 
Wi

� ��
��1t "tw

0
t 
 I

�
Knwn +

�
��1t 
 "tw

0
t

��
d (vec (�0))+

+H0
�
(I � S 0)

�1 
Wi"t"
0
t

�
d
�
vec
�
��1t

��
+

+H0
�
(I � S 0)

�1 
Wi

�
"t"

0
t�

�1
t � I

�
(I � S)�1

�
d (vec (S))

= G7td (vec (�
0)) +G8td

�
vec
�
��1t

��
+G9td (vec (S)) , say.

Substituting from (60) one �nds, naming G10t := G8tG1t,

@gsi;t
@�0�

= G10t
@ht
@�0�

+G7t;
@gsi;t
@�0sj

= G10t
@ht
@�0sj

+ (G8tG2t +G9t)
@vec (S)

@�0sj
@gsi;t
@�0l

= G10t
@ht
@�0l
, l 2 f�ij;q; �ij;q; cijg

@gsi;t
@�lj;q

= G8tG3t
@vec (R)

@�lj;q
:

Let now aij := R�1ij W
�
ij;qR

�1
ij , and consider g�ij;q ;t := 2

�1 � 0ij;tR�1ij W �
qR

�1
ij  ij;t � tr

�
R�1ij W

�
q

��
,

with di¤erential,

dg�ij;q ;t :=  0ij;taijd ij;t +  0ij;tR
�1
ij dRijaij ij;t � tr (dRijaij)

=
���

 0ij;taij
�

  0ij;tR

�1
ij

�
+ vec (aij)

0� (vec (dRij)) +  0ij;taijd ij;t
= G11td (vecRij) +G12td ij;t, say

where from (58) one has

d ij;t =M0
ijd t =M0

ijC4tdht +M0
ijC5td (vecS) +M0

ijC6td (vec�
0) .

Setting G13t := G12tM0
ijC4t, substituting one �nds

@g�ij;q ;t

@�0�
= G13t

@ht
@�0�

+G12tM0
ijC6t;

@g�ij;q ;t

@�0sl
= G13t

@ht
@�0sl

+G12tM0
ijC5t

@vec (S)

@�0sl
@g�ij;q ;t

@�0l
= G13t

@ht
@�0l

; l 2 f�ij;q; �ij;q; cijg

@g�ij;q ;t

@�ij;q
= G11t

@vec (Rij)

@�ij;q
:

We note that @gl;t=@�0q is null for all q when l is c, E, A, see Table 8.
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