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Summary. In this paper a notion of descent direction for a vector function defined
on a box is introduced. This concept is based on an appropriate convex combina-
tion of the “projected” gradients of the components of the objective functions. The
proposed approach does not involve an “apriori” scalarization since the coefficients
of the convex combination of the projected gradients are the solutions of a suitable
minimization problem depending on the feasible point considered. Subsequently, the
descent directions are considered in the formulation of a first order optimality condi-
tion for Pareto optimality in a box-constrained multiobjective optimization problem.
Moreover, a computational method is proposed to solve box-constrained multiobjec-
tive optimization problems. This method determines the critical points of the box
constrained multiobjective optimization problem following the trajectories defined
through the descent directions mentioned above. The convergence of the method to
the critical points is proved. The numerical experience shows that the computational
method efficiently determines the whole local Pareto front.

Keywords: Multi-objective optimization problems, path following methods,
dynamical systems, minimal selection.

1 Introduction

Let Rn be the n-dimensional real Euclidean space, x = (x1, x2, . . . , xn)T ∈
Rn be a generic vector, where the superscript T means transpose. Let x,
y ∈ Rn, we denote by yT x the Euclidean scalar product, by ‖x‖ = (xT x)1/2

the Euclidean norm and by the symbols x < y and x ≤ y, x, y ∈ Rn the
componentwise inequalities, that is: xi < yi, xi ≤ yi, i = 1, 2, . . . , n.
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Let B ⊂ Rn be the following box:

B = { x ∈ Rn | l ≤ x ≤ u } (1)

where l ∈ Rn, u ∈ Rn, l < u are two given vectors. Finally, let E ⊂ Rn be
an open set with B ⊂ E and let int B denote the interior of B.

Let F = (F1, F2, . . . , Fs)
T ∈ Rs, Fi : E ⊆ Rn −→ R, i = 1, 2, . . . , s, be

continuously differentiable functions defined on the open set E, we consider
the following box-constrained multiobjective optimization problem:

min
x∈B

F (x). (2)

We consider two distinct classes of solutions for problem (2): the global
ones and the local ones.

Definition 1. A point x∗ ∈ B is a globally Pareto optimal point when

� ∃x ∈ B with F (x) ≤ F (x∗) and F (x) �= F (x∗). (3)

Definition 2. A point x∗ is a locally Pareto optimal point if there exists a
neighborhood U ⊆ Rn of x∗ such that

� ∃x ∈ B ∩ U with F (x) ≤ F (x∗) and F (x) �= F (x∗). (4)

Naturally every globally Pareto optimal point is also a locally Pareto opti-
mal point. In this paper we study the locally Pareto optimal points of problem
(2). The relevance of the Pareto optimal fronts is well known in economics (see,
e.g., welfare theorems), finance (see, e.g., portfolio selection), engineering (see,
e.g., design problems, network problems).

In this paper we formulate a necessary condition for local Pareto optimal-
ity in a box constrained optimization problem following the approach outlined
in [21] for a problem without constraints. This condition allows us to introduce
the notion of critical point of a function F on the box B. We construct a sys-
tem of first order differential equations which is analogous to the “projected”
gradient system introduced in [12],[15],[16] and [18] in the framework of box
constrained scalar optimization problems. The main properties of the solution
of this system are that F strictly decreases (with respect to the component-
wise order) along this trajectory and that the limit points of the trajectory
itself are critical points for F on the box B.

In our setting, a special convex combination of the projected gradients
of the components of the objective function F plays the same role as the
“projected” gradient of the objective function in the scalar case. This convex
combination is chosen as the element of minimal norm of the convex hull of
the “projected” gradients of the components of the objective function F . In
the unconstrained case this convex combination is the element of minimal
norm of the set of pseudogradients as proved in [14].
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The first order necessary condition proposed allows us to formulate a suit-
able computational method (we will refer to it as Algorithm A) based on se-
quences {xk }, k = 0, 1, . . ., x0 ∈ intB of feasible points. This computational
method arises from a suitable numerical integration of the system of differ-
ential equations introduced. We prove that the sequences {xk } have limit
points that are critical points for problem (2). The algorithm developed here
is a kind of interior point method for vector optimization problems that does
not require any “a priori” scalarization of the objectives Fi, i = 1, 2, . . . , s.

The computational method presented here is based on some ideas intro-
duced in [19] in the context of the vector optimization problems and in [12],
[15], [16], [18] in the context of scalar optimization problems. We remind that
several scalarization procedures have been introduced to solve multi-objective
optimization problems, see for example [9], [4], [5], [22], and, more recently,
[20].

Only in the last years we can find papers (see [8], [11], [13], [3], [14], [10],
[19],[6], [7]) that propose computational methods to solve vector optimization
problems without using any “a priori” scalarization of the original vector
function. Some of these papers introduce adaptations to vector optimization
of some well-known methods of scalar optimization, such as steepest descent
methods [8], [10], [19], proximal methods [3], differential inclusion techniques
[14], genetic algorithms [6], [7].

We note that Algorithm A is highly parallelizable since the computations
of the sequences {xk } starting from several initial guesses x0 ∈ intB are
independent one from the others. Hence, by suitably choosing a set of starting
points, we can approximate the whole local Pareto front of problem (2) (see
Section 4).

In Section 2, we give necessary conditions for Pareto minimal points of
problem (2) and we study the properties of a system of differential equations
that plays a role similar to the gradient system in scalar optimization. In
Section 3, we derive the computational method from the theoretical results
formulated in Section 2. In Section 4, we show some numerical results obtained
by applying the computational method introduced in Section 3 to solve some
test problems.

2 The dynamics of a box-constrained vector
optimization problem.

Let F = (F1, F2, . . . , Fs)T ∈ Rs be a vector valued function, whose com-
ponents Fi, Fi : E ⊆ Rn −→ R, i = 1, 2, . . . , s, are assumed continuously
differentiable on the open set E.

We denote by ∇Fi, i = 1, 2, . . . , s, the gradient vector of Fi, that is:
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∇Fi(x) =

⎛
⎜⎝

∂Fi

∂x1
...

∂Fi

∂xn

⎞
⎟⎠ , i = 1, 2 . . . , s, (5)

with JF (x)T = (∇F1(x)|∇F2(x)| · · · |∇Fs(x)) ∈ Rn×s the transposed matrix
of the Jacobian matrix JF (x) ∈ Rs×n of F at the point x.

Let l ∈ Rn and u ∈ Rn be the vector given in (1), we denote by Dl(x) ∈
Rn×n and Du(x) ∈ Rn×n, the diagonal matrices defined by:

(
Dl(x)

)
i,j

=
{

(xi − li) i = j
0 i �= j

(
Du(x)

)
i,j

=
{

(ui − xi) i = j
0 i �= j

, l ≤ x ≤ u,

(6)
In the following result we adapt to a box-constrained problem the known

result concerning the classical first order optimality conditions (see for exam-
ple [21]). In fact the necessary first order optimality condition for the uncon-
strained case can be obtained by replacing the product Dl(x∗)Du(x∗) in (7)
with the identity matrix.

Proposition 1. Let x∗ ∈ B be a local Pareto minimal point for problem (2),
then there exist s nonnegative constants λ1, λ2,. . .,λs, with

∑s
i=1 λi = 1 such

that we have:
s∑

i=1

λiDl(x∗)Du(x∗)∇Fi(x∗) = 0. (7)

Proof. : Let t∗ > 0 we define the following set:

Ft∗ = {h ∈ Rn | x∗ + th ∈ B, ∀ t, 0 < t < t∗ }. (8)

Since x∗ ∈ B is a local Pareto minimal point for problem (2) then there exists
no vector h ∈ Ft∗ , t∗ > 0, such that JF (x∗)h < 0, that is the system of
inequalities given by: ⎧⎪⎨

⎪⎩
∇F1(x∗)T h < 0
...
∇Fs(x∗)T h < 0

(9)

has no solution in the set Ft∗ As a consequence the system⎧⎪⎨
⎪⎩

∇F1(x∗)T Dl(x∗)Du(x∗)h < 0
...
∇Fs(x∗)T Dl(x∗)Du(x∗)h < 0

(10)

has no solutions in Rn. By virtue of the Gordan’s theorem we have that there
exists λ = (λ1, . . . , λs)T ∈ Rn, λ ≥ 0 and λ �= 0 such that the following
equation holds: [

JF (x∗)Dl(x∗)Du(x∗)
]T

λ = 0 . (11)

Equation (11) implies equation (7).
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A point x ∈ B that satisfies condition (7) will be said to be a critical point
for problem (2). We denote by KF,B the set of critical points, i.e.,

KF,B = {x ∈ B | ∃λi ≥ 0, i = 1, 2, . . . , s,
∑s

i=1 λi = 1,∑s
i=1 λiDl(x)Du(x)∇Fi(x) = 0

}
.

(12)

Let x ∈ B. We denote by HF,B(x) the following set

HF,B(x) =

{
s∑

i=1

λiDl(x)Du(x)∇Fi(x), |λi ≥ 0, i = 1, 2, . . . , s,
s∑

i=1

λi = 1,

}

(13)
We denote by m(HF,B(x)) the minimal norm element belonging to HF,B(x)
and finally let sF,B : B ⊂ Rn → R+ be the function defined as follows:

sF,B(x) = ‖m(HF,B(x))‖ = (14)

min

{∥∥∥∥∥
s∑

i=1

λiDl(x)Du(x)∇Fi(x)

∥∥∥∥∥ : λi ∈ R, λi ≥ 0,

s∑
i=1

λ1 = 1

}
.

Now we study the regularity properties of the set-valued map HF,B(x).

Lemma 1. The set-valued map x → HF,B(x) is a continuous map for x ∈ B.

Proof. We first prove the upper semi-continuity of the map. Let us denote by
Graph(HF,B) the following set:

Graph(HF,B) = { (x, v) ∈ B × Rn | v ∈ HF,B(x) }. (15)

Since F is a continuously differentiable function, for any sequence { (xj , vj) } ⊂
Graph(HF,B) such that (xj , vj) → (x̂, v̂) as j → +∞, we have v̂ ∈ HF,B(x).
The proof of the upper semi-continuity follows using Corollary 1, p. 42, [1].
Now we prove the lower semi-continuity. We have to show that for any ε > 0
and v ∈ HF,B(x) there exists δ > 0 such that we have:

HF,B(y) ∩ Uε(v) �= ∅, ∀y ∈ Uδ(x), (16)

where Uε(v) and Uδ(x) denote neighborhoods of v and x respectively. Let
v =

∑m
j=1 λjDu(x)Dl(x)∇Fj(x). Since F is continuously differentiable and

Du, Dl are continuous, there exists δ > 0 such that we have:

‖v −
m∑

j=1

λjDu(y)Dl(y)∇Fj(y)‖ < ε, ∀ y ∈ Uδ(x). (17)

This concludes the proof.

The previous result allows us to study the continuity of the function m(HF,B(x)).

Lemma 2. The function m(HF,B(x)) is a continuous function in B.
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Proof. The set-valued map HF,B(x) is a continuous map with closed convex
values. By the minimal selection theorem (see [1], Theorem 1 p. 70), the thesis
follows.

Now we use the tools introduced above in order to obtain a system of dif-
ferential equation that rules the dynamics of the underlying multiobjective
optimization problem. We begin to characterize the critical points as the ze-
roes of the function sF,B(x). The following Lemma follows immediately from
the definition of critical point (see (12)).

Lemma 3. Let x ∈ B. The point x is a critical point for problem (2) if and
only if sF,B(x) = 0.

The next result shows how the image of the point x through the function
w = −m(HF,B(x)) can be considered as a descent direction for the function
F at the point x.

Lemma 4. Let w = −m(HF,B(x)) then we have:

JF (x)Dl(x)Du(x)w < 0, x ∈ B. (18)

Proof. Since −w is a minimal norm vector in HF,B(x) the Best Approximation
Theorem ensures that

−wT (−w − Dl(x)Du(x)∇Fi(x)) ≤ 0, i = 1, 2, . . . , s, (19)

that is:

wT Dl(x)Du(x)∇Fi(x) < − [
sF,B(x)

]2
, i = 1, 2, . . . , s. (20)

Rewriting equation (20) in vectorial form we obtain:

JF (x)Dl(x)Du(x)w < − [
sF,B(x)

]2
e, x ∈ B, (21)

where e = (1, 1, . . . , 1)T ∈ Rs. Equation (21) concludes the proof.

Let us consider the following Cauchy problem:{
dx
dt = Du(x(t))Dl(x(t))w(x(t)),
x(0) = x0 ∈ int B,

(22)

where w(x) = −m(HF,B(x)). In the sequel of this section we will study the
trajectories solutions of (22). We will prove that their limit values are critical
points of F in B.

Theorem 1. Let x(t) be a solution of the Cauchy problem (22). Then we
have:

(a) x(t) exists for t ∈ [0,+∞);
(b) x(t) ∈ B, t ∈ [0,+∞);
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(c) F is strictly decreasing along the trajectory solution of (22) that does not
cross a critical point in KF,B.

(d) Any limit value of x(t) when t → +∞ is a critical point of F .

Proof. Assertion (a) follows from the regularity of the function F , Lemma 1,
Lemma 2, the standard existence theorem for the Cauchy problem and the
fact that the trajectory x(t) belongs to a compact set for each t (see [17],
Corollary 2, p. 91). Assertion (b) follows from the fact that x0 ∈ intB and
dxi(t)/dt = 0 when xi = li or xi = ui for some index i. An easy computation
shows that the following relation holds:

dF (x(t))
dt

= JF (x(t))
dx(t)

dt
= JF (x(t))Du(x(t))Dl(x(t))w(x(t)), (23)

hence using Lemma 4 assertion (c) follows.
Finally, we prove assertion (d). Let Λ be the limit class of x(t) when

j → +∞. Let x∗ ∈ Λ, then there exists a subsequence { tj }j∈N such that
tj → +∞ when j → +∞ and limj→+∞ x(tj) = x∗.

By (c), the set {F (x(t)) : t ≥ 0 } is totally ordered and F (x∗) is its
greatest lower bound. Let us consider the orbit of x∗, that is the image in Rn

of the solution y(s) of the Cauchy problem given by:
{

dy
ds = −Du(y(s))Dl(y(s))w(y(s)),
y(0) = x∗.

(24)

It is easy to see that every point of the orbit belongs to the limit class Λ.
Indeed we have:

lim
j→+∞

x(tj + s) = y(s), ∀s ≥ 0. (25)

Moreover, since F (z) = F ((x∗)) for every z ∈ Λ, by (24) we obtain that F ,
restricted to the orbit of x∗, is constant. Hence we have

JF (x∗)Du(x∗)Dl(x∗)w(x∗) = 0. (26)

Assertion (d) follows by Lemma 3.

3 A computational method to find locally Pareto
optimal fronts

In order to develop a computational method we focus here on the main steps
of our approach to the box constrained problem obtained in the previous
section. Starting from the interior of the box B, a descent trajectory can be
found as a solution of the following system of differential equations:

dx

dt
= −

s∑
i=1

λ̂i(x(t)))Dl(x(t))2Du(x(t))2∇Fi(x(t)), (27)
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where λ̂i(x(t)), i = 1, 2, . . . , s are theirselves the solutions of the scalar op-
timization problem involved in the definition of sF,B(x). Indeed, for a fixed
x ∈ int B, the quantities λ̂i, i = 1, 2, . . . , s are the solutions of the following
problem:

min
λi ∈ R

i = 1, 2, . . . , s

∥∥∥∥∥
s∑

i=1

λiDu(x)Dl(x)∇Fi(x)

∥∥∥∥∥ , (28)

subject to
λi ≥ 0, i = 1, 2, . . . , s,

∑s
i=1 λi = 1.

(29)

The notation λ̂i(x) is used to underline the dependence of these nonnegative
coefficients on the point x.

As proved in Theorem 1, when x(0) ∈ int B, the accumulation points of the
trajectories solution of (27) belong to KF,B , i.e. they are critical points of the
box-constrained multi-objective optimization problem (2). Here we develop a
computational method to determine these accumulation points. In order to
provide a practical tool to find the locally Pareto optimal solutions of problem
(2), we approximate the trajectories of the initial value problem (27) and the
solutions of the scalar optimization problem (28).

Let us introduce some further notation. We denote by λ the vector
(λ1, λ2, . . . , λs)T , by Σ and Γ the sets Σ = {λ ∈ Rs | ∑s

i=1 λi = 1 } and
Γ = {λ ∈ Rs | λ ≥ 0 }, by MF (x) ∈ Rs×s, the matrix:

MF (x) = JF (x)Dl(x)2Du(x)2JF (x)T , x ∈ B, (30)

by D(λ) ∈ Rs×s the diagonal matrix whose diagonal entries are λ1, λ2, . . ., λs

and by I ∈ Rs×s the s-dimensional identity matrix. Furthermore, we consider
the subset of the cartesian product Rn × Rs defined by:

K̃F,B = { (x, λ) ∈ B × (Σ ∩ Γ ), |
s∑

i=1

λi∇Fi(x) = 0 }. (31)

We will consider the vector functions defined by:

v(x, λ) =
s∑

i=1

λi∇Fi(x), (32)

z(x, λ) = (I − eeT D(λ))MF (x)λ, (33)

where e = (1, 1, . . . , 1)T and MF (x) is the matrix defined in (30). Finally, we
introduce the quantity h given by:

h = min{δ, min
(x,λ)∈B×(Σ∩Γ )

ψ(x, λ)} (34)



Box-constrained vector optimization 9

where δ is a positive constant sufficiently small and ψ is the function given
by:

ψ(x, λ) = min
{

min
i=1,...,n

1
(xi − li)(ui − xi)2|vi(x, λ)| ,

min
i=1,...,n

1
(xi − li)2(ui − xi)|vi(x, λ)| , min

i=1,...,s

1
|zi(x, λ)|

}
, (35)

Note that the quantity h is well defined since F is a continuously dif-
ferentiable vector function in E with B ⊂ E and the set B × (Σ ∩ Γ ) is a
compact set. Moreover it is easy to see that x ∈ KF,B if and only if there
exists λ ∈ Σ ∩ Γ such that (x, λ) ∈ K̃F,B . Now we can define the map
A : B × (Σ ∩ Γ ) → Rn × Rs as (y, ξ)T = A(x, λ) where

y = x − h
∑s

i=1 λiDu(x)2Dl(x)2∇Fi(x),
ξ = λ − h2 D(λ)(I − eeT D(λ))MF (x)λ,

(36)

where h is given by (34).
We consider the pair of sequences {λk } {xk } defined as follows

xk+1 = xk − hk

∑s
i=1 λk

i Du(xk)2Dl(xk)2∇Fi(xk), k = 0, 1, . . . ,

λk+1 = λk − µk D(λk)(I − eeT D(λk))MF (xk)λk, k = 0, 1, . . . ,
(37)

where µk = h2 and hk = h are step sizes. We can immediately observe that
(xk+1, λk+1) = A(xk, λk).

We propose a computational method that can be described by the following
steps:

Step 1. Choose a set of initial points x0 in the interior of the box B and set
λ0 = 1

se and k = 0.
Step 2. If sF (xk) ≤ ε stop (i.e.: there exists x̂ ∈ KF,B such that ‖xk − x̂‖ <

η(ε) where η(ε) is a positive function such that limε→0 η(ε) = 0), otherwise
go to Step 3.

Step 3. Compute xk+1 and λk+1 using (37) where hk = h and µk = h2

Step 4. go to Step 2.

In the sequel we refer to this procedure as Algorithm A. The following lemma
shows some properties of the map A necessary to prove the convergence of
Algorithm A.

Lemma 5. The map A defined in (36) has the following properties:

(a) A maps B × (Σ ∩ Γ ) to B × (Σ ∩ Γ );
(b) A is a closed map at every (x, λ) ∈ B × (Σ ∩ Γ ) that is, if the relations

limk→+∞(xk, λk) = (x, λ), (yk, ξk)T = A(xk, λk) and limk→+∞(yk, ξk) =
(y, ξ) hold they imply that (y, ξ)T = A(x, λ);
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(c) let (x, λ) /∈ K̃F,B and (y, ξ)T = A(x, λ) we have:

ξT F (y) < λT F (x). (38)

Proof. The proof of assertion (a) follows noting that when (x, λ) ∈ B×(Σ∩Γ )
using (36) and (34) it is easy to see that we have:

ui − yi = (ui − xi)
(
1 − h(ui − xi)(xi − li)2vi(x, λ)

) ≥ (39)

(ui − xi)
(
1 − h(ui − xi)(xi − li)2|vi(x, λ)|) ≥ 0, i = 1, 2, . . . , n,

yi − li = (yi − li)
(
1 − h(ui − xi)2(xi − li)vi(x, λ)

) ≥ (40)

(xi − li)
(
1 − h(ui − xi)2(xi − li)|vi(x, λ)|) ≥ 0, i = 1, 2, . . . , n,

and

ξi = λi(1 − h2zi(x, λ)) ≥ λi(1 − h2|zi(x, λ)|) ≥ 0, i = 1, 2, . . . , s. (41)

Finally, we note that when λ ∈ Σ then eT D(λ)e = eT λ = 1 and we have:

eT D(λ)(I − eeT D(λ))MF (x)λ = 0. (42)

This concludes the proof of assertion (a).
The proof of assertion (b) is a consequence of definition (36) and of the

regularity of the function F .
Let us prove assertion (c). Using equations (36) we obtain

ξT F (y) =(
λ − h2 D(λ)(I − eeT D(λ))MF (x)λ

)T
F

(
x − hDu(x)2Dl(x)2JF (x)T λ

)
=

λT F (x) − h‖Dl(x)Du(x)JF (x)T λ‖2 + o(h), h → 0, (43)

where o(·) is the Landau symbol. The proof of (33) follows from equation (43)
since

‖Dl(x)Du(x)JF (x)T λ‖ > 0 (44)

when (x, λ) /∈ K̃F,B and

‖Dl(x)Du(x)JF (x)T λ‖ = 0 (45)

when (x, λ) ∈ K̃F,B .

The following Lemma shows that the sequences {xk } and {λk } belong,
respectively, to the interior of B and to the intersection of Σ with the interior
of Γ , for every positive integer k.
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Lemma 6. Let {xk }k=0,1,... and {λk}k=0,1,... be the sequences generated by
Algorithm A. Then we have xk ∈ intB, k = 1, 2, . . ., λk ∈ Σ ∩ intΓ , k =
0, 1, . . ..

Proof. As proved in Lemma 5, since x0 ∈ int B and (Dl(xk))i,i = 0 when
xk

i = li and (Du(xk))i,i = 0 when xk
i = ui, from equations (37) we have that

xk belongs to B . Similarly, since λ0 ∈ intΓ and (D(λk))i,i = 0 when λk
i = 0,

λk belongs to Γ . Let λ ∈ Σ, then eT D(λk)e = eT λk = 1 and we have:

eT D(λk)(I − eeT D(λk))MF (xk)λ=0. (46)

From equation (37) and (46) we have:

eT λk+1 = eT λk − hkeT D(λk)(I − eeT D(λk))MF (xk)λk = eT λk, (47)

hence λk ∈ Σ for k = 1, 2, . . . when λ0 ∈ Σ.

Using the previous lemmas, we can prove the convergence of algorithm A
to a critical point for problem (2).

Theorem 2. Let {xk , λk}, k = 0, 1, . . . be an infinite sequence generated by
Algorithm A with x0 /∈ KF,B. We have:

(a1) the sequence {xk, λk } has at least a feasible accumulation point x̂, λ̂;
(b1) {λkT

F (xk) }, k = 0, 1, . . . is monotonically strictly decreasing sequence,
that is:

λk+1T

F (xk+1) < λkT

F (xk); (48)

(c1) each limit point (x̂, λ̂) of {xk, λk } belongs to K̃F,B.

Proof. The proof of assertion (a1) follows from Lemma 6 and the fact that B
and Λ ∩ Σ are compact sets.

The proof of assertion (b1) is a consequence of definition (37) and the fact
that the map A is a closed map satisfying assertion (c) of Lemma 5.

Now we prove assertion (c1). Let (λ̂, x̂) be an accumulation point of the
sequence {xk, λk }, that is there exists a subsequence kj such that we have:

lim
j→+∞

xkj = x̂, lim
j→+∞

λkj = λ̂. (49)

Using equations (37), assertion (b1), Lemma 5 and Theorem 7.2.3 p. 249
[2](with descent function given by λT F (x)) the proof follows.

4 Numerical experiments

In this section we validate the numerical method named Algorithm A proposed
in Section 3 on several bi-criteria optimization problems.
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The numerical method has been implemented in Matlab on a Pentium M
1.6GHz in double precision arithmetic. For each test problem we consider Ntot

sequences starting from Ntot initial guesses x0,i ∈ int B, i = 1, 2, . . . , Ntot.
In particular, the starting points x0,i, i = 1, 2 . . . , Ntot are chosen equally
spatially distributed or randomly uniformly distributed on the box B. We
note that Algorithm A is well suited for parallel computing since we can
compute the Ntot sequences independently one from another.

The first two test problems belong to a class of two-objective optimization
problems proposed by K. Deb in [6].
Test 1) We have two objective functions (i.e.: s = 2) and two spatial variables
(i.e.: n = 2). The objective functions are given by:

f1(x) = x1 f2(x) = ψ(x2)/x1 , (50)

where
ψ(x2) = 2 − 0.8 e−( x2−0.6

0.4 )2

− e−( x2−0.2
0.04 )2

, (51)

and the box constraint is given by:

B = { x = (x1, x2), | 0.1 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 }. (52)

The function ψ has a global minimizer at x2 ≈ 0.2 and has a local minimizer
at x2 ≈ 0.6. The global minimizer of the function ψ has a narrow attraction
region when compared with the attraction region of its local minimizer. This
feature makes it a very interesting test problem.
We have a convex global Pareto optimal front corresponding to the global
minimizer of the function ψ, that is the set given by:

Global : Pg = {(x1, x2) |x2 ≈ 0.2, 0.1 ≤ x1 ≤ 1} . (53)

Moreover we have a convex local Pareto optimal front whose elements are
those local Pareto optimal points that are not included in Pg. This set corre-
sponds to the local minimizer of the function ψ, that is the set given by:

Local : Pl = {(x1, x2) | x2 ≈ 0.6, 0.1 ≤ x1 ≤ 1} . (54)

Figure 2(a) shows the numerical approximations of the local and global
Pareto fronts determined by Algorithm A starting from Ntot = 400 points
distributed in the interior of the box B as shown in Figure 1(a). Figures 1(b)
and 2(b) show the values of the objective functions in the f1-f2 plane.

Test 2 We have s = 2, n = 2 and the following objective functions:

F1(x) = f1(x1) F2(x) = ψ(x2)r(x1, x2),

r(x1, x2) = 1 −
(

f1(x1)
ψ(x2)

)α

− f1(x1)
ψ(x2)

sin(2πqf1(x1)),
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ht

Fig. 1. Starting points (a); Objective functions values (b)

ht

Fig. 2. Accumulation points (a); Objective functions values (b)
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and we choose f1(x1) = x1, ψ(x2) = 1 + 10x2, α = 2, q = 4. The box
constraints are given by

B = { x = (x1, x2), | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 }.

This test problem is interesting since the Pareto-optimal front is not a con-
nected set.

Figure 3 shows a part of the graph r(x1, 0) versus x1, x1 ∈ [0, 1]. In partic-
ular Figure 3 shows the parts of the graph r(x1, 0) versus x1 where r(x1, 0) is
a non-increasing function of x1. A point (x1, 0) belongs to the global Pareto
optimal front when the point (x1, r(x1, 0)) belongs to the dashed line repre-
sented in Figure 3. A point (x1, 0) is a local (non global) Pareto optimal point
front when the point (x1, r(x1, 0)) belongs to the solid line represented in Fig-
ure 3. Hence we have a non connected Pareto optimal front. Furthermore note
that the points (0, x2), x2 ∈ [0, 1] are global minimizers of the function F1,
but only the point (0, 0) belongs to the global Pareto-optimal front. Figure 4

Fig. 3. r(x1, 0) versus x1

and Figure 5 show the numerical results obtained applying Algorithm A to
solve Test 2. Figure 4 shows the starting points (Ntot = 1600) and Figure 5
shoes the accumulation points of the sequence defined by Algorithm A. Note
that Figures 4(a) and 5(a) show the points in the x1-x2 plane and Figure 5(a)
and 5(b) show the values of the objective functions in the plane f1-f2.
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Test 3) We consider two objective functions (i.e.: s = 2) and two spatial
variables (i.e.: n = 2). The objective functions are given by:

f1(x) = x3
1, f2(x) = (x2 − x1)3, (55)

and the box is given by:

B = { x = (x1, x2) | − 1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1 }. (56)

This test problem is very difficult to deal with since there are two sets of
points where the gradient vectors of the objective functions are identically
null but these points do not belong to the local Pareto optimal front. In fact
we have the global Pareto front given by:

Global : Pg = {(−1, 1) } , (57)

and the local (non global) Pareto front given by:

Local : Pl = {(−1,−1) } . (58)

Moreover we have the following two sets of points that belong to Kf,B ( where
f = (f1, f2)) but do not belong to the Pareto local front:

B = {(x1, x2) ∈ B | x1 = x2, x1 �= −1} , (59)

Z = {(x1, x2) ∈ B | x1 = 0 } . (60)

Figure 6 and Figure 7 show the numerical results obtained applying Algorithm
A1 to solve Test 3. Figure 6 shows the starting points (Ntot = 100) and Figure
7 shows the accumulation points of the sequence defined by Algorithm A1.
As in the previous cases, Figures 6(a) and 7(a) show the points in the x1-x2

plane and Figure 6(b) and 7(b) show the values of the objective functions in
the plane f1-f2.

Test 4) We consider two objective functions (i.e.: s = 2) and three spatial
variables (i.e.: n = 3). The objective functions are given by:

f1(x) = x1 − 2x2 − x3 − 36
2x1 + x2 + 2x3 + 1

, f2(x) = −3x1 + x2 − x3,

(61)
and the box is given by:

B = { x = (x1, x2, x3) | 0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 4 }. (62)

Figure 8 and Figure 9 show the numerical results obtained applying Algorithm
A to solve Test 4. As in the previous experiments Figure 8 shows the starting
points (Ntot = 1000) and Figure 9 shows the accumulation points of the
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Fig. 6. Starting points (a); Objective functions values (b)

Fig. 7. Accumulation points (a); Objective functions values (b)
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sequence defined by Algorithm A. Note that Algorithm A determines all the
local Pareto optimal front.

We conclude noting that the computational method is very efficient with
respect to the usual numerical methods that solve a multi-objective optimiza-
tion problem using a scalarization of the objective functions. In fact, when
the objective functions have not desirable properties (convexity or some other
property) these last methods need to make several choices of the scalarization
parameters in order to determine the entire local Pareto front, and, at our
knowledge, no efficient strategies to make these choices are known. Algorithm
A is able to approximate the entire Pareto front following a sufficient number
of trajectories. This fact is not computationally demanding, since Algorithm
A can be easily implemented with a parallel code. Indeed, by dividing the
number of the trajectories to be computed among the processors used, we di-
vide the execution time by a factor exactly equal to the number of processors
used, with great savings in computation time.

We note that we have chosen the initial points on a rectangular lattice
of the box, however several other choices can be made. For example, we can
distribute the initial points taking into account the features of the objective
functions or we can choose the initial points randomly distributed according
with a probability density chosen in relation with the objective functions.
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