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Abstract

In this paper we study several existing notions of well-posedness
for vector optimization problems. We distinguish them into two classes
and we establish the hierarchical structure of their relationships. More-
over, we relate vector well-posedness and well-posedness of an appro-
priate scalarization. This approach allows us to show that, under some
compactness assumption, quasiconvex problems are well-posed.
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1 Introduction

The notion of well-posedness plays a central role in stability theory for scalar
optimization (see, e.g., [12]). In the last decades, some extensions of this
concept to vector optimization appeared (see [13] and the references therein).
Here we focus on some generalizations to the vector case of well-posedness
in the sense of Tykhonov (see e.g. [3], [23], [5], [19], [11], [20], [21], [18] and
[26]).

The aim of this paper is twofold. First, we list and classify some existing
notions of well-posedness for vector optimization problems and we compare
them. Further, we study the relationships between the well-posedness of a
vector optimization problem and the well-posedness of an appropriate scalar-
ized problem.

The classification proposed here essentialy groups the definitions into two
main classes: pointwise and global well-posedness. The definitions of the first
group consider a fixed efficient point (or the image of an efficient point) and
deal with well-posedness of the vector optimization problem at this point.
This approach imposes that the minimizing sequences related to the con-
sidered point are well-behaved. Since in the vector case the solution set is
typically not a singleton, there is also a class of definitions that involve the
efficient frontier as a whole. In Section 3, we compare the various definitions
analyzing the hierarchical structure of their relationships.

The second part of the paper is devoted to the study of some properties
of well-posed vector optimization problems. In Section 4, we underline that
most of the vector well-posedness notions implicitly impose some require-
ments concerning the features of the solutions in the image space. This fact
appears only in the framework of vector optimization, since in the scalar case
well-posedness concerns only the interplay, through the objective function,
between the behaviour of the minimizing sequences in the domain and the
image space.

When we consider a scalarization of a vector optimization problem, a
natural question arises: is the well-posedness of the vector problem equivalent
to the well-posedness of the scalarized problem? In Section 5, we deal with a
special scalarizing function (the so called ”oriented distance”), already used
in [27] (see also the references therein). This function allows us to establish
a parallelism between the well-posedness of the original vector problem and
the well-posedness of the associate scalar problem. Indeed, we show that
one of the weakest notions of well-posedness in vector optimization is linked
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to the well-setness of the scalarized problem, while some stronger notion
in the vector case is related to Tykhonov well-posedness of the associated
scalarization.

These results constitute a simple tool to show that, under some addi-
tional compactness assumptions, quasiconvex vector optimization problems
are well-posed. Thus, we can extend to vector optimization a known result
about scalar problems [9] and improve a previous result concerning convex
vector problems [26].

2 Problem setting and notation

Let X and Y be normed vector spaces. We denote by B the unit ball both
in X and Y , since it will be clear to which space we refer. The space Y is
endowed with an order relation given by a closed, convex and pointed cone
K with nonempty interior, in the following way

y1 ≤K y2 ⇐⇒ y2 − y1 ∈ K,

y1 <K y2 ⇐⇒ y2 − y1 ∈ intK.

We recall that a convex set A ⊆ K is a base for the cone K when 0 6∈ A
and for every k ∈ K, k 6= 0, there are unique elements a ∈ A, t > 0, such
that k = ta.

Let f : X → Y be a function and let S ⊆ X be a subset of X. We
consider the vector optimization problem (S, f) given by

minf(x) , x ∈ S.

Throughout this paper we will assume that the objective function f in prob-
lem (S, f) is continuous. A point x0 ∈ S is an efficient solution of the
problem (S, f) when

(f(S)− f(x0)) ∩ (−K) = {0} .

We denote by Eff(S, f) the set of all efficient solutions of the problem (S, f).
The image of the set Eff(S, f) under the function f is denoted by Min(S, f)
and its elements are called minimal points of the set f(S).
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We recall also (see e.g. [6]) that a point y0 ∈ f(S) is said to be a strictly
minimal point for problem Min(S, f), when for every ε > 0 there exists δ > 0,
such that

(f(S)− y0) ∩ (δB −K) ⊆ εB.

We denote by StMin(S, f) the set of strictly minimal points for problem
(S, f). Clearly StMin(S, f) ⊆ Min(S, f). The next result gives a characteri-
zation of the strictly minimal points.

Proposition 2.1 [6] Let y0 ∈ f(S). Then y0 ∈ StMin(S, f) if and only if
for every sequences {zn}, {yn}, with {zn} ⊆ f(S), yn ∈ zn +K and yn → y0,
it holds zn → y0.

Now, we introduce the notion of upper Hausdorff set-convergence. Let
{An} be a sequence of subsets of X. We say that An upper converges to

A ⊆ X (An
H
⇀ A) when e(An, A) → 0, where e(An, A) := sup

a∈An

d(a, A) with

d(a, A) := inf
b∈A

‖a− b‖.
Besides the standard definitions of lower and upper semicontinuity, the

following concept of continuity for set-valued maps will be used in this work.
If G : X ⇒ Y is a set-valued map, we recall (see, e.g. [5]) that G is said to
be upper Hausdorff continuous at x0 when for every neighborhood V of 0 in
Y there exists a neigborhood W of x0 in X such that G(x) ⊆ G(x0) + V for
every x ∈ W∩ dom G,

3 Notions of well-posedness in vector opti-

mization

Well-posedness is a classical topic in scalar optimization (see e.g. [12]). The
first attempts to extend the notions of well-posedness to vector problems
are in [3] and [23]. Recently, various notions of well-posedness in vector
optimization have been introduced (see e.g. [4], [5], [19], [11], [16], [18],
[26]). Among them, we focus on those notions which consider a fixed vector
optimization problem, excluding the definitions that involve perturbations
of the problem (the so called extended well-posedness [16], [17]). Thus, we
consider the generalization to the vector case of the main ideas of Tykhonov’s
approach to well-posedness. In this section we gather and compare several
definitions. Moreover, we list them in two separate classes, according to
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the ”pointwise” or the ”global” character of the considered notions. This
classification is mainly motivated by a typical feature of vector optimization
problems, i.e. even the image of the solution set is generally not a singleton.

3.1 Pointwise well-posedness

In this section we consider those notions of well-posedness, that do not take
into account the whole solution set, but just a single point therein. We begin
considering the following definition, given in [5].

Definition 3.1 [5] The vector optimization problem (S, f) is called B-well-
posed at ȳ ∈ Min(S, f) when the set-valued map Qȳ : K ⇒ S defined as

Qȳ(ε) := {x ∈ S : f(x) ≤K ȳ + ε} ,

is upper semicontinuous at ε = 0 (observe that Qȳ(0) = f−1(ȳ)).

In [19] P. Loridan introduced a definition of well-posedness based on the
notion of ȳ-minimizing sequence (ȳ ∈ Min(S, f)), that is a sequence {xn} ⊆
S such that there exists a sequence {εn} ⊆ K, εn → 0, with f(xn) ≤K ȳ + εn.

Definition 3.2 [19] The vector optimization problem (S, f) is called L-well-
posed at ȳ ∈ Min(S, f) when every ȳ-minimizing sequence has a subsequence
that converges to an element of f−1(ȳ).

Although Definition 3.1 is given through a continuity property of the map
Qȳ, we can reformulate it in terms of ȳ-minimizing sequences.

Proposition 3.3 Problem (S, f) is B-well-posed at ȳ ∈ Min(S, f) if and
only if from every ȳ-minimizing sequence {xn} ⊆ S\f−1(ȳ) one can extract
a subsequence {xnk

} such that xnk
→ x̄ ∈ f−1(ȳ).

Proof. Let (S, f) be a B-well-posed problem at ȳ ∈ Min(S, f) but there ex-
ists a ȳ-minimizing sequence {xn} ⊆ S\f−1(ȳ) which admits no subsequence
converging to an element of f−1(ȳ). Since f is continuous, then f−1(ȳ) is a
closed set. Hence there exists an open set W ⊆ X such that f−1(ȳ) ⊆ W
and xn /∈ W. Since xn ∈ Qȳ(εn) and εn → 0, we contradict the upper semi-
continuity of the map Qȳ(ε) at ε = 0.

Conversely, assume that {xn} ⊆ S is a ȳ-minimizing sequence. If prob-
lem (S, f) is not B-well-posed at ȳ ∈ Min(S, f), there exists an open set
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W ⊆ X with f−1(ȳ) ⊆ W and a subsequence {xnk
} such that xnk

/∈ W, a
contradiction.

As in the scalar case (see, e.g. [12]), a definition of vector well-posedness
can be introduced considering the diameter of the level sets of the function
f .

Definition 3.4 [11] The vector optimization problem (S, f) is called DH-
well-posed at x̄ ∈ Eff(S, f) when

inf
α>0

diamL(x̄, k, α) = 0, for each k ∈ K,

where L(x, k, α) = {x ∈ S : f(x) ≤K f(x̄) + αk} .

We observe that if problem (S, f) is DH-well-posed at x̄ ∈ Eff(S, f), then
f−1(f(x̄)) is a singleton.

Definition 3.5 [18] The vector optimization problem (S, f) is called H-well-
posed at x̄ ∈ Eff(S, f) when xn → x̄ for any sequence {xn} ⊆ S such that
f(xn) → f(x̄).

In the sequel we investigate the relations among the various notions of
pointwise well-posedness.

Proposition 3.6 [19] If the vector optimization problem (S, f) is L-well-
posed at ȳ ∈ Min(S, f), then it is B-well-posed at ȳ.

It is easy to see that in general the converse implication does not hold.
Nevertheless, L-well-posedness at ȳ trivially coincides with B-well-posedness
at ȳ, whenever f−1(ȳ) is compact.

The next result compares DH-well-posedness and L-well-posedness.

Proposition 3.7 If problem (S, f) is DH-well-posed at x̄ ∈ Eff(S, f), then
(S, f) is L-well-posed at ȳ = f(x̄).

Proof. Recall that, since (S, f) is DH-well-posed then f−1(ȳ) = {x̄} and ab
absurdo assume the existence of a sequence {xn} ⊆ S and a positive number
γ such that f(xn) ≤K ȳ + εn and xn 6∈ x̄ + γB. Now, let k ∈ int K be fixed.
For every α > 0, there exists n(α) such that for n > n(α), εn ≤K αk. Then,
for n > n(α), xn belongs to L(x̄, k, α), which contradicts DH-well-posedness.
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If we assume that f−1(ȳ) is a singleton, then we can reverse the previous
proposition.

Huang in [18] shows that DH-well-posedness at ȳ implies H-well-posedness
at ȳ. Example 2.1 in [18] shows that the converse implication does not hold.
The same example shows that H-well-posedness at ȳ implies neither L-well-
posedness at ȳ nor B-well-posedness at ȳ.

The next scheme summarizes the main relations among pointwise well-
posedness notions.

L-well-posedness ⇐= DH-well-posedness
⇓ ⇓

B-well-posedness H-well-posedness

3.2 Global well-posedness

In this subsection we list and compare those notions of vector well-posedness
that consider the solution set as a whole. We underline that all the following
definitions extend to the vector case the notion of scalar well-setness (see [7],
[8]), which is more appropriate when the solution set is not compact.

Definition 3.8 [5] The vector optimization problem (S, f) is called B-well-
posed when Min(S, f) 6= ∅ and the set-valued map Q : K ⇒ S defined as

Q(ε) :=
⋃

y∈Min(S,f)

{x ∈ S : f(x) ≤K y + ε} ,

is upper semicontinuous at ε = 0.

In [5], the author introduces also another notion of well-posedness, where
the continuity requirement on the map Q is weakened.

Definition 3.9 The vector optimization problem (S, f) is called weakly B-
well-posed when Min(S, f) 6= ∅ and the set-valued map Q : K ⇒ S is upper
Hausdorff continuous at ε = 0.
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It trivially follows from definitions that B-well-posedness implies weak B-
well-posedness. The converse does not hold, as shown by Example 3.1 in [26].

The previous definitions can be reformulated (see [5], Propositions 4.5
and 4.6) in terms of behaviour of appropriate minimizing sequences. The
sequence {xn} ⊆ S is a B-minimizing sequence of the problem (S, f) when
for each n there exist εn ∈ K and yn ∈Min(S, f) such that f(xn) ≤K yn + εn,
where εn → 0. Now Definition 3.8 is equivalent to require that every B-
minimizing sequence {xn} ⊆ S\Eff(S, f) contains a subsequence converging
to an element of Eff(S, f). Further, Definition 3.9 is equivalent to require
that the distance of every minimizing sequence from the solution set Eff(S, f)
converges to zero.

Another approach to global well-posedness is based on the behaviour
of minimizing sequences of sets i.e. of sequences {An} ⊆ S such that

f(An)
H
⇀ Min(S, f).

Definition 3.10 [26] The vector optimization problem (S, f) is called M-

well-posed when every minimizing sequences of sets {An} is such that An
H
⇀Eff(S, f).

Also the last definition can be rephrased in terms of sequences. It holds

dist(xn, Eff(S, f)) → 0

whenever dist(f(xn), Min(S, f)) → 0, {xn} ⊆ S.
Now we compare the previous definitions of global well-posedness. The

next result states that weak B-well-posedness is stronger than M-well-posedness.

Proposition 3.11 [26] If (S, f) is weakly B-well-posed then it is M-well-
posed.

The converse implication holds only under additional assumptions, as
shown by Example 3.14 below.

Proposition 3.12 If (S, f) is M-well-posed and ∀ε > 0, ∃δ > 0, such that
f(S) ∩ (Min(S, f) + δB −K) ⊆ εB, then it is also weakly B-well-posed.

Proof. The proof is analogous to that of Theorem 4.5 in [26].
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Remark 3.13 The condition ∀ε > 0, ∃δ > 0, such that f(S)∩ (Min(S, f) +
δB −K) ⊆ εB, implies Min(S, f) ⊆ StMin(S, f). In [26] (see Theorem 4.5)
the previous proposition was stated under this weaker condition. In a private
communication to the authors, C. Zălinescu pointed out some misleading
argument in the proof. In fact, the result presented in [26] does not hold as
the following example shows.

Example 3.14 Let f : R2 → R2 be the identity function, K = R2
+ and

S = {(x, y) ∈ R2 : x ≥ 0 ∨ y ≥ 0 ∨ y ≥ −x − 1}. We have Min(S, f) =
StMin(S, f) = {(x, y) ∈ R2 : y = −x− 1,−1 < x < 0}. The condition of the
previous proposition does not hold, and problem (S, f) is M-well-posed, but
not weakly B-well-posed.

The next scheme summarizes the main relations among global well-posedness
notions.

B-well-posedness =⇒ weak B-well-posedness =⇒ M-well-posedness

We close this section recalling a result which links the pointwise and
global approaches to well-posedness of vector optimization problems.

Proposition 3.15 [5] Assume that Min(S, f) is compact. If, for each y ∈
Min(S, f), problem (S, f) is B-well-posed at y, then (S, f) is B-well-posed.

We wish to observe that the compactness assumption on Min(S, f) is es-
sential in order that the previous proposition holds, as the following example
shows.

Example 3.16 Consider the function f : R2 → R2, defined as f(x, y) =
(x,−x + ye−x) and let S = K = R2

+. Here Min(S, f) = {(x,−x) : x ≥ 0}.
Then, problem (S, f) is B-well-posed at y, for every y ∈ Min(S, f), but it
is not B-well-posed. In fact the sequence {(n, n)} ⊆ S is B-minimizing and
(n, n) 6∈ Eff(S, f), but there exists no subsequence converging to an element
of Eff(S, f).

The following example shows that the implication of Proposition 3.15
cannot be reversed.

Example 3.17 Consider the function f : R → R2, f(x) = (xe−x,−xe−x)
and let S = R+ and K = R2

+. Then problem (S, f) is B-well-posed, but it is
not B-well-posed at ȳ = (0, 0).
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3.3 Other notions of well-posedness

Though we focus our attention on the notions that generalize Tykhonov-type
well-posedness, we wish to quote some different extensions of well-posedness
to the vector case. In [11] and [18] the authors introduce also some notions
of well-posedness for vector optimization problems, that take into account
also minimizing sequences out of the feasible set S. These approaches ex-
tend to the vector case the ideas of Levitin-Polyak well-posedness for scalar
optimization problems.
In [16], [17] the author generalizes to the vector case the notion of extended
well-posedness introduced in [28] for scalar optimization. In this definition
also perturbations of the objective function are considered.

4 Well-posedness and strict efficiency

The result of this section shows that most notions of vector well-posedness
impose some restrictions on the set Min(S, f). Indeed, every minimal point
reveals to be a strictly minimal point. This property is typical of the vector
case and shows that most of the vector well-posedness notions implicitly
require stronger properties than the simple good behaviour of minimizing
sequences.

Theorem 4.1 If problem (S, f) is B-well-posed, then Min(S, f) = StMin(S, f).

Proof. We have only to prove that Min(S, f) ⊆ StMin(S, f). By contradic-
tion suppose that there exists a point

ȳ ∈ Min(S, f)\StMin(S, f).

From Proposition 2.1 we get the existence of two sequences {zn} and {yn},
with yn → ȳ, zn ∈ f(S), yn ∈ zn + K, a sequence {ns} ⊆ N and a positive
number r, such that zns 6∈ Br(ȳ). We have

zns ≤K yns = ȳ + bs,

where bs → 0. If we consider an element e ∈ int K, there exists a sequence
of positive real numbers λs, such that λs → 0 and λse + bs ∈ K. Hence
zns ≤K yns = ȳ + bs ≤K ȳ + λse + bs. We consider now a sequence {xs}
such that xs ∈ f−1(zns). Clearly {xs} is a ȳ-minimizing sequence and since
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problem (S, f) is B-well-posed, then xs converges to a point x̄ ∈ Eff(S, f).
Since f is continuous, then zns = f(xs) → f(x̄) and we get f(x̄) ≤K ȳ, which
implies f(x̄) = ȳ. The last equality contradicts to zns 6∈ Br(ȳ) and completes
the proof.

We observe that the previous result does not hold when we consider M-
well-posedness, as one can show with easy examples. This is not surprising
since this notion concerns only the interplay, through the function f , between
the behaviour of minimizing sequences in Y and X.

Remark 4.2 If problem (S, f) is B-well-posed at ȳ ∈ Min(S, f), then we can
prove analogously that ȳ ∈ StMin(S, f).

5 Well-posedness of scalarized problems

In this section we study the relationships between the well-posedness of vector
optimization problems and the well-posedness of associated scalar problems,
in order to find a scalarization that preserves well-posedness.

Consider the (scalar) minimization problem (S, h)

min h(x), x ∈ S

where h : X → R and denote by argmin(S, h) the solution set of problem
(S, h). We recall that a sequence {xn} ⊆ S is minimizing for problem (S, h),
when f(xn) → infS f .

Now we recall some notions of well-posedness for scalar optimization prob-
lems (see, e.g. [12]).

Definition 5.1 Problem (S, h) is said to be well-posed in the generalized
sense when every minimizing sequence has some subsequence converging to
an element of argmin(S, h).

When argmin(S, h) is a singleton, the previous definition reduces to the
classical notion of Tykhonov well-posedness.
We recall also a generalization of the above mentioned notion.

Definition 5.2 [7] Problem (S, h) is said to be well-set when every min-
imizing sequence {xn} contained in S\argmin(S, h) has a cluster point in
argmin(S, h).
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Among various scalarization procedures known in the literature, we con-
sider the one based on the so called ”oriented distance” function from the
point y to the set A, introduced in [15] in the framework of nonsmooth scalar
optimization. Later, it has been used to obtain a scalarization of a vector
optimization problem in [10],[1],[25].

Definition 5.3 For a set A ⊆ Y , the oriented distance function ∆A : Y →
R ∪ {±∞} is defined as

∆A(y) = dA(y)− dY \A(y),

where dA(y) = infx∈A ‖y − x‖.

The main properties of function ∆A are gathered in the following propo-
sition (see [27]).

Proposition 5.4 i) If A 6= ∅ and A 6= Y then ∆A is real valued;

ii) ∆A is 1-Lipschitzian;

iii) ∆A(y) < 0 for every y ∈ int A, ∆A(y) = 0 for every y ∈ ∂A and
∆A(y) > 0 for every y ∈ int Ac;

iv) if A is closed, then it holds A = {y : ∆A(y) ≤ 0};

v) if A is convex, then ∆A is convex;

vi) if A is a cone, then ∆A is positively homogeneouos;

vii) if A is a closed convex cone, then ∆A is nonincreasing with respect
to the ordering relation induced on Y , i.e. the following is true: if
y1, y2 ∈ Y then

y1 − y2 ∈ A =⇒ ∆A(y1) ≤ ∆A(y2)

If A has nonempty interior, then

y1 − y2 ∈ int A =⇒ ∆A(y1) < ∆A(y2)
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The scalar problem associated with the vector problem (S, f) is the fol-
lowing

min ∆−K(f(x)− p), x ∈ S

where p ∈ Y . In the sequel we denote this problem by (S, ∆−K). The
relations of the solutions of this problem with those of problem (S, f) are
investigated in [24], [25], [27] and [14]. For the convenience of the reader, we
quote the characterization of minimal points and strictly minimal points in
the image space.

Theorem 5.5 [27] Let ȳ ∈ f(S).

i) ȳ ∈ Min(S, f) if and only if ȳ is the unique solution of the scalar
optimization problem

min ∆−K(y − ȳ), y ∈ f(S).

ii) ȳ ∈ StMin(S, f) if and only if the previous problem is Tykhonov well-
posed.

The next results provide some equivalences between well-posedness of the
vector problem (S, f) and of the related scalar problem (S, ∆−K).

Theorem 5.6 Let ȳ ∈ Min(S, f). Problem (S, ∆−K) with p = ȳ is well-set
if and only if problem (S, f) is B-well-posed at ȳ.

Proof. Let ȳ ∈ Min(S, f) and assume (S, ∆−K) is well-set. Let {xn} be a
ȳ-minimizing sequence, i.e. such that {xn} ⊆ S\f−1(ȳ) and f(xn) ≤k ȳ + εn

with εn ∈ K and εn → 0. Hence, f(xn) = ȳ + εn− kn, with kn ∈ K. We have

∆−K(f(xn)− ȳ) =

∆−K(εn − kn) ≤ ∆−K(εn) + ∆−K(−kn),

where the last inequality follows since ∆−K is subadditive (see Proposition
5.4). We get ∆−K(−kn) ≤ 0 for every n and ∆−K(εn) → 0 as n → +∞.
Since ȳ ∈ Min(S, f), by Theorem 5.5 it holds ∆−K(εn − kn) ≥ 0 for every
n. Then, ∆−K(εn − kn) → 0 as n → +∞ and hence xn is a minimizing
sequence for the scalar problem (S, ∆−K) with p = ȳ. It follows that there
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exists a subsequence xnk
converging to a point x̄ ∈ argmin(S, ∆−K). Since,

by Theorem 5.5 ∆−K(y − ȳ) has ȳ as unique minimizer on f(S), we have
f(x̄) = ȳ. Then problem (S, f) is B-well-posed at ȳ.
Conversely, let x̄ ∈ Eff(S, f) such that f(x̄) = ȳ and assume that (S, f) is
B-well-posed at ȳ. By Theorem 5.5 x̄ solves problem (S, ∆−K) with p = ȳ.
Let {xn} be such that {xn} ⊆ S, yn = f(xn) 6= f(x̄) and ∆−K(yn − ȳ) → 0.
By Theorem 4.1 we have that ȳ ∈ StMin(S, f). Theorem 5.5, ensures that
problem

min ∆−K(y − ȳ), y ∈ f(S)

is Tykhonov well-posed and hence yn → ȳ. It follows that yn = ȳ + αn,
where αn ∈ Y and αn → 0. Since int K 6= ∅, we can write αn = εn− γn, with
εn, γn ∈ K and so yn = ȳ−γn + εn. By Proposition 2.1, we have ȳ−γn → ȳ,
that is γn → 0 and this implies εn → 0. Hence xn is a ȳ-minimizing sequence
for problem (S, f) and since this problem is B-well-posed at ȳ, there exists a
subsequence {xnk

} → x̃ ∈ f−1(ȳ). It follows that x̃ solves problem (S, ∆−K)
with p = ȳ and the proof is complete.

The following corollary follows from Corollary 1.4 in [7].

Corollary 5.7 Problem (S, f) is L-well-posed at ȳ ∈ Min(S, f) if and only
if problem (S, ∆−K), with p = ȳ is well-posed in the generalized sense.

When problem (S, f) is DH-well-posed at x̄ ∈ Eff(S, f), observing that
f−1(f(x̄)) = {x̄}, we get the following corollary.

Corollary 5.8 Let x̄ ∈ Eff(S, f). Then problem (S, f) is DH-well-posed at
x̄ if and only if problem (S, ∆−K) with p = f(x̄) is Tykhonov well-posed.

Remark 5.9 (Linear scalarization). Linear scalarization for vector op-
timization problems is widely used mainly in the convex case (see e.g. [22]).
Anyway, for linear scalarization, the parallelism between vector and scalar
well-posedness notions does not hold even in the convex case as already ob-
served in [23]. For instance, consider problem (S, f) where S = {(x, y) ∈ R2 :
y ≥ −x}, f is the identity function, K = R2

+ and the point (0, 0) ∈ Min(S, f).
Then, this problem is DH-well-posed at (0, 0) (hence L-well-posed and B-well-
posed at (0, 0)), but there is no linearly scalarized problem with (0, 0) as a
solution, which is Tykhonov well-posed.
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6 Well-posedness of quasiconvex vector opti-

mization problems

In this section we study the well-posedness properties of quasiconvex vector
optimization problems.

Definition 6.1 Let S be a convex set. A function f : X → Y is said to be
K-quasiconvex on S, when for y ∈ Y , the level sets

{x ∈ S : f(x) ≤K y}

are convex.

From now on we assume that X and Y are finite dimensional euclidean
spaces and we denote the inner product in Y by 〈·, ·〉.

Proposition 6.2 [14] Let K+ = {v ∈ Y : 〈v, y〉 ≥ 0, ∀y ∈ K} be the
positive polar of the cone K, consider a compact base G for K+ and define
the function

g̃(y) = max
ξ∈G

〈ξ, y − ȳ〉,

where ȳ ∈ Y . Then there exist positive constants α and β, such that for every
y ∈ Y it holds

αg̃(y) ≤ ∆−K(y − ȳ) ≤ βg̃(y) .

Remark 6.3 From the previous result, recalling Theorem 5.5, it follows eas-
ily that ȳ ∈ Min(S, f) if and only if ȳ is the unique minimizer of function
g̃(y) on f(S).

Lemma 6.4 i) Let e ∈ int K. Then the set H ∩ K+, where H is the
hyperplane H = {y ∈ Y : 〈e, y〉 = 1}, is a compact base for K+.

ii) Let G = H ∩ K+ and consider the function g(x) = g̃(f(x)). If f is
K-quasiconvex on the convex set S, then g(x) is quasiconvex on S.

Proof. The first statement is well-known (see e.g. [22]).
To prove the second statement, let α ∈ R and consider the level set
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{x ∈ S : g(x) ≤ α} = {x ∈ S : max
ξ∈G

〈ξ, f(x)− ȳ〉 ≤ α} =

{x ∈ S : max
ξ∈G

〈ξ, f(x)− ȳ〉 ≤ α max
ξ∈G

〈ξ, e〉} =

{x ∈ S : max
ξ∈G

〈ξ, f(x)− ȳ − αe〉 ≤ 0} = {x ∈ S : f(x)− ȳ − αe ∈ −K} =

{x ∈ S : f(x) ≤K ȳ + αe}.

Since f is K-quasiconvex, the last set is convex and the lemma is proved.

Remark 6.5 From the inequalities presented in Proposition 6.2 it follows
easily that the well-posedness in the generalized sense of function g(x) is
equivalent to that of function ∆−K(f(x)− ȳ), where ȳ ∈ Min(S, f).

Proposition 6.6 Let f be K-quasiconvex on the convex set S, let ȳ ∈
Min(S, f) and assume that f−1(ȳ) is compact. Then problem (S, f) is L-
well-posed at ȳ.

Proof. From Remark 6.3 it follows that the set argmin(S, g) is compact.
Furhermore, it is easy to see that if f is continuous, then g is continuous too.
Since a continuous quasiconvex function with compact set of minimizers is
well-posed in the generalized sense (Theorem 2.1 in [9]), the proof follows
from Lemma 6.4 and Corollary 5.7.
It straightforward to see that, under the assumptions of the previous propo-
sition, problem (S, f) is also B-well-posed at ȳ.

The next proposition concerns the global well-posedness of vector quasi-
convex optimization problems. It follows easily from the previous proposition
and Proposition 3.15.

Proposition 6.7 Let f be K-quasiconvex on the convex set S. For every
ȳ ∈ Min(S, f) assume that f−1(ȳ) is compact and suppose that Min (S, f) is
compact. Then problem (S, f) is B-well-posed.

We underline that the last proposition improves Theorem 5.5 in [26],
where the authors deal with a convex problem and assume that Eff(S, f) is
compact.

Propositions 6.6 and 6.7 can be further generalized, with similar proofs,
extending them to K- quasiconnected functions, which can be wieved as
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an extension of the notion of scalar quasiconnected function (see e.g. [2]).
If S is an arcwise connected set, a function f : X → Y is said to be K-
quasiconnected on S when for every x1, x2 ∈ S, there exixts a continuous
path γ(t; x1, x2) : [0, 1] → S, with γ(0; x1, x2) = x1 and γ(1; x1, x2) = x2,
such that the following implication holds

f(x1), f(x2) ≤K y with y ∈ Y ⇒ f(γ(t; x1, x2)) ≤K y for every t ∈ [0, 1].

We observe that when K-quasiconnected functions are considered, the
previous results generalize those presented in [9] for scalar optimization prob-
lems.
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