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Mean value theorem for continuous vector

functions by smooth approximations

Davide La Torre∗ Matteo Rocca†

Abstract

In this note a mean value theorem for continuous vector functions is in-
troduced by mollified derivatives and smooth approximations.

1 Preliminary definitions

In this paper, a generalized mean value theorem for continuous vector functions is

proved. This result involves generalized derivatives, defined by smooth approxima-

tions, following the approach introduced by Craven and Ermoliev, Norkin, Wets

([3, 4]). In particular, when local lipschitzianity is assumed, our mean value theo-

rem reduces to the well known mean value theorem expressed by means of Clarke’s

generalized Jacobian [2].

We will make use of the following classical definitions and results of Functional

Analysis.

Definition 1.1. A sequence of mollifiers is any sequence of functions {φε} : Rn →
R+, ε ↓ 0, such that:

• suppφε := {x ∈ Rn, | φε(x) > 0} ⊆ ρεclB, ρε ↓ 0,

•
∫

Rn φε(x)dx = 1,
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where B is the unit ball in Rn, clX means the closure of the set X and dx denotes

Lebesgue measure.

Example 1.1. [4] Let ε be a positive number.

(i) The functions:

φε(x) =


1
εn , max1,...,n |xi| ≤ ε

2

0, otherwise

are called Steklov mollifiers.

(ii) The functions:

φε(x) =


C
εn exp

(
ε2

‖x‖2−ε2

)
, ‖x‖ < ε

0, ‖x‖ ≥ ε

with C ∈ R such that
∫

Rn φε(x)dx = 1, are called standard mollifiers.

It is easy to check that the second family of functions is smooth.

Definition 1.2. [4] Given a locally integrable function f : Rn → Rm and a sequence

of bounded mollifiers, define the functions fε(x) through the convolution:

fε(x) :=

∫
Rn

f(x− z)φε(z)dz =

∫
Rn

f(z)φε(x− z)dz.

The sequence fε(x) is said a sequence of mollified functions.

Remark 1.1. There is no loss of generality in considering f : Rn → Rm. The

results in this paper remain true also if f is defined on an open subset of Rn.

Proposition 1.1. [4] Let f ∈ C (Rn). Then fε converges continuously to f , i.e.

fε(xε) → f(x) for all xε → x. In fact fε converges uniformly to f on every compact

subset of Rn as ε ↓ 0.

Mollified functions have also some differentiability properties, under suitable

regularity assumptions on f and the associated mollifiers, as stated in the following:

Proposition 1.2. [5] Let f : Rn → Rm be locally integrable. Whenever the mollifiers

φε are of class Ck, so are the associated mollified functions. Furthermore if φε are

of class Ck,1, that is k-times differentiable with locally lipschitzian Jacobians, then

so are the associated mollified functions.
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By means of mollified functions it is possible to define generalized directional

derivatives for a nonsmooth function f . Such an approach has been deepened by

several authors (see e.g. [3, 4]) in the scalar case.

Definition 1.3. Let f : Rn → Rm be a locally integrable function, let εn ↓ 0 as

n → +∞ and consider the sequence fn := fεn of mollified functions with associated

mollifiers φεn ∈ C1. Given x, d ∈ Rn we define the following sets:

∂f(x0; d) = {l = lim
n→+∞

∇fn(xn)d, xn → x0}

∂∞f(x0; d) = {l = lim
n→+∞

tn∇fn(xn)d, xn → x0, tn ↓ 0+}\{0}.

Proposition 1.3.

• ∂f(x0; d) is a closed subset of Rm.

• ∂∞f(x0; d) is a closed cone of Rm.

• ξ∂f(x0; d) ⊆ ∂(ξf)(x0; d), ∀ξ ∈ Rm. If f is locally lipschitzian then the equality

holds.

Proof. Omitted since trivial.

Proposition 1.4. If f is locally lipschitzian then ∂f(x0; d) ⊆ ∂Cf(x0)d, where

∂Cf(x0) is Clarke’s generalized Jacobian of f at x0 [2].

Proof. In fact, ∀ξ ∈ Rm, the following inclusion holds [4]:

∂(ξf)(x0; d) ⊆ ∂C(ξf)(x0)d.

Hence:

ξ∂f(x0; d) ⊆ ξ∂Cf(x0)d

and then the thesis follows by a standard separation argument.

Corollary 1.1. If f is C1 then ∂f(x0; d) = ∇f(x0)d.

Proof. If f is C1, then ∂Cf(x0)d = ∇f(x0)d [2] and then the thesis follows from the

previous proposition.
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2 Generalized mean value theorem

Theorem 2.1. Let f : Rn → Rm be a given continuous function. Then the following

mean value theorem holds:

f(x)− f(y) ∈
{
conv δ∈[x,y]∂f(δ; x− y) + conv δ∈[x,y]∂∞f(δ; x− y) ∪ {0}

} ⋃
conv δ∈[x,y] {∂∞f(δ; x− y) + f(x)− f(y)} .

where conv δ∈[x,y]A(δ) denotes the convex hull of the sets A(δ), δ ∈ [x, y].

Proof. In fact, for the scalar function ξfn, we have:

ξfn(x)− ξfn(y) = ξ∇fn(δn(ξ))(x− y)

where ξ ∈ Rm and δn(ξ) ∈ (x, y). So we have:

ξfn(x)− ξfn(y) ∈ ξAn

where An = {∇fn(δ)(x − y), δ ∈ [x, y]} and obviously An is compact. So by a

standard separation argument, we have:

fn(x)− fn(y) ∈ conv An

where conv stands for the convex hull of An. Let now ln = fn(x) − fn(y). For all

n ∈ N, by Charatheodory theorem, we have:

ln =
m+1∑
j=1

λj,naj,n,

where
∑m+1

j=1 λj,n = 1, λj,n ≥ 0, j = 1, . . . ,m + 1, aj,n ∈ An. Then:

ln =
∑
j∈I1

λj,naj,n +
∑
j∈I2

λj,naj,n +
∑
j∈I3

λj,naj,n

where:

• for all j ∈ I1 the sequence aj,n is bounded and it converges to aj,0. Since

aj,n ∈ An, ∀n ∈ N, then aj,n = ∇fn(δj,n)(x − y), δj,n ∈ [x, y]. Eventually by

extracting a subsequence, we have δj,n → δj ∈ [x, y] and then:

aj,0 = lim
n→+∞

aj,n = lim
n→+∞

∇fn(δj,n)(x− y) ∈ ∂f(δj; d).
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• for all j ∈ I2, the sequence aj,n is unbounded but the sequence λj,naj,n is

bounded and it converges to aj,∗.

• for all j ∈ I3, the sequence λj,naj,n is unbounded but there exists j0 ∈ I3 such

that the sequence
λj,naj,n

‖λj0,naj0,n‖ converges to aj,∞, ∀j = 1, . . . ,m + 1.

We now consider the case in which I3 is not empty. Then:

0 = lim
n→+∞

ln
‖λj0,naj0,n‖

=

lim
n→+∞

∑
j∈I3

λj,naj,n

‖λj0,naj0,n‖
=

∑
j∈ I3

aj,∞,

with aj0,∞ 6= 0. Since aj,n = ∇fn(δj,n)(x − y), δj,n → δj,
λj,n

‖λj0,naj0,n‖ → 0 for every

j ∈ I3, we have aj,∞ ∈ ∂∞f(δj; d) ∪ {0}. Furthermore aj0,∞ 6= 0 and then:

0 ∈ conv δ∈[x,y]∂∞f(δ; x− y).

We now consider the case in which I3 is empty. Eventually extracting subsequences,

let λj,0 = limn→+∞ λj,n. Then, we have λj,0 = 0 ∀j ∈ I2,
∑

j∈I1
λj,0 = 1 and

aj,∗ ∈ ∂∞f(δj; x− y) ∪ {0}. So:

l = lim
n→+∞

ln =
∑
j∈I1

λj,0aj,0 +
∑
j∈I2

aj,∗

Obviously
∑

j∈I2
aj,∗ ∈ conv δ∈[x,y]∂∞f(δ, x− y) ∪ {0}. So we have:

f(x)− f(y) ∈
{
conv δ∈[x,y]∂f(δ, x− y) + conv δ∈[x,y]∂∞f(δ, x− y) ∪ {0}

} ⋃
conv δ∈[x,y] {∂∞f(δ, x− y) + f(x)− f(y)} .

Corollary 2.1. Let f : Rn → R. If we define a generalized upper derivative as:

Df(x; d) = lim sup
n→+∞,xn→x0

∇fn(xn)d

then the following mean value theorem holds:

f(x)− f(y) ≤ Df(ξ; x− y)

where ξ ∈ [x, y].
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Proof. We only consider the case in which Df(s, x − y) < +∞ ∀s ∈ [x, y] (if

∃ξ ∈ [x, y] such that Df(s, x−y) = +∞ the thesis is trivial). Then ∂∞f(s, x−y) ⊂
(−∞, 0), ∀s ∈ [x, y]. If, ab absurdo, f(x)−f(y) ∈ conv δ∈[x,y] {∂∞f(δ, x− y) + f(x)− f(y)}
then ∃ξ ∈ [x, y] such that f(x)−f(y) ∈ (−∞, 0)+f(x)−f(y) that is 0 ∈ (−∞, 0). So

f(x)− f(y) ∈ conv δ∈[x,y]∂f(δ, x− y)+ conv δ∈[x,y]∂∞f(δ, x− y). Then f(x)− f(y) =

a + b where a ∈ conv δ∈[x,y]∂f(δ, x − y) and b ∈ conv δ∈[x,y]∂∞f(δ, x − y). Then

∃ξ ∈ [x, y] such that a ≤ supl∈∂f(ξ,x−y) l, that is a ≤ Df(ξ, x− y), and b ≤ 0. So the

thesis follows.

Corollary 2.2. If f is locally Lipschitz, then we have:

f(x)− f(y) ∈ conv δ∈[x,y]∂Cf(δ)(x− y).

Proof. We know that (proposition 1.4) at any point δ, ∂f(δ; x− y) = ∂C(δ)(x− y).

furthermore, form the Lipschitz hypothesis it follows easily that ∂∞f(δ; x− y) = ∅,
whenever δ. So the thesis follows.
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