
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

 

UNIVERSITÀ DELL'INSUBRIA 
FACOLTÀ DI ECONOMIA 

 
http://eco.uninsubria.it 

 
Giovanni P. Crespi, Ivan Ginchev,  

Matteo Rocca 
 

Increase-along-rays property for 
vector functions 

 
2004/24 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6668047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

© Copyright Ivan Ginchev, Giovanni P. Crespi, Matteo Rocca
Printed in Italy in July 2004 

Università degli Studi dell'Insubria 
Via Ravasi 2, 21100 Varese, Italy 

 
All rights reserved. No part of this paper may be reproduced in 

any form without permission of the Author. 

In questi quaderni vengono pubblicati i lavori dei docenti della 
Facoltà di Economia dell’Università dell’Insubria. La 
pubblicazione di contributi di altri studiosi, che abbiano un 
rapporto didattico o scientifico stabile con la Facoltà, può essere 
proposta da un professore della Facoltà, dopo che il contributo 
sia stato discusso pubblicamente. Il nome del proponente è 
riportato in nota all'articolo. I punti di vista espressi nei quaderni 
della Facoltà di Economia riflettono unicamente le opinioni 
degli autori, e non rispecchiano necessariamente quelli della 
Facoltà di Economia dell'Università dell'Insubria. 
 
These Working papers collect the work of the Faculty of 
Economics of the University of Insubria. The publication of 
work by other Authors can be proposed by a member of the 
Faculty, provided that the paper has been presented in public. 
The name of the proposer is reported in a footnote. The views 
expressed in the Working papers reflect the opinions of the 
Authors only, and not necessarily the ones of the Economics 
Faculty of the University of Insubria. 



Increase-along-rays property for vector functions

Giovanni P. Crespi∗ Ivan Ginchev† Matteo Rocca‡

Abstract

In this paper we extend to the vector case the notion of increasing along rays
function. The proposed definition is given by means of a nonlinear scalarization
through the so-called oriented distance function from a point to a set.
We prove that the considered class of functions enjoys properties similar to
those holding in the scalar case, with regard to optimization problems, relations
with (generalized) convex functions and characterization in terms of Minty type
variational inequalities.

Key words: generalized convexity, increase-along-rays property, star-shaped
set, Minty variational inequality.

1 Introduction

The notion of increasing along rays (IAR) scalar function arises mainly in the study of
abstract convexity (see e.g. [17]) and can be viewed as a generalization of the concept of
quasiconvex function. Properties of IAR scalar functions have been investigated in [4, 5].
Here, several properties of this class of functions with regard to optimization problems
have been pointed out and furthermore it has been shown that IAR functions can be
characterized by means of a generalized Minty variational inequality [16]. In this paper
we extend to the vector case the notion of IAR function. In Section 2 we briefly recall
the notion of scalar IAR functions and its basic properties. Since the proposed definition
of increasing along rays vector function is given using a nonlinear scalarization, namely
the so called oriented distance function from a point to a set, introduced in [13], Section
3 presents some basic facts on this concept and the main relations between a vector
minimization problem and its scalarized counterpart. In Section 4 the notion of vector
IAR function is presented and some basic properties with respect to vector optimization
are pointed out. Sections 5,6 and 7 are finally devoted to the investigation of the newly
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defined class of functions. As a feature typical only of the vector setting, we underline that
the introduced notion depends on the norm chosen in the image space. Being interested
in conditions on f which make this property independent on the norm in the image space,
we prove that this is the case when vector convex functions are considered. For vector
quasiconvex functions we have not the norm-independence of this property, but we prove
that these functions enjoy the increase along rays property for a suitable choice of the
norm in the image space. Further, we show that vector increasing along rays functions
can be characterized in terms of existence of a solution of a (scalar) generalized Minty
variational inequality.

2 Scalar increasing along rays functions

Throughout this paper we consider two real normed spaces X and Y with finite dimension.
We refer to the norm in the considered spaces by ‖·‖, since it will be clear from the context
to which of the normed spaces it applies. Further, K will denote a nonempty subset of
X.

In this section we set Y = R to recall the notion of IAR function and some of its basic
properties which further we extend to a general space Y .

Definition 2.1. i) Let K be a nonempty subset of X. The set ker K consisting of all
x ∈ K such that (y ∈ K, t ∈ [0, 1]) =⇒ x + t(y − x) ∈ K is called the kernel of K.

ii) A nonempty set K is star-shaped (for short st-sh) if ker K 6= ∅.

It is known (see e.g. [17]) that the set ker K is convex for an arbitrary st-sh set K.

Definition 2.2. A function ϕ : X → R is called increasing along rays at a point x0 (for
short, ϕ ∈ IAR(x0)) if its restriction on the ray Rx0,x = {x0 +αx|α ≥ 0} is an increasing
function of α, for each x ∈ X. (A function g of one real variable is increasing on the
interval I if t2 ≥ t1, t1, t2 ∈ I implies g(t2) ≥ g(t1).)

Definition 2.3. Let K ⊆ X be a st-sh set and x0 ∈ ker K. A function ϕ defined on K
is called increasing along rays at x0 (for short, ϕ ∈ IAR(K, x0)), if its restriction on the
segment Rx0,x ∩K is increasing, for each x ∈ K.

It is clear that when X = R and K is an interval, ϕ ∈ IAR(K, x0) if and only if it is
quasiconvex with a global minimum over K at x0. However the following example shows
that when n ≥ 2 and K is a convex set, the class of functions ϕ ∈ IAR(K, x0) is broader
then the class of quasiconvex functions with a global minimum at x0.

Example 2.1. Let ϕ(x1, x2) = x2
1x

2
2, and K = R2. Then, for x0 = (0 , 0) it is easily seen

that ϕ ∈ IAR(K, x0), but ϕ is not quasiconvex.

We consider the following problem:

P (ϕ, K) min ϕ(x), x ∈ K ⊆ X.
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A point x0 ∈ K is a (global) solution of P (ϕ, K) when ϕ(x) − ϕ(x0) ≥ 0, ∀x ∈ K. The
solution is strict if ϕ(x)− ϕ(x0) > 0, ∀x ∈ K\{x0}. We denote by argmin(ϕ, K) the set
of solutions of P (ϕ, K). Local solutions of P (ϕ, K) have a clear definition ad we omit it.

The properties which are stated in the following results motivate some of the interest for
the class IAR(K, x0) and are the core of the problems we present in the following sections.

Proposition 2.1 ([4]). Let K ⊆ X be a st-sh set, x0 ∈ ker K and ϕ ∈ IAR(K, x0).
Then:

i) x0 is a solution of P (ϕ, K);

ii) no point x ∈ K, x 6= x0, can be a strict local solution of P (ϕ, K).

iii) x0 ∈ ker argmin(ϕ, K).

Proposition 2.2 ([19]). Let K ⊆ X be a st-sh set, x0 ∈ ker K and ϕ be a function
defined on K. Then ϕ ∈ IAR(K, x0) if and only if for each c ∈ R with c ≥ ϕ(x0), we
have x0 ∈ ker lev≤cϕ, where lev≤cϕ = {x ∈ K : ϕ(x) ≤ c}.

IAR functions can be, as well, characterized through some generalized variational inequal-
ities of Minty type (see e.g. [4, 5]). The following notions are classical and are presented
for the sake of completeness.

Definition 2.4. Let K ⊆ X, x0 ∈ ker K and let ϕ be a function defined on an open set
containing K. The function ϕ is said to be radially lower semicontinuous over K along
rays starting at x0, if for each x ∈ K, the restriction of ϕ on the interval Rx0,x ∩ K is
lower semicontinuous.

We write ϕ ∈ RLSC(K, x0) to denote that ϕ satisfies the previous definition.
For any real function ϕ defined on an open set containing K, the lower Dini directional
derivative at the point x ∈ K in the direction u ∈ X is defined as an element of R̄ :=
[−∞, +∞] by

ϕ′−(x, u) = lim inf
t→+0

ϕ(x + tu)− ϕ(x)

t
.

The problem of finding x0 ∈ kerK that satisfies the inequalities

MV I(ϕ′−, K) ϕ′−(y, x0 − y) ≤ 0,∀y ∈ K

can be regarded as a generalized Minty variational inequality. This problem obviously
reduces to the usual Minty variational inequality problem of differential type (see e.g.
[16]) when ϕ is differentiable on an open set containing K.

Theorem 2.1 ([4]). Let K ⊆ X be a st-sh set and x0 ∈ ker K.

i) If x0 solves MV I(ϕ′−, K) and ϕ ∈ RLSC(K, x0), then ϕ ∈ IAR(K, x0).

ii) Conversely, if ϕ ∈ IAR(K, x0), then x0 is a solution of MV I(ϕ′−, K).

We recall furthermore that the importance of IAR functions in scalar optimization is
stressed by the fact that they also enjoy several well-posedness properties (see e.g. [4]).
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3 Oriented distance function and scalar characteri-

zations of vector optimality concepts

Let f be a function from X to Y and let C be a closed convex pointed cone in Y with
int C 6= ∅. We consider the vector optimization problem

V P (f, K) minC f(x), x ∈ K ⊆ X.

Usually, the solutions of problem V P (f, K) are called points of efficiency, but here we
prefer to call them minimizers. We say that the point x0 ∈ K is e-minimizer (respectively
w-minimizer) for V P (f, K) when f(x) − f(x0) 6∈ −C\{0} (f(x) − f(x0) 6∈ −int C), for
every x ∈ K. Further, A point x0 ∈ K is an ideal minimizer when f(x) − f(x0) ∈ C.
Recall that ideal minimizers are not likely to happen for V P (f, K).

Given a set A ⊂ Y and a point y ∈ Y , the distance from y to A is given by the function
(depending on the norm chosen on Y ) dA(y) = infa∈A ‖y−a‖. In [13] the author proposes a
generalization of the distance notion, known as oriented distance. The oriented distance
from y to A is given by the function ∆A(y) = dA(y) − dY \A(y). Observe that while
dA(y) = 0 when y ∈ clA (the closure of A) and positive elsewhere, ∆A(y) < 0 for
y ∈ intA, ∆A(y) = 0 for y ∈ bdA (the boundary of A) and positive elsewhere.

When A = C is a closed convex cone, function ∆−C(y) is equivalent (see e.g. [10]) to

∆−C(y) = max{〈ξ, y〉, ξ ∈ C ′ ∩ S},

where C ′ = {ξ ∈ Y : 〈ξ, c〉 ≥ 0, ∀c ∈ C} denotes the positive polar of the cone of C
and S = {ξ ∈ Y : ‖ξ‖ = 1} is the unit sphere in Y . In the sequel we also denote by
B = {y ∈ Y : ‖y‖ ≤ 1} the unit ball in Y .
It is worth mentioning that when Y = Rn is endowed by the norm ‖y‖∞ =
max{|y1|, . . . , |yn|} and C = Rn

+, then we have ∆−C(y) = max{y1, . . . , yn}. Further
properties of the oriented distance function can be found in [20]. Recently, function ∆−C

has been used (see e.g. [1, 3, 11, 12, 15, 19]) to scalarize the vector optimization problem
V P (f, K). The considered scalar problem is

P (ϕx0 , K) min ϕx0(x), x ∈ K,

where x0 ∈ K and ϕx0(x) = ∆−C(f(x) − f(x0)). The relations among the solutions of
problem P (ϕx0 , K) and those of problem V P (f, K) are investigated in [11, 20]. For the
reader’s convenience, we quote here the characterization of the w-minimizers.

Theorem 3.1. [11, 20] The point x0 ∈ K is a w-minimizer for problem V P (f, K) if and
only if it is a solution of problem P (ϕx0 , K).

4 Vector increasing along rays functions

From now on, if not otherwise specified, K denotes a st-sh subset of X. We recall that in
[14], the following definition of cone monotonic function is given.
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Definition 4.1 ([14]). Assume that the space X is partially ordered by a closed convex
pointed cone D. A function f : X → Y is said to be increasing at x0 ∈ X, when

X ∩ (x0 −D) ⊆ {x ∈ X : f(x) ∈ f(x0)− C}

If we try to rephrase this definition in a radial context, we get that, if K is a st-sh set,
then f is increasing on K along the rays starting at x0 when , ∀x ∈ K and ∀t1, t2 , with
t2 ≥ t1 ≥ 0, it holds f(x0 + t1(x− x0)) ∈ f(x0 + t2(x− x0))−C. Anyway, this definition
reveals to be too strong for our purposes, since, in this case it is easily seen that x0 is an
ideal minimizer for f over K.

This consideration leads us to introduce the following notion of vector increasing along
rays (VIAR) function.

Definition 4.2. Let K ⊆ X be st-sh. A function f : K → Y is said to increase along
rays starting at a point x0 ∈ ker K (for short f ∈ V IAR(K, x0)), when function ϕx0(x) ∈
IAR(K, x0).

The previous definition has a clear geometrical meaning and reduces to the notion of IAR
function when f : X → R. The VIAR property is a monotonicity (along rays) property,
defined through the oriented distance function and not through the order induced on Y
by the cone C. The oriented distance function clearly depends on the norm considered
on the space Y and hence one would expect that the VIAR property depends also on the
chosen norm. This is the case, as the following simple example shows.

Example 4.1. Consider the function f : R → R2, defined as f(x) = (x, g(x)), where
g(x) = 2x if x ∈ [0, 1] and g(x) = −1

4
x + 9

4
if x ∈ (1, +∞) and let C = R2

+, K = R+ and
x0 = 0. Then it is easy to show that function f ∈ V IAR(K, x0) if R2 is endowed with the
Euclidean norm l2, but f 6∈ V IAR(K, x0) if R2 is endowed with the norm l∞.

Investigating the VIAR property, we are also interested in conditions on f , which, like
in the scalar case, make this property independent on the (equivalent) norms that can
be introduced on Y . For C-convex functions such independence is shown in Theorem 5.1
below. The next propositions give some basic properties of VIAR functions which should
be compared with those in Section 2.

Proposition 4.1. Let K ⊆ X be st-sh and x0 ∈ ker K. If f ∈ V IAR(K, x0), then

f(x0 + t2(x− x0))− f(x0 + t1(x− x0)) 6∈ −int C, (1)

∀t2 ≥ t1 > 0 and ∀x ∈ K.

Proof. Omitted as immediate. 2

The reversal of Proposition 4.1 does not hold, as the next example shows.

Example 4.2. Let X = R, Y = R2 endowed with the l∞ norm, K = R+, C = R2
+ and

x0 = 0. Consider the function f : K → R2, defined as f(x) = (2x− x2, x2 − 2x). Then f
fulfills condition (1), but f 6∈ V IAR(R+, x0).
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Proposition 4.2. Let K ⊆ X be st-sh and x0 ∈ ker K. Then f ∈ V IAR(K, x0) if
and only if for every x ∈ K and ε > 0 such that f(x) ∈ f(x0) − C + εB, it holds
f(x0 + t(x− x0)) ∈ f(x0)− C + εB, for every t ∈ [0, 1].

Proof. The proof is immediate, observing that

{x ∈ K : f(x) ∈ f(x0)− C + εB} = {x ∈ K : ϕx0(x) ≤ ε} = lev≤εϕx0

and recalling Proposition 2.2. 2

Proposition 4.3. Let x0 ∈ ker K and f ∈ V IAR(K, x0). Then:

i ) x0 is a w-minimizer of f over K.

ii ) The set f−1(f(x0)) is st-sh with x0 ∈ ker f−1(f(x0)).

Proof. i ) Since ϕx0 ∈ IAR(K, x0), then x0 is a minimizer of ϕx0 over K and hence a
w-minimizer of f .

ii ) the set f−1(f(x0)) is the set of global minimizers of ϕx0 and hence the result follows
from Proposition 1 in [4].

2

Remark 4.1. We wish to observe, similarly to the scalar case, that if f ∈ V IAR(K, x0),
then f is C-quasiconnected [2, 15]. It follows that, similarly to the scalar case, V IAR
functions enjoy some well-posedness properties. For more details on this topic we refer to
[15].

5 Classes of VIAR functions

In the scalar case, it is known that quasiconvex functions are in the class IAR(K,x0),
where x0 is a minimizer for f over the set K. We are going to see that in the vector case
some differences arise. Namely, let x0 be w-minimizer for a function f : X → Y ; we will
see that if f is C-convex, then f ∈ V IAR(K, x0), whatever the norm we choose on the
space Y . On the contrary, if f is C-quasiconvex, then it possesses the V IAR property
only for suitable choices of the norm in Y .

Definition 5.1 ([14]). Let K be a convex subset of X.

i) The function f : X → Y is C-convex on K if for every x1, x2 ∈ K and for every
t ∈ [0, 1] it holds

f((1− t)x1 + tx2)− (1− t)f(x1)− tf(x2) ∈ −C

6



ii) The function f : X → Y is C-quasiconvex on K if for every y ∈ Y , the (level) set

{x ∈ K : f(x) ∈ y − C}

is convex.

Remark 5.1. We wish to recall that a function f is C-convex if and only if the scalar
function 〈ξ, f〉 is convex for every ξ ∈ C ′. The same result does not hold for C-quasiconvex
functions [14]. Anyway, we remind that when Y = Rn and C = Rn

+, then f is C-
quasiconvex if and only if every component of f is quasiconvex. Furthermore, when
Y = Rn and if C is a polyhedral cone generated by n linearly independent vectors, then
also C ′ is generated by n linearly independent vectors ξ1, . . . , ξn and f is C-quasiconvex
if and only if 〈ξi, f〉 is quasiconvex for every i = 1, . . . , n.

Theorem 5.1. Let K be a convex subset of X and let f be C-convex on K. If x0 is a
w-minimizer of f over K, then f ∈ V IAR(K, x0), whatever the norm chosen in Y .

Proof. Function f is C-convex if and only if the scalar function 〈ξ, f(x)〉, is convex for
every ξ ∈ C ′. Hence, whatever the norm chosen in Y , function ϕx0(x) is the maximum of
convex functions and hence is convex. 2

Now we turn our attention to C-quasiconvex functions. We are going to show that if f is
a C-quasiconvex function and x0 is w-minimizer of f over K, then we can always choose
a norm on Y , such that f ∈ V IAR(K,x0). To do this we need some preliminary concepts
and results. We recall that a convex set A ⊆ C is a base for the cone C when 0 6∈ A and
for every k ∈ C, k 6= 0, there are unique elements a ∈ A and t > 0, such that k = ta.

Lemma 5.1 ([14]). Let k ∈ int C, α > 0 and consider the hyperplane Hα = {y ∈ Y :
〈k, y〉 = α}. Then the set Gα = Hα ∩ C ′ is a compact base for C ′.

Given the set Gα, let B̃α = conv {Gα ∪ (−Gα)} (here conv A denotes the convex hull of
the set A). Since Gα is compact, then also B̃α is compact. Define the following function
from Y to R+: γ(y) = α if and only if y ∈ bd B̃α. Observe that γ is a function, since it
associates to every y one and only one α > 0.

Proposition 5.1. The function γ : Y → R+, defined above, is a norm on Y .

Proof. The properties

i) γ(y) ≥ 0 and γ(y) = 0 if and only if y = 0;

ii) γ(ty) = tγ(y), ∀t > 0;

are almost immediate. We claim that γ(y + z) ≤ γ(y) + γ(z), ∀x, y ∈ Y . In fact, it is
enough to prove that

B̃α1 + B̃α2 ⊆ B̃α1+α2 ,
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for every α1, α2 > 0. Consider y ∈ B̃α1 and z ∈ B̃α2 . Then it is easily seen that there
exist a1 ∈ Gα1 , a2 ∈ −Gα1 , b1 ∈ Gα2 and b2 ∈ −Gα2 , such that y = ta1 + (1 − t)a2 and
z = τb1+(1−τ)b2, for some t and τ ∈ [0, 1]. Let θ1 = α1+α2

α1
a1, θ2 = α1+α2

α1
a2, γ1 = α1+α2

α2
b1

and γ2 = α1+α2

α2
b2. Then θ1, γ1 ∈ Gα1+α2 , θ2, γ2 ∈ −Gα1+α2 and we can write

y + z = t
α1

α1 + α2

θ1 + τ
α2

α1 + α2

γ1 + (1− t)
α1

α1 + α2

θ2 + (1− τ)
α2

α1 + α2

γ2.

It follows that y + z is a convex combination of elements of B̃α1+α2 and this completes the
proof. 2

We denote the norm defined by function γ as ‖ · ‖C,k, to stress the dependence on both
the ordering cone and the given k ∈ intC.

Theorem 5.2. Let K be a convex set, let f be C-quasiconvex on K and let x0 be w-
minimizer for f over K. Then, whatever k ∈ intC, if Y is endowed with the norm ‖·‖C,k,
then f ∈ V IAR(K, x0).

Proof. Recall that, since Y is endowed with the norm ‖ · ‖C,k, we have C ′ ∩S = {ξ ∈ C ′ :
〈ξ, k〉 = 1}. For ε > 0, we have

{x ∈ K : ϕx0(x) ≤ ε} = {x ∈ K : max
ξ∈C′∩S

〈ξ, f(x)− f(x0)〉 ≤ ε}

= {x ∈ K : max
ξ∈C′∩S

〈ξ, f(x)− f(x0)〉 ≤ ε max
ξ∈C′∩S

〈ξ, k〉}

= {x ∈ K : max
ξ∈C′∩S

〈ξ, f(x)− f(x0)− εk〉 ≤ 0} = {x ∈ K : f(x) ∈ f(x0) + εk − C}.

Since f is C-quasiconvex on K, this last set is convex for every ε > 0 and so the level set
of ϕx0 , {x ∈ K : ϕx0(x) ≤ ε} is convex too. It follows that ϕx0 is quasiconvex with x0 as
minimizer over K and hence is in the class IAR(K, x0). 2

The next example shows that also for C-quasiconvex functions, the V IAR property de-
pends on the norm chosen on the space Y .

Example 5.1. Consider the function f : R+ → R2, f(x) = (f1(x), f2(x)), with f1(x) = 0,
for x ∈ [0, 1

3
] and f1(x) = x − 1

3
, for x ∈ (1

3
, +∞), while f2(x) = x, for x ∈ [0, 1

3
] and

f2(x) = 1
3
, for x ∈ (1

3
, +∞). Let K = R+, x0 = 0 and C = R2

+. Further, consider the
cone C1 = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0, 1

2
x1 ≤ x2 ≤ 2x1} and k = (1, 1) ∈ int C1. Then

f is C-quasiconvex and x0 is w-minimizer for f over K. If R2
+ is endowed with a norm

lp, 1 ≤ p ≤ +∞, then f ∈ V IAR(K, x0). But if R2
+ is endowed with the norm ‖ · ‖C1,k,

then f 6∈ V IAR(K, x0).

When Y = Rn and C = Rn
+ Theorem 5.2 holds for the most common lp norms.

Proposition 5.2. Let Y = Rn, C = Rn
+ and let f be a C-quasiconvex function. If x0 is

w-minimizer for f over K (K convex) and Y is endowed with a lp norm (1 ≤ p ≤ +∞),
then f ∈ V IAR(K, x0).
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Proof. We begin observing that given a point y = (y1, . . . , yn) ∈ Rn\(−Rn
+), if Y is

endowed with a lp norm, we have ∆(y,−Rn
+) = (

∑
i∈I+(y) yp

i )
1
p , for 1 ≤ p < +∞ and

∆(y,−Rn
+) = max{yi, i ∈ I+(y)}, for p = +∞, where I+(y) = {i = 1, . . . , n : yi > 0}.

Now, without loss of generality assume that f(x0) = 0, take any x ∈ K, consider the ray
Rx0,x and observe that the restriction of every function fi (a component of f) on this ray is
quasiconvex. To show that f ∈ V IAR(K, x0), consider any two numbers t1, t2 > 0 , with
t2 > t1. If fi(x+ t1(x−x0)) > 0, then it cannot be fi(x

0 + t2(x−x0)) < fi(x+ t1(x−x0)).
In fact, if this happens, the level set, {t : fi(x

0 +t(x−x0))} ≤ max{0, fi(x
0 +t2(x−x0))}}

is not convex, since t1 does not belong to this set. Form these considerations, it follows
readily that the function ϕx0(x) ∈ IAR(K, x0), which completes the proof. 2

The previous result can be extended to the case where Y = Rn and C ′ is a polyhedral
cone generated by n linearly independent vectors ξ1, . . . , ξn. In this case, define in Rn the
norms

‖y‖ =

(
n∑

i=i

|〈ξi, y〉|p
) 1

p

, for 1 ≤ p < +∞

and

‖y‖ = max{|〈ξi, y〉|, i = 1, . . . , n}, for p = +∞.

We refer to these norms as lpC norms. The proof of the next result follows along the lines
of Proposition 5.2 and we omit it.

Proposition 5.3. Let Y = Rn and let C ′ be a polyhedral cone generated by n linearly
independent vectors ξ1, . . . , ξn. If f is C-quasiconvex on the convex set K ⊆ X, x0 is a
w-minimizer for f over K and Y is endowed with a lpC norm, then f ∈ V IAR(K, x0) .

6 VIAR functions and variational inequalities

In the scalar case, a function f ∈ IAR(K, x0) is characterized by Theorem 2.1 by means
of a Minty variational inequality problem. The study of vector optimization problems by
means of Minty-type variational inequalities has been first presented in [9] and has been
deepened in [18]. This approach is based on a vector-valued variational inequality. Let
f : K ⊆ X → Y be a function of class C1 on an open set containing the convex set
K. The vector variational inequality of Minty type is defined as the problem of finding a
point x0 ∈ K such that

MV V I(f ′, K) f ′(y)(x0 − y) ∩ C = {0}, ∀y ∈ K.

If it holds

MV V Iw(f ′, K) f ′(y)(x0 − y) ∩ intC = ∅, ∀y ∈ K

then x0 ∈ K is a weak solution of MV V I(f ′, K). However, it can be shown that if
x0 is a solution (or a weak solution) of MV V I(f ′, K) , then differently form the scalar
case, f does not necessarily belong to the class V IAR(K, x0) (see e.g. Example 1 in [6]).
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The former gap can be filled in by relating to V IAR functions suitable scalar variational
inequality problems.

Definition 6.1 ([14]). Let f be a function defined on a set K ⊆ X. We say that f is
C-continuous at x̄ when for every neighbourhood U of x̄ ∈ X, there exists a neighbourhood
V of f(x̄) ∈ Y , such that

f(x) ∈ V + C, ∀x ∈ U ∩K.

We say that f is C-continuous on K, when f is C-continuous at any point of K.

Definition 6.2 ([14]). Let {h(x, t) : t ∈ T} be a family of scalar-valued func-
tions on K, where T is a nonempty parameter set. We say that this family is lower
equi-semicontinuous at x̄ ∈ K when for every ε > 0, there exists a neighbourhood U of x̄,
such that

h(x, t) ≥ h(x̄, t)− ε, ∀x ∈ U ∩K and t ∈ T.

We recall the following result.

Proposition 6.1 ([14]). f is C-continuous at a point x̄ ∈ K if and only if the family
G = {〈ξ, f〉 : ξ ∈ C ′ ∩ S} is lower equi-semicontinuous at that point.

The proof of the next proposition comes immediately from the previous result.

Proposition 6.2. Let f : X → Y be C-continuous on K and let x0 ∈ K. Then function
ϕx0(x) is lower semicontinuous on K.

The previous definitions and results can be rephrased in a radial sense.

Definition 6.3. Let K be a st-sh set with x0 ∈ ker K and let f be a function defined on
an open set containing K. The function f is said to be C-radially continuous in K along
the rays starting at x0 (for short, f ∈ C-RC(K, x0)), if for every x ∈ K, the restriction
of f on the interval Rx0,x ∩K is C-continuous.

Proposition 6.3. Let f ∈ C-RC(K,x0). Then ϕx0(x) is radially lower semicontinuous
in K along the rays starting at x0 (ϕx0 ∈ RLSC(K, x0)).

So, we can give the following result, which characterizes V IAR functions in terms of a
suitable variational inequality.

Proposition 6.4. Let K be a st-sh set and x0 ∈ ker K. Assume that f is a function
defined on an open set containing K.

i) Let f ∈ C-RC(K, x0). If x0 solves MV I((ϕx0)′−, K), then f ∈ V IAR(K, x0).

ii) conversely, if f ∈ V IAR(K,x0), then x0 solves MV I((ϕx0)′−, K).

Proof. The proof follows recalling Proposition 6.3 and Theorem 2.1. 2
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Similarly to the scalar case, the assumption f ∈ C-RC(K, x0) appears in only one of
the two opposite implications. The next example shows that this assumption cannot be
dropped at all.

Example 6.1. Let K = R, x0 = 0, consider the function f : R → R2 defined as
f(x) = (g(x), g(x)), with

g(x) =

{
1, if x 6= 2

3, if x = 2

and assume that R2 is endowed with the norm l∞. Then f 6∈ C-RC(K, x0) and it holds
(ϕx0)

′
−(y, x0 − y) ≤ 0, ∀y ∈ R, but f 6∈ V IAR(K, x0).

Corollary 6.1. Let x0 ∈ ker K and let f ∈ C−RC(K, x0). If x0 solves MV I((ϕx0)′−, K),
then x0 is w-minimizer for f over K.

We close this section with some comparisons between problem MV I((ϕx0)′−, K) and the
vector variational inequality problem MV V I(f ′, K), assuming that f is a function of
class C1 on an open set containing K. In [7] it has been observed that every solution
of MV I((ϕx0)′−, K) is also a weak solution of MV V I(f ′, K), regardless of the norm
introduced in the space Y . The converse does not necessarily hold as shown by Example 2
in [7]. Anyway, Theorem 9 in [7] ensures that if f is a C-convex function on the convex set
K, then any x0 ∈ K which is a weak solution of MV V I(f ′, K) solves also MV I((ϕx0)′−, K)
(regardless of the norm in Y ). The next example shows that the coincidence of the two
concepts of solution cannot be extended to C-quasiconvex functions.

Example 6.2. Let Y = R2, X = R, K = [0, π + 3
√

2] and consider the function f : R+ →
R2 defined as f(x) = (f1(x), f2(x)), where

f1(x) =

{
0, 0 ≤ x ≤ π
(π − x)3, x > π

and

f2(x) =

{
cos x− 1, 0 ≤ x ≤ π
−2, x > π

Then f is of class C1 and C-quasiconvex on K. It easily seen that x0 = 0 is a weak
solution of MV V I(f ′, K), but x0 is not a solution of MV I((ϕx0)

′
−, K), whatever the

norm in Y , since x0 is not w-minimizer of f over K (recall Corollary 6.1).

It is worth mentioning also that when f is of class C1, then ϕx0 is subdifferentiable
(see e.g. [8]) and it can be proved that problem MV I((ϕx0)′−, K) is equivalent to the
more popular Minty generalized variational inequality for the set-valued map ∂ϕx0(·) (the
subdifferential), which requires to find a point x0 ∈ K such that the inequality

〈v, x0 − y〉 ≤ 0

is satisfied for every v ∈ ∂ϕx0(y) and y ∈ K.
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7 The case f is C-quasiconvex

The main reason to introduce a variational inequality is to define an alternative approach
to the underlying optimization problem. The best opportunity is to have coincidence of
solutions sets. In our case, if f ∈ C-RC(K, x0), any solution of MV I((ϕx0)′, K) is a
w-minimizer for V P (f, K). The following example shows that the converse is not true in
general.

Example 7.1. Let X = K = Y = R2, C = R2
+, k = (1, 1) and assume that Y is endowed

with the norm ‖ · ‖C,k (which coincides with the l1 norm). Let f(x1, x2) = (x2
1x

2
2,−x2

1x
2
2).

Then the set of the w-minimizers is R2, but any point x0 = (0, x2) is not a solution of
MV I((ϕx0)′−, K). This can be seen since ϕx0(x1, x2) = x2

1x
2
2.

The next theorem proves that when f is assumed to be C-quasiconvex, the coincidence
of the solution sets of MV I((ϕx0)′−, K) and V P (f, K) is guaranteed.

Theorem 7.1. Assume that Y is endowed with the norm ‖ · ‖C,k. Let K ⊆ X be a convex
set and f : K → Y be C-quasiconvex. Then x0 is a w-minimizer of f over K if and only
if is a solution of MV I((ϕx0)′−, K).

Proof. Let x0 ∈ K be a w-minimizer. Then, Theorem 5.2 applies and hence f ∈
V IAR(K, x0). Proposition 6.4 completes the proof. 2

Remark 7.1. If Y = Rn and C = Rn
+ (or C is a polyhedral cone generated by n linearly

independent vectors), then in the previous result, the norm ‖ · ‖C,k can be replaced by the
lp norm (the lpC norm).
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