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Abstract

We propose a general procedure for constructing nonparametric priors for
Bayesian inference. Under very general assumptions, the proposed prior se-
lects absolutely continuous distribution functions, hence it can be useful with
continuous data. We use the notion of Feller-type approximation, with a ran-
dom scheme based on the natural exponential family, in order to construct a
large class of distribution functions. We show how one can assign a proba-
bility to such a class and discuss the main properties of the proposed prior,
named Feller prior. Feller priors are related to mixture models with unknown
number of components or, more generally, to mixtures with unknown weight
distribution. Two illustrations relative to the estimation of a density and
of a mixing distribution are carried out with respect to well known data-set
in order to evaluate the performance of our procedure. Computations are
performed using a modified version of an MCMC algorithm which is briefly
described.

Summary

Keywords: Bernstein Polynomials, density estimation, Feller operators, Hierarchical
models, Mixture Models, Non-parametric Bayesian Inference.

1 Introduction

In many applications the researcher has not enough information for specifying a
parametric model for the random mechanism generating the data, thus a semi-
parametric or a nonparametric approach seems more appropriate. For example,
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with heterogeneous data it might be reasonable to use a model where the number
of modes is not fixed.

In a Bayesian approach, a nonparametric model requires to specify a prior on
the family of all the distributions on the sample space. Many nonparametric priors
proposed in the literature are based on a partition of the sample space, such as
the Ferguson-Dirichlet process or Polya trees; see Cifarelli et al.(1999) for a recent
review.

An alternative way of defining a nonparametric prior is using mixture models,
i.e. to model the unknown distribution of the data as a mixture of parametric kernel
distributions. Early proposals in this sense are due to Ferguson (1983) and Lo (1984).
However, in this context, the literature is mainly focused on applications in density
estimation and regression, without a careful analysis of the theoretical properties of
a nonparametric ”mixture prior”. Indeed this would require a preliminary study of
the family F of mixture models that is used. For the prior to be "nonparametric”,
it is necessary that the family F is ”large”. Roughly speaking, this means that any
distribution function H on the sample space can be approximated, in some sense,
by a sequence of distributions in F. Different approximation properties can lead to
different properties of the mixture prior.

For example, if any H can be weakly approximated by distributions in F, then
we can expect that the prior has full weak support. If the approximation holds in a
stronger sense, we can expect stronger properties of the prior, such as consistency.
A clear illustration of this connection can be seen in the Bernstein prior (Petrone,
1999), defined for exchangeable data in [0, 1]. Informally, a Bernstein prior selects
a finite mixture of beta densities with a random number of components. The fact
that any distribution function on [0,1] can be weakly approximated by mixtures
of beta distributions is used for showing that the Bernstein prior has full weak
support. For bounded continuous densities, the approximation by beta mixtures
is uniform. Petrone and Wasserman (2001) use this stronger property for proving
weak consistency of the Bernstein prior.

The aim of this paper is first to discuss a general scheme for defining a ”large”
family of probability distributions on a real set and to show the approximation
properties of such a class (section 3). The presentation will be informal and we refer
to Petrone and Veronese (2001) for more details.

The proposed scheme is based on Feller operators (section 2). These are a gen-
eralization of Bernstein polynomials. Even if extensions to the multivariate case are
possible, here we do not deal with them, and we shall restrict our attention to the
univariate case. An attractive of the proposed procedure is that it is fairly simple,
since in most cases it leads to absolutely continuous distribution functions, with
density given by a (infinite or finite) mixture of given kernel densities.

In section 4 we show how to construct a nonparametric prior based on Feller op-
erators. Because of their approximation properties we conjecture that the proposed
prior has good theoretical properties. In section 6 we present two applications in
order to illustrate the satisfying performance of the Feller prior in Bayesian nonpara-
metric inference. In particular, we consider a density estimation problem (section
6.1) and parameters and mixing distribution estimation in a problem related to
combining different experiments (section 6.2). We use two well studied data sets
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for sake of comparison. An MCMC algorithms for simulating from the posterior
distribution is provided in section 5.

2 Feller-type approximations.

Feller (1971, chapter VII) defines a constructive way of approximating a given
bounded and continuous function on a (bounded or unbounded) interval E C R.
The idea is as follows. Let U : E — R be a bounded continuous function, and
let us consider a family of random variables {Z; ,,x € E,k = 1,2,...} such that
E(Zyy) = x and Var(Zg,) — 0 for k — oo. Then, for large k, Z , will be close to
x and U(Zy,) will be close to U(z).

More precisely, we call Feller operator of order k for U the function B(z;k,U)
= E(U(Zk,)). The following theorem is a slight generalization of Feller’s result.

Theorem 1 Suppose that U is bounded on E and that {Zy,,x € E;k =1,2,...}
is such that, for k — oo, E(Zy,) — x and Var(Zg,) — 0, for each x € E. Then

lim B(z; k,U) = U(x)
k—o0

at any continuity point x of U. If U is continuous, the convergence is uniform in
every closed interval in which E(Zy ) — x and Var(Zy ) — 0 uniformly.

The sequence of random variables {Zy .,z € E,k =1,2,...} is called a random
scheme for the approximation (Altomare e Campiti, 1994, page 283).

One example of Feller operators, where kZj , has a binomial distribution with
parameters (k,z), are Bernstein polynomials. A more general example is obtained
by considering a sequence of independent and identically distributed (i.i.d.) random
variables {Y7,Y5,...}, with expected value E(Y;) = z and finite variance. In this
case, the mean Z , = % Sk, Y satisfies the required properties, namely E(Zj ;) = x
and V(Zy ) — 0, for k — oo.

3 An exponential family random scheme.

In this section we consider a random scheme where Zj, , is the mean of i.i.d. random
variables with common distribution belonging to the natural exponential family.
In particular, we focus on the case where U is a real distribution function. This
situation is studied in Petrone and Veronese (2001), to which we refer for a brief
review on the exponential family, and for an extended discussion of the results of
this section.

Let

po(y) = exp(fy — M(0)) (1)

be a density with respect to a o-finite measure v, where M () = In [ exp(0z)v(dz)
and 6 € © = {# : M(0) < +o0}. The family of probability measures which admit a
density of the form (1) is called Natural Exponential Family (NEF). In the sequel
we assume that v is absolutely continuous with respect to Lebesgue or counting
measure. 3



From well known results on the exponential family, we have that u = Fyp(X) =
M'(0), where M’ denotes the first derivative of the function M. Furthermore,

the family can be parametrized in terms of the mean parameter p and V(u) =
Var,(X) = M"(0(n)), where M" is the second derivative of the M. V(u) is called
variance function.

Now let E be the convex hull of the support (briefly, the convex support) of
a distribution function U, E° = (a,b) be the interior of E and take z in E°. In
order to construct the random scheme for the Feller-type approximation of U, let
us consider a sequence of i.i.d. variables {Y7,Y3,...} from a density of the form (1)
such that M'(f#) = x. Then, the probability law of the mean Z; , = %Ele Y; still
belongs to the exponential family, and we have E(Zj,) = x and Var(Z;,) — 0 for
k — oo.

Let F}, , be the distribution function of Zj, ,, parametrized by the mean parameter
x and with variance function V'(x) and define

0 r<a

_ ) Ula) r=a
Bla; k. U) = [rU(2)dFy.(2) a<z<b )

1 T > b.

The following proposition summarizes some results proved in Petrone and Veronese
(2001).

Proposition 1 If U is a distribution function with convex support E, then
(i) B(-;k,U) defined in (2) is still a distribution function, with support E;

(i1) B(-;k,U) is a mizture of a distribution function degenerate on {a} (if a is
finite), with weight U(a), and an absolutely continuous distribution function,
with density

b(z; k,U) = /EO gr(z;2)dU(z), = € (a,b)
where gr(;2) = [, 00)(t — 2)dF} (1) /V ().

(iii) For each z € E°, g(-;2) is a density with respect to Lebesque measure with
support E.

(iv) For each x € E°, gi(x,-) is a density with respect to Lebesgue measure, with
support E, whose expected value converges to x and whose variance converges
to zero as k — oo.

From (i) of Proposition 1, we call B(-;k,U) Feller distribution function with
parameters (k,U). Point (ii) shows that, if U(a) = 0, B(-;k,U) is an absolutely
continuous distribution function. Results (ii) and (iii) show that the Feller density
b(z;k,U) is a mixture of densities gi(-; z), with mixing distribution U.

From point (iv), if U is absolutely continuous with bounded density u, then
b(z;k,U) can be written as F(u(Zy,)), where Z;, has density gi(z,-). Further-
more, {Zm,k = 1,2...,2 € E°} is a random scheme and b(-;k,U) is the Feller
operator which approximates u. Therefore, for the previous considerations and for

theorem 1, we have the following



Proposition 2 (Approximation property). Any distribution function U with con-
vez support E can be weakly approzimated by Feller distribution functions B(-; k,U).

Furthermore, if U is absolutely continuous with a bounded and continuous den-
sity u, then u can be pointwise approximated by the Feller densities b(+; k,U).

In some relevant cases, gx(-;2) has the form of a conjugate density for py(x).
In particular, the examples below show that z has the role of a location parameter
and k has the role of a scale, or smoothing, parameter. Thus our construction is
related to results by Dalal and Hall (1983) e Diaconis and Ylvisaker (1985), who use
mixtures of conjugate priors for approximating an arbitrary prior density.

Furthermore our general scheme includes connections with the nonparamet-
ric techniques based on kernel functions, or more generally with delta sequences
(Prakasa Rao, 1983, p. 136).

For illustration, we report some examples which are discussed in details in
Petrone and Veronese (2001).

Ezample 1. (Bernstein polynomials). Suppose we have to approximate a distri-
bution function U describing data in [0, 1]. Then a binomial random scheme can be
used, where k£Zj,, has a binomial distribution with parameters (k,z). In this case,
B(-;k,U) is the Bernstein polynomial of order k for U. The kernel density g(+; 2)
is a beta density ((-; [kz], k — [kz] + 1), where [a] denotes the integer part of a and
z € [0,1]. This is a conjugate prior for the binomial model. Note that gx(-; z) is
a piecewise constant function of z. Consequently, the density b(z;k,U) is a finite
mixture of beta densities

k

=1

where w;, =U(j/k)—U((j —1)/k),j =1,..., k. Clearly, k has the role of smooth-
ing parameter and, for a given k, 5 has the role of a translation parameter. The
Bernstein density b(-; &k, U) has been used as a flexible statistical model for data in
[0, 1] (for example, Tenbusch, 1995; Petrone, 1999).

Ezample 2. (Mixtures of gammas). For data in [0,00), we can use a Poisson
random scheme, where kZj, , has a Poisson distribution with mean parameter kx.
Then the kernel density gi(+;z) is gamma, with shape parameter [kz] and mean
[kz]/k; in symbols, Ga(-; [kz], k). The gamma is the conjugate prior for the Poisson
model. The Feller density is a countable mixture of gamma densities,

k
b(l‘,k‘, U) = ij,kGa(x;ja k)a
7j=1
where w;, =U(j/k) —U((j —1)/k),j =1,2,....

Ezample 3. (Mixture of inverse gammas). For data in the open interval (0, 00), a
Gamma random scheme can be used, where Z, , ~ Ga(k, k/x). The kernel density
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gr(+; z) is an inverse-gamma with parameters (k, kz), denoted by In-Ga(-; k, kz), k >
0. (We recall that, if X ~ Ga(+;a,b), then 1/X ~ In-Ga(-, a,b)).

The Feller density is a continuous mixture of inverse gamma densities,
b(x; k,U) = /In—Ga(x;k,kz)dU(x).
An application of this model is given in section 6.1.

Ezample j. (Mixture of normals). For data in the real line, a Gaussian random
scheme can be used, where Zi, has a normal distribution N(-;z;0%/k) with o2
known. The kernel density gx(+;z) is N(+;z,02/k), so that the Feller density is a
continuous mixture of normal densities

b(z; k,U) = /N(x;z,(;?/k)dU(z).

Mixture of normals are used in many contexts; a recent application in Bayesian
nonparametrics is by Ghosal, Ghosh, and Ramamoorthi (1999).

4 Feller priors for Bayesian nonparametric
inference.

Because of their approximation properties, Feller distributions with an exponential
family random scheme can be used as flexible models for inference on an unknown
distribution function. As shown in the previous section, a Feller distribution is a
mixture of given kernel densities. Let us consider the smoothing parameter of the
kernel density and the mixing distribution as random quantities and assign them
a prior distribution. This induces a prior on the space of all the distributions on
the sample space, which we will call Feller prior. As suggested by the examples of
section 3, many popular mixture models can be interpreted as particular cases of a
Feller prior. We describe now, in an informal way, the procedure for constructing a
Feller prior for Bayesian nonparametric inference.

Let {Xi,Xs,...} be a sequence of exchangeable random variables with values
in a set £ C R. Then, for de Finetti’s representation theorem, the n-dimensional
distribution function can be written as

P(X) <1y, Xy < ) = /P f[lF(xi)dﬂ(F), (3)

where 7 is the prior on the class P of all the distribution functions on F.

We say that a prior is supported on a class F if it selects distribution functions
in F with probability one. A Feller prior with random scheme {Z .,z € E° k =
1,2,...} is a prior 7 supported on the class of Feller distribution functions

F=A{B(kU):k=1,2,...; UeU},
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where U is the class of all the distribution function with convex support £ and B
has the random scheme {Z; ,,x € E°,k =1,2,...}.

One way of constructing a prior 7 on F is to regard (k, U) as random quantities
and to assign them a probability law P. This induces a probability law 7 on the
operator B(-;k,U). In particular, we will focus on the case when P is such that k
and U are independent, k£ has probability function p and U is a Dirichlet process
with parameters «, Uy(-), in symbols U ~ D(«, Up), where « is the scale parameter,
and U is a distribution function expressing the prior guess on U. In this case, we
say that 7 is a Feller-Dirichlet prior with parameters (p, a, Up).

In the following, we will assume that P(U(a) = 0) = 1, so that the random
distribution function B(-; k,U) is almost surely absolutely continuous, with density
b(-; k,U). In this case, choosing a Feller prior with random scheme {Z, .,z € E° k =
1,2,...} in (3) is equivalent to the following hierarchical model.

(i) For any n, Xi,..., X,|k,U are conditionally i.i.d, with common density

b(z; k,U) = /gk(x; 2)dU (z),
where gi(x; z) is the kernel density associated to the given random scheme.
(ii) (k,U) have joint probability law P.

Conditionally on k, the Feller prior corresponds to a mixture model with a ran-
dom mixing distribution, where the kernel density gy (+; z) is suggested by the random
scheme adopted in the Feller operator. The parameter k£ appears as a smoothing
parameter in the kernel. This prior generalizes the Bernstein prior proposed by
Petrone (1999) for data in [0, 1]

Computations in mixture models is in general analytically complicated. However,
MCMC approximations of the posterior or of other quantities of interest are possible.
In order to semplify computations, it is usually convenient to introduce auxiliary
random variables Y7, Y5, ... which have the role of "labels”, and rewrite the model
above as

(i) Xy,..., X, | k,U,y1,...,y, are independent, with joint density [T ; gx(x:; ¥i);
(ii) Y1,...,Y, | k,U are i.i.d. according to U;
(iii) k£ and U have joint probability law P.

Furthermore, the labels are useful for studying clusters in the population. In
particular, for the Feller-Dirichlet prior, the common distribution U of the labels
is almost surely discrete. This produces ties in the labels Y7, ..., Y,, which suggest
the presence of clusters in the population. For example, if Y; =---=Y,, #Y,,,1 =
--- =Y, we can think that there are two clusters, with the first m observations
coming from one cluster, while the remaining from the other one. Therefore, the
heterogeneity in the population can be studied by looking at the distribution of ties
among (Y7,...,Y},). This aspect will be illustrated in example 6.1. The probability
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law on the cluster partition induced by the Dirichlet process is studied by Antoniak,
1974; see also Green and Richardson, 1999.

Sampling from the posterior of (k,U, Y7, ...,Y,) from a Feller-Dirichlet prior can
be obtained by MCMC. Since, as previously noted, conditionally on &£ our model is
a mixture with a Dirichlet process mixing distribution, an MCMC algorithm can be
constructed by using a Gibbs sampling from the conditional distribution given k£ and
the data, and then adding a step for taking into account the randomness of k. In the
literature, there are several algorithms that can be used for the first step. One class
of algorithms works by integrating out U, then using a Gibbs sampling from the
conditional law of Y, ..., Y, k|z1,. .., x,. Another class of algorithms is a based on
a finite truncation of the Sethuraman’s (1994) representation of the Dirichlet process
as an infinite sum.

In the following section we present a truncation MCMC' algorithm for the Feller-
Dirichlet prior, which we use in section 6.1. A different computational strategy will
be used for the hierarchical model of section 6.2.

5 Computational issues.

We give a brief description of an MCMC algorithm for simulating from the pos-
terior corresponding to a Feller prior. The algorithm is based on the well known
characterization of the Dirichlet process as an infinite sum (Sethuraman, 1994). If
U ~ D(a, Uy), then U is almost surely a discrete distribution function

U(z) = f:lpja(_oo,zj](x) , (4)

where 0,4(-) is the indicator function of the set A, (71, Zs, ...) are independent draws
from Uy, p1 = Vi,p; = (1 =V))(1 = Va)--- (1 = V;_1)V;,j > 2, and V4, V5, ... are
i.i.d. according to a beta density with parameters (1, «). In the literature, there are
several proposals of simulations algorithms which are based on a truncation

Un(z) = ;pﬂ(—oo,zj}(x)- (5)

of the series (4) to a finite N, such that the residual probability is negligible; see for
example Muliere and Tardella, 1998 and Ishwaran and Zarepour, 2000.

We extend, in particular, the algorithm proposed by Ishwaran and Zarepour for
simulating from the posterior generated by a Feller prior.

A Gibbs sampling from the posterior of (Uy, k,Y7,...,Y,) can be obtained by
iteratively drawing values from the conditional distributions of

(a) (ph - '7pN7Z17 - '7ZN)|k7j17 - '7jn7x17' -y T,y
where (Jy, ..., Jy) are classifications variables that identify the Z; associated
toeach Y;, by Y, = Z;..

(b) Jla"'7Jn|k7p17"'7pN7Z17'"7ZN7:U17"'7:U7L7

(C) k‘|p1,...,pN,Zl,...,ZN,jl,...,jn,l']g...,l'n.



The full conditional corresponding to step (a) is proportional to

n
f(ory otk s dn) TT wolzi)ge(wi; 2.,)- (6)
i=1
where f is the conditional probability function of py,...,py given k, j1,...,j, and
up is the density of Uy. For the Dirichlet process, pi,...,pnl|k,j1,...,Jn have a
generalized Dirichlet distribution with parameters (ai,by,...,ay 1,by_1), where
aj =14+mj, bj = a+mj +---+my and m; is the number of j;,. .., j, which are
equal to 7, j=1,...,N — 1.

Sampling 7y, ..., Zy from (6) is straightforward if Uy is the conjugate prior for
the model g (-; 2). This is the case of example 6.1 where we choose Uy as the gamma
prior for the inverse-gamma model.

Regarding the step (b), we have that .J;,...,.J, are conditionally independent,
with

)/i|k‘7p17"'7pNazla"'7zNax17--'7 sz]z oozj ,Z:]_,...,TL,

where p¥; o< pigr(wilz;), j=1,...,N.
Finally, the full conditional of k is proportional to

p(k) ﬁlgk(myi)

on k=1,2,..., K. In fact, even if, in principle, k£ is unbounded, in practice it is
truncated to a maximum value K. We shall discuss the choice of K in section 6.1.

Given an MCMC sample {(k(s),U](Vs),Yl(s),...,Y(s)),s = 1,2,...,S} from the

n
posterior of k,Uy,Yi,...,Y,, we can approximate the density estimate b,(z) =

§ LAV = 6 30 30l g ) M)

s=1

The number of clusters in the population can be studied by the MCMC approxi-
mation of the posterior of Y7,...,Y,. In particular, the empirical frequencies of the
number of distinct values among Y7, ..., Y, approximate the posterior distribution
of the maximum number of clusters.

6 Applications.

6.1 Density estimation.

The Feller prior (with the restriction U(a) = 0 almost surely) selects absolutely
continuous distribution functions. Therefore, it can be appropriate for Bayesian
inference on an unknown distribution in ghe case of continuous data. In particular,



the Bayesian estimate of an unknown density, under a quadratic loss function, is
given by the posterior expectation of the random density, which can be approximated
by (7).

To illustrate the procedure, we reanalyse the galaxy data in Roeder (1990),
representing the relative velocities of n = 82 galaxies from six well-separated conic
sections of space. We choose this data set for sake of comparison. Among other
authors, the data have been studied by Escobar and West (1995) using mixtures of
normal densities, with a Dirichlet process prior for the mixing distribution of the
mean and variance. Ishwaran and Zarepour (2000) use a similar model, but different
computational strategies.

For these data, density estimation is of interest, as a tool for investigating the
number of clusters in the galaxies.

Since the data are in (0,00), we find appropriate to use a Feller prior with a
Gamma random scheme. In example 3 of section 3, we showed that the correspond-
ing Feller density is a mixture of inverse-gamma densities. In particular, we use a
Feller-Dirichlet prior, with & = 2 and Uy = Ga(20,1). The gamma has been chosen
because it is the conjugate prior for the inverse-gamma, while the specific values of
the parameters guarantee that the probability mass is concentrated on a range of
values which is reasonable for this kind of data.

The prior on k is uniform on {1,2,..., K}. In order to choose K, we suggest an
empirical procedure. If K is too small, the posterior will tend to concentrate on K.
This case is illustrated in Figure 1(a) where we plotted the sample values of k in the
MCMC iterations, with K = 500. Notice that the samples often hit the boundary
K. We can therefore increase K until this behavior disappears (see Figure 1(b), in
which K = 1000.

We used the truncation MCMC' algorithm described in the previous section, hav-
ing fixed N = 100. Figure 2 represents the Feller-Dirichlet density estimate for the
galaxy data. We see that there appear to be 5 or 6 distinct modes, according to the
results in the literature. Figure 3 shows the empirical distribution of the number of
distinct Y; values, which gives information on the maximum number of clusters.

Sensitivity of the results to prior assumptions has been studied. In particular we
observe that the choice of Uy has influence on the posterior of k. A flat Uy favours
small values of £ and consequently a smoother density estimate will be obtained.

6.2 Estimating a mixing distribution.

In this section we illustrate the use of a Feller prior at the second stage of a hi-
erarchical model. Specifically we consider the problem of combining results from
different binomial experiments in order to estimate the different mean parameters,
(61,...,0,), say. In frequentist analysis, Stein-kind shrinkage estimators are used
in order to shrink the maximum likelihood estimates towards a lower dimensional
space. In many applications, however, it is not clear whether to shrink towards the
overall mean or towards different points, representing the means of possible clusters
in the data. In this case it is preferable to combine different shrinkage estimators
(George, 1986).

In a Bayesian approach, one could specify a hierarchical model taking into ac-
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count different forms of partial exchangeability structures for (6, ...,6,). Partition
models, where a prior is explicitly given on the unknown partition, have been pro-
posed by Consonni and Veronese (1995). However all the above procedures require
to specify coefficients or hyperparameters with respect to which are quite sensitive.
As a consequence, it seems reasonable to explore a nonparametric approach.

Let us assume that (6;,...,60,) is a random sample from a distribution func-
tion H, and use a Feller-Dirichlet prior for H, with binomial random scheme, i.e.
a Bernstein-Dirichlet prior. The motivation for these assumptions can be easily
explained. The simplest choice for H would be the conjugate prior for the bino-
mial model, which is a beta distribution. However, since we are uncertain about
the presence of clusters in the experiments, it is more reasonable to model H
as a possibly multimodal distribution. The Bernstein-Dirichlet prior reaches this
aim since it is equivalent to model H as a mixture of beta densities of the kind
Ele wj,B(j, k—j—+1), where the number of components k and the mixture weights
wj, are unknown (see example 1). Notice that one could alternatively use a mix-
ture of the type E?Zl w;j kb (aj,bj), with a; and b; random. However our choice has
the advantage of not requiring the estimates of the parameters a;, b; which can be
troublesome for identifiability problems.

Adopting a Bernstein-Dirichlet prior with parameters (p, «, Up), the model can
be presented as follows.

) Xq,..., X0, .., 00, k,wi ~ T, bi(x;; my, 0;), where bi(-;m;, ;) denotes a
binomial probability function with m; trials and success probability 6;), and
Wy = (w1,k, R wk,k);

ii) 0y,...,0,|k, wy are i.i.d. according to a Bernstein density

iii) & and wy are independent; k ~ p(k) and wy ~ D(ay g, ..., k), a Dirichlet
distribution with parameters a;, = a[Up(j/k) —Uo((j — 1)/k)],7=1,... k.

Notice that, conditionally on (k,U), Xi,..., X, are i.i.d. from a mixture of
beta-binomial distributions, precisely

p(z|k,U) = ;wj,kfj,k(x) (8)

where

(9)

. _(mi)\B(z+j,mj —x+k—j+1)
ff”*”‘( ) B(j.h—j+1)

and B is the beta special function.

T

In this context there are two canonical problems. The first is to estimate the
mixing distribution H, the density b(-; k, wy) in our case. The other is to estimate
the binomial parameters (6, ...,0,).

A natural Bayesian estimate of the mixing density is the predictive density. This
is given by

b kywi) = EOO; kwe)lfy s 2n)



o0

= > b0k, E(wilk, z1, ... 2,))p(klz, ... 2y) (10)
k=1
where E(wg|k, 21, ..., x,) is the vector of the conditional expectations of wy |k, x1, . .., z,

and p(k|z1,...,x,) is the posterior probability function of k.
The binomial parameter f; can be estimated by its posterior expectation, given
by

o0

92' = E(9l|l‘1, Ce ,xn) = Z

k=1

m; 4 E+1 &

i +

Qj,k p(k|x17 s 7:Un)

where 8; = x;/m; is the MLE,

w'kfjk(fvz') )
g =F CLEEL k,xi,...,x,
" (ztzl RS Lkl

and f;,(x) is the beta-binomial probability function (9).

Therefore, conditionally on k, the estimate 6; is a weighted average between the
MLE and a mixture of the prior guesses j/(k+1) corresponding to the 3(-; j, k—j+1)
priors, for j = 1,...,k. The weights in the mixture depend on the conditional
distribution of wg|k, x1,...,z,. Roughly speaking, conditionally on & and w;, the
j™ beta component of the prior receives more weight if w; . or f;.(z;) is large.

It is interesting to note that the structure of the estimate (11) recalls the one
obtained by Consonni and Veronese (1995) using a partition model. In particular,
the smoothing parameter £ has a role somehow similar to that played by the random
partition.

For simulating from the posterior distribution of (k, wy) one can use the trunca-
tion MCMC algorithm presented in section 5.

Alternatively, since equation (8) shows that, conditionally on (k,U), Xi,..., X,
are i.i.d from a finite mixture of beta-binomial distributions, a reversible jump
MCMC can be used. However, because the weights w;; corresponding to differ-
ent values of k are related, being the increments of the same distribution function U
(see example 1), we prefer an algorithm which takes explicitly this fact into account.
The MCMC algorithm developed, for Bernstein-Dirichlet prior, in Petrone (1999)
can be used to this aim. Indeed the only modification required is the substitution
of a beta distribution with a beta-binomial distribution.

Given an MCMC sample from the posterior of (k,wy), the predictive density
(10) and the estimates (11) of the binomial parameters can be approximated by
their sample means.

Here we illustrate the procedure for a well studied data set, from George (1986).
The problem consists in estimating the batting averages (6, . .., ) of all 26 major
league baseball teams in USA, in the 1986 season, starting from the first 300 at bats.
Since the remaining at bats in the seasons, for each team, is greater than 5000, these
are adopted to evaluate the true values of . Consequently, we can compare different
estimators by the corresponding mean-squared errors.

We choose a Bernstein prior with o = 2, Uy uniform on [0, 1] and p(k) uni-
form on {1,2,...,1500}. These assumptions can be reasonably considered as non
informative.
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The estimates (11) of the binomial mean parameters (61, ..., 60s) are compared
with alternative estimates through the mean square errors reported in Table 1. Our
estimates behave fairly well, in comparison to estimates obtained by much more
structurated models, such as George’s multiple shrinkage estimates and Consonni
and Veronese’s hierarchical partition model estimates.

Table 1: Mean square errors for different estimators

Estimator MSE
Maximum Likelihood 26.57
Multiple Shrinkage from 4.4 to 5.37
Hierarchical Partition Model from 5.18 to 9.05
Feller prior 5.41

Multiple Shrinkage estimators are taken from George (1986),

hierarchical partition models estimates are taken from Consonni-Veronese (1995)

Figure 4(a) shows an estimate of the mixing density, given by the the predictive
density (9). This is unimodal, showing that the data are basically exchangeable.
Therefore, the shrinkage of the MLEs is towards the overall sample mean. This
is illustrated in Figure 4(b), where we plot our estimates against the maximum
likelihood estimates.
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Figure 1: MCMC samples from the posterior of k, with K = 500 and with K = 1000.
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Figure 2: Density estimate for relative velocities in thousands of kilometers/second
for 82 galaxies (Roeder,1990). (a) MCMC approximation of the predictive density.
(b) Twenty densities, randomly selected from the posterior of the random density.
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