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Abstract

A constrained optimization problem with set-valued data is considered. Different kind of so-
lutions are defined for such a problem. We recall weak minimizer, efficient minimizer and proper
minimizer. The latter are defined in a way that embrace also the case when the ordering cone is not
pointed. Moreover we present the new concept of isolated minimizer for set-valued optimization.
These notions are investigated and appear when establishing first-order necessary and sufficient opti-
mality conditions derived in terms of a Dini type derivative for set-valued maps. The case of convex
(along rays) data is considered when studying sufficient optimality conditions for weak minimizers.

Key words Vector optimization, Set-valued optimization, First-order optimality conditions.

Math. Subject Classificatior®?0C29, 90C30, 90C46, 49J52.

1 Introduction

In this paper we focus on the following set-valued constrained optimization problem (in the sequel svp)
ming F(z), ze€Ga)N(-K)#0, 1)

whereF : X ~» Y, andG : X ~ Z are set-valued functions (svf) defined from a Banach Spaa#o

Banach spaces andZ respectively and both’ andG are nonempty-valued ovef. We suppose that a
ordering relation oY” andZ is induced by the closed convex corgs Y andK C Z respectively. We

will assume that in general these cones are not pointed, since pointedness is too restrictive assumption,
when constrained problems are concerned. As for notation, throughout the paper we denote set-valued
functions with capital letters and squiggled arrow, while, when single-valued examples are considered,
the lower case letter and straight arrow will identify the functions. When we say aipaint is feasible

we mean, throughout the paper, thgtr) N (—K) # 0.

The svp (1) can be regarded as a generalization of a single-valued vector optimization problem. As it is
well known (see e.g. [19]) the notion of a solution to the latter problem can be defined in different ways.
We shall distinguish efficient, weakly efficient, strict efficient, properly efficient and isolated solutions

of a vector (constrained or unconstrained) optimization problem. Some of these notions have already
been considered elsewhere as related to (1). The notion of weak-minimizaimimizer) or efficient-
minimizer -minimizer) has been widely studied and some first order necessary and sufficient conditions
have been presented in terms of suitable notions of derivatives (see e.g. [1, 5, 14] for the unconstrained
case, [18, 21] for the constrained problem).

Here we concentrate on the notiondeminimizer (isolated minimizer) which extends the concept of
isolated minimizer of ordet introduced for scalar problems by Auslender in [2]. Notions of optimality



for problem (1) are presented in Section 2, together with some basic notations and some preliminary
facts on set-valued functions. The case of unconstrained set-valued optimization has been studied in [5].
Here, for the sake of completeness, we recall in Section 3 some of the results from [5]. Sections 4 and
5 present the main results for the constrained problem. In Section 4 optimality conditions for svp with
Lipschitz type functions are considered, while Section 5 deals with convexity type assumptions.

2 Preliminary

We denote byR the set of the reals alll = RU {—oo} U {+o0} its two point extension with the infinite
elements. For the norm and the dual pairing in a normed space wejwfitend(-, -). From the context

it should be clear to exactly which spaces these notations are applied. We der®ie by{z € X |
|lz|| < 1} andBy = {y € Y | ||ly|| < 1} the open unit balls respectively i§ andY". Similarly, the
notationsSx = {z € X | ||z|]| = 1} andSy = {y € Y | ||ly|| = 1} are used for the unit spheres. When
X orY are finite dimensional, of dimensieanandm respectively, we identify them with the Euclidean
spaceR™ andR" respectively.

The notion of the positive polar cone is used in the sequel. We recall that for a closed convelxcotie
its positive polar cone is defined by = {¢ € Y | (¢, y) > Oforall y € A}. For a subseB of a normed
space and an elemeytt of the same space, we sete (4 — y°) := {\(y — ") | A >0, y € A}.

We introduce the following concepts of solutions for problem (1). The @&iry), 3° € F(z), 2° fea-
sible, is said to bev-minimizer (respectively-minimizer) if there exists a neighbourhoétof 2° such
thatif 2 € UN X, = feasible, ther(z)N (y° — int C) = @ (respectivelyr (z)N (y° — (C'\ {0}) = 0).
Obviously, if C' # Y, eache-minimizer isw-minimizer.

Define the weakly efficient frontier(-frontier) w-Minc A and efficient frontier -frontier) e-Mingc A

of a setA C Y with respect to the con€ by w-MincA = {y € A | An(y —intC) = 0} and
e-MincA = {ye A| An(y—(C\{0})) =0}. If C # Y itholdsintC c C\ {0}, whence
w-Minc A D e-Ming A (for vector optimization theory based on notions of efficient frontiers see Luc
[19)).

Puttingz = 20 in the above definitions we see that(if’, y") is a w-minimizer (respectivelye-
minimizer) for svp (1) then belongs to thev-frontier (respectively-frontier) of the set(z°). Thus,

in order thatz°, y%), ° € F(z°), be a minimizer of certain type for svp (1) necessary some frontier-type
limitations for the point,° do occur.

For a setd C Y the distance fromy € Y to A is given byd(y, A) = inf{||la — y|| | a € A}. Itis
convenient to allow also valueocc of the distance function putting(y, ) = +oc.

The oriented distance fromto A is defined byD(y, A) = d(y, A) — d(y, Y \ A). It takes values iR
and in particulatD(y, #) = +oo andD(y, Y) = —oo. The functionD is introduced in Hiriart-Urruty
[12, 13] and since then is often used in vector optimization. In [10], whéna convex set, the authors
prove thatD(y, A) = sup|¢|=1 ({§, ¥) — supaca(§; a)) and apply this characterization to approximate
set-valued functions by single valued ones. Let us underline that this formula works al$o=fdi or

A =Y. From this representation, @ is a convex cone and taking into account

. B 0o , el
i (&, a) _{ -0, ¢,
we get easily
D(y7 _C) = sup (<£7 y>) ) (2)
l&l=1,¢ec”
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whereC’ = {£ | (&, y) > 0is the positive polar cone @ (further we use similar notation also for other
positive polar cones).

We define next the oriented distanbg¢ M, A) from a setM C Y tothe setd C Y puttingD(M, A) =
inf{D(y, A) | y € M}.

LetC C Y be a cone and let be a real number. The set
Cla) ={yeY |D(y, C) <alyl}.

is a closed (but not necessarily convex) cone, which is a consequence of the positive homogeneity of the
oriented distanc® (-, C') and the nornj| - ||.

We define, for a the vector optimization problem (vvp)
mine f(z), g(z) € K. (3)

with f : X — Y, g: X — Z afeasible point? (i.e. g (2°) € —K is ap-minimizer (proper minimizer)
if there existsa, 0 < a < 1, and a neighbourhootl of 2 such thatf(z) — f(z°) ¢ —int C(a) for
x € U, x feasible. Clearly, whel' is pointed closed convex cong, is finite dimensional, and > 0
is sufficiently small, therC'(a) is also a pointed closed convex cone anchinimizers coincides with
Henig proper efficient points.

The notion of proper minimizer can be applied also to svp. We say that the(@8int’), 3° € F(x°),
20 feasible, is @-minimizer for (1) if there exista, 0 < a < 1, and a neighbourhoad of z°, such that
r € U, z feasible, and) € F(x) imply y — y° ¢ —int C(a).

Foragivenasel C Y the sepp-MincA={yc A| An(y— C(a)) = {y} forsomea, 0 < a < 1}
is the properly efficient frontieptfrontier) of A with respect ta”. Obviouslye-MincA O p-Ming A.

Forz = 2° the definition of ap-minimizer for svp (1) gives now that ifz?, "), ¢ € F(2°), is a
p-minimizer for svp (1) then® € p-Ming F(2).

Another concept of optimality is the concept of an isolated minimizemifimizer). We say that:?, "),
y? € F(z%), is ai-minimizer for svp (1) ifz° is feasible and there is a neighbourhdéf z° and a
constantd > 0 such thatD(F(x) — 3°, —C) > A |z — 2°|| andy® € p-Minc F(2°) for x € U N X,
x feasible. In [5] under Lipschitz type conditions it has been shown that-thmimizers are als@-
minimizers.

The notion of isolated minimizer has been popularised by Auslender [2]. For vector functions it has been
extended in [6, 7, 8, 9] and under the name of strict efficiency in [15, 16, 17].

In the definition of ai-minimizer for svp appears explicitly the inclusigfl € p-Ming F(2), which
deserves some explanation. For vvp (3) with locally Lipschitz funcfiagachi-minimizer is also a
p-minimizer, see [7]. In order that similar relation occurs for svp (1), we need to insert explicitly this
assumption. It is necessary satisfied fgr-minimizer and does not follow from inequality (F'(x) —
y?,—C) > Allx — 2°|| being used in the definition ofaminimizer for svp (1). It should be clear that
p-minimizers are not necessariyminimizers.

Example 2.1LetX =Y = Z = R, F be given asF(z) = [22,22?], that is the image of € R is
the interval[z?, 22%], G(z) = [-2* — 1,—2?] andC = K = Ry. Note that for alla > 0 it holds
C(a) = C. Thenitis easy to check théty, yo) = (0,0) is ap-minimizer, but not-minimizer.

The notion of isolated minimizer for vector optimization is frequently studied under assumption of

Lipschitz data. We recall [1] that the s¥ : X ~ Y is locally Lipschitz atz® € X, if there ex-
ists a neighbourhood of z° and a constanf. > 0, such that forz!, 2 € U it holds F(2?) C
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F(z') + L||2? — 2| By. The svfF : X ~ Y is locally Lipschitz, if it is locally Lipschitz at each
2¥ € X. The property can be analogously defined with respect to the closed conve& ¢timeorder-
ing cone in the image space). The $vf: X ~ Y is locally Lipschitz w.r.t.C atz® € X, or locally
C-Lipschitz atz?, if there exists a neighbourhodd of 2° and a constant > 0 such that it holds

F(z?) C F(a')+ C+ L|2* —2'|cdBy forall z',2>cUnX,.

We say that svi” : X, ~ Y is locally C-Lipschitz if it is locally C-Lipschitz at eac® € X,. For a
review of the properties of locall¢-Lipschitz functions we refer to [5].

Because of the convexity @f, svf F'is locally C-Lipschitz if and only if the set-valued functian ~~
F(z) + Cis locally Lipschitz.

Further we recall [1] that for sv® : T, ~ Y given on a subséf; of the topological spacé the upper
limit Limsup,_, ®(t) is defined by

Limsup,_,,®(t) = {y € Y| limérﬁf d(y, ®(t)) = 0}.
t—

We shall now define the (upper) Dini-derivative of a v X, ~ Y at(2,4%),4° € ®(20), in the
directionu € X, as the upper limit

. 1

' (2°, 4% ) = Limsup — (F(2° + tu) — y°) . (4)
t — +0

The definitions of a derivative of a set-valued map are introduced in different ways, see e.g. [1, 4, 14].

Many of them are defined geometrically. Among the others, because of its wide applications, we recall

thecontingent derivativén the following definition and we illustrate in the example below some calculus
of such a derivative and its relation to the Dini type derivative used in this paper.

Definition 2.1 Let F : X ~~ Y be a set valued map. The contingent derivai¥g ((z,y) ; u) of F

at (z,y), y € F (x) in the directionu is the set valued map frol¥ to Y such that its graph (recall
GraphH = {(z,y) e X xY |y € H (x)}, foranyH : X ~ Y) is the Bouligand tangent cone to the
graph of F' at (z, y).

Example 2.2 Let X =Y =R, and® : [-1,2] ~ R be given (outside this interval the svf is arbitrary)

as
B(z) = (22,4 — (z — 2)? ,  l<a<2,
V7V e +2,12— (2+42)? , —1<z<L

It can be computed thab’(1,1;+1) = [2,+00) and ®’(1,1; —1) = [1,+00). Moreover the contin-
gent derivative is the s@®® for which it can easily be seen th@&® ((1,1);4+1) = ®'(1,1;+1) and
DP((1,1);-1) =9 (1,1;-1).

3 The unconstrained problem

In this section after [5] we recall first-order optimality conditions for the unconstrained problem
ming F(z) . (5)

In the next Sections we generalize these results for the constrained problem (1). We stast with
minimizers.



Theorem 3.1 (Necessary Conditiongy-minimizers) Consider svp (5) withF' : X ~» Y andC closed
convex cone. Let?,y°), y° € F(2°), be aw-minimizer. Then

Vue X : F'(z%y%u)n (—intC) = 0. (6)

Remark 3.1 The dual form of condition (6) is

Vue X Vg e F'(20 y%u) : 3% e O\ {0} : (£, ¢°) > 0.
The next theorem characterizes thminimizers of unconstrained svp with locally-Lipschitz svf.

Theorem 3.2 (Sufficient Conditions;-minimizers) Consider svp (5) witly” = R™, C # Y a closed
convex cone and sW : X ~ Y being locallyC-Lipschitz. Suppose thét", 3°), ° € F(2°), is such
thaty” € p-Minc F(2°) and

Vue X\ {0}: F'(z% 4% u)n(-=C) =0. (7)

Then(z?, 4°) is ai-minimizer for (5).

Remark 3.2 Like for Theorem 3.1 sufficient condition (7) can be stated in dual form as

Vue X \{0}:V7° € F'(2° 9% u): 3% e '\ {0} : (€%, 4°) > 0.
The reversal of Theorem 3.2 can also be stated.

Theorem 3.3 (Necessary Conditiong;minimizers) Consider svp (5) witl’ closed convex cone and
svfF : X ~ Y. Suppose that?, %), y° € F(zY), is ani-minimizer for (5). Then® € p-MincF ()
and condition (7) holds.

The following result proved in [5] offers sufficient conditions forminimizers undelC'-convexity as-
sumptions. The result is stated for global solutions. We recall that thé9aig°), ¢° € F(2°), is said
to be a globats-minimizer for svp (1) if for everyr € X it holds F(z) N (y° — int C') = (). Similarly,
one can define global versions of all the optimality concepts introduced in Section 2.

We say that the the nonempty-valued $Vf X, ~ Y is C-convex-along-rays at:°, y") if the setXj is

star shaped at’ and(1 — t)y° +tF(z) C F((1—t)2° +tx) + C forallx € Xy and0 < ¢ < 1. Recall
that X is star shaped at’ if (1 —)2° +tz C X, forallz € UN Xy and0 < t < 1. For single-valued
functions the concept of a convex-along-rays function is introduced in Rubinov [20] and studied in the
framework of abstract convexity and global optimization.

Theorem 3.4 (Sufficient Conditionsw-minimizers) Consider svp (1) with = R™ andC C Y
pointed closed convex cone. Suppose thdty°), 4° € F(z2°), is such thatXj is star shaped at
2%, F : Xo ~ Y is C-convex-along-rays gt’, 4°), and condition (6) is satisfied. Suppose also that for
each directionu € X(x") there exists a vectay, € Y such thatF'(z° + tu) C y° + tg, + C. Then
(20, 4°) is a globalw-minimizer for (1).

Examples show that the conditidi(z° + tu) C y° + tg, + C cannot be avoided in the statement of
Theorem 3.4 (see [5]).



4 Constrained optimization

In connection with svp (1) we consider the set-valued funclionX ~ Y x Z
H(z) = (F,G)(z) = F(z) x G(x)

We assume, unless otherwise specified, thaindG are (respectively) locallg’-Lipschitz and locally
K-Lipschitz functions. We will made also use of the closed convex ¢6ae) C Z, w € G(z), defined
as the cone whose polar is the $€t(w) = {¢ € K'|({,w) = 0}. It can be shown, thak(w) is the
contingent cone ok atw.

Remark 4.1 It is easily seen that whef' is C-Lipschitz andG is K-Lipschitz, thenH is (C' x K)-
Lipschitz. Moreover, sinc& C K(w), for any(z,w), z € X, w € G(x), any K-Lipschitz functionG
is alsoK (w)-Lipschitz.

According to (4), for givenr? € X, 4° € F(20), w® € G(2°) andu € X the first-order Dini derivative

of H is
(2° + tu) — (3°,w?)

H/(J,‘O, (yo,wo);u> = LimsupH
t— 40

Theorem 4.1 (Necessary condition foro-minimizers) Let 2° € X be feasible for problem (1) and
(z°,4°) be aw-minimizer. Then for al® € (G(2°) N (—=K)) andu € X it holds

H/(J,‘O, (yo,wo);u> N (—int(] X (—intK(wO))> =0, (8)
andy? € w-ming F(z).

Proof Assume, by contradiction that there exists sof® 2°) € H’ <x0, (yo,wo);u> N —int (C x

K(w?)), for someu € X anduw® € G(2°) N —K. Therefore one can write, for some sequeptes
F(2° + t,u) andw™ € G(2° + t,u):
n 0 n 0

— ) w" —w
y-—y and 20 = lim,_ 4o

I limy, 400 y
n tn

We claim now that there exists somg such thatG'(z° + t,u) N —int K # 0 for all n > no, that is
2 + t,u is feasible forn > no. Setl'gr := {{ € K'[ ||€]| = 1}. Let now{ € I'gs, we show that

there exists a positive intege(¢) and a neighbourhooW (¢), such that¢, w™) < 0, forn > n(¢) and
¢ € V(€). RecallingK’ (w°) c K’ we split the proof in two parts.

1. Letfirstassumé € T/ (,0). We have(¢, 2°) < —d4 < 0, for somes = §(£) > 0, and so

lim (6wt —w®) = lim (€ w") = (€ 2%) <0

n—+oo t,, n—+oo t,,

Hence there exists(¢) such that/n > n(¢) it holds (£, w™) < 0.
Now let (¢, w™) < —e < 0, for somes > 0 andn > n (£). Then

(€w") = (Euw)+(E—Ew") < —e+[|g =] [Jw" —w’ + | <

IN

—e+ e =&l (flw" = w®lf + ]} -
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Since clearlyw™ — w°, we have that for everg > 0 there exists:(3) > 0 so thatHw" — wOH <

B. Now we considefri = max{n((3),n(£)} and we get

(& u) < —<+|le =€) (5 + o)) < —3e,

asfarag|¢ — ¢ < m which defined/ (€).
2. Let now assumé € I'gs \ T 0). We have now§, w?) < —e < 0, for somes = £(¢) > 0.
Then:
Guw") = (Eu)+ (&' =) + (£ —§u’) < —e + [lw" — || +]]€ = €] O] <

< —etom) + ¢ & lu° < —e+ 5+ <0,

for n large enough, i.en > n(£) and||¢ — || < —m, which defines/ (¢).

Sincel'/ is a compact set, we can find a finite number of elements ., &, € T'k such thafl' i/ C

UL,V (&). Letng = max{n (&), i =1,...,s}. Forn > ny, it holds (¢,w") < 0, V¢ € 'k, and
hencey¢ € K'. This shows thaty” € —int K ¢ —K and so pointg? + t,,u are feasible forn, > nq.

From the assumptions, we hav® ¢ —int C, which implies the contradictiop” — y" € —intC, forn
large enough. |

Remark 4.2 It can be easily derived the following dual form of (8): For alt°,2%) €
H' (x“, (yo,wo);u>, there exist € C’ andn € K’ (v), (¢,7) # (0,0), such that

(€ 2%) + (n,0%) 2 0.

We present now sufficient conditions in termsHS‘f(:zO, (y°, w); u) to have(z?, y°) ai-minimizer for
the constrained problem (1). To do this, we first need the following technical result.

Lemma 4.1 Let z¥ be feasible for problem (1). Suppose there exist vegfors F (2°) andu® €
G (2") N —K, such that for some positivé and« it holds

D (H(z)— 1% — (Cx K (w"))) > Aljz —2°||", V2 eU (a°)\ {2},
whereh® = (y°, w?). Then there existd’ € R such that
D(F(z)—y°,—C) = A ||z —2°|", VaeU )\ {«}.
Proof Assume there exitd such that
D((F(z),G(2)— (4°,v°),— (C x K (w"))) = Allz —2°", VzeU(2°)\{z"}.

Setd = (a,b) € F(z) x G (z) and¢ = (£1,&) € €' x K’ (w’) N S (S denotes the unit sphere in
Y x Z). Hence the latter means

i%fmgx (61,0 —y%) + (&,0—u’)) > A |z — ona



or equivalently

mgax (<§1,a—y0> + <§2,b—w0>) > AH:U—xOHa, V(a,b) € F (z) x G (x) .

Let nowx be any feasible point, that is there exists, eventually dependentsameb (z) € G (z)N—K.
We can now evaluate the previous inequality along any cotple(x)), a € F (x). Then, certainly
(€2,b(x) —wP) = (&,b(z)) < 0. Moreover, by assumptions, the maximum should be attained at some

¢, that is, for every feasible € U (2°), z # 2°, and for all(a,b) € H (z) fixed, there existy, &,
eventually dependent an «, b (respectively), such that

(G0 =) + (G, — ) > Az — 20"
Whenb = b (z), we have(éy, b (x) — w®) < 0. Therefore it holds
(€1, —y") > Aljz —2°|* forall ze U@\ {2°}, a€ F(z), (9)
andé; # 0. Note that ifé; = 0, then we would get the contradiction

0> (2,0 (x) —u’) > Allz —2°l| > 0.
Now, since(él,ég) € S, recalling that¢; depends om, a, b, we have

O<sup{”€1H | € U (2°) feasible,aeF(a;)} <7< H400.

Hence for alla € F'(x) from equation (9) one finally gets

9

&

1
&

. a. A a
roa—yf) = o -2 > 2 - a0

PuttingA’ = é we complete the proof. O
T

We characterize now theminimizers.

Theorem 4.2 (Sufficient condition fori-minimizer) LetC' C R”™ be a closed convex cong,: X ~-
R"” andG : X ~ R™ be, respectively-Lipschitz andK -Lipschitz. Assume? is feasible for svp (1)
andy® € p-Min ¢ F (2°). If for somew® € G (2°) N (—K) holds

H' (2% (y°,w®) ;u) N (=C x K (w°)) =0, Vue X\ {0}, (10)

then(z,4°) is i-minimizer.

Proof The assumptions guarantee tiaf, (°,w°)) € p-Mingy ko H (2°). Then Lemma 4.1 en-
sures that(z?, (y°,w")) is i-minimizer for the unconstrained probleming, s(,0)H (z), = € X.
Applying Theorem 3.2 we complete the proof. O

Remark 4.3 The latter condition (10) can be expressed also in a dual form, namely: far'all’) e
H' (2%, (y°,4°) ;u), and for allu € X, there exists a couplE?, n°) € (C' x K’ (w")), (§%,1°) #
(0,0), such that

(€°,2% 4+ (n°,°% > 0.



Remark 4.4 The assumptiofi¥ to be K -Lipschitz in Theorem 4.2 can be replaced witto be K (w°)-
Lipschitz. SinceK (w°) > K, the latter assumption is weaker.

Dealing with isolated minimizers of svp (1) we can also prove a reversal of the previous sufficient con-
ditions under the following constraint qualification of Kuhn-Tucker type.

Definition 4.1 We say that the constraint qualificatidd holds for svp (1) a(z?, w") if for any 2% €

wk

.0
-K (wo), 29 = lim tiw, wherew® € G (:CO) N—K,t, — 0", weq (350 + tku), u € X, there
k

exist sequences® € X, 7% € G (20 + t;u*) N —K such thaty* — w® andu® — w.

The proof of the necessary condition faminimizers is based on the following lemmas.

Lemma 4.2 Let E}, be a sequence of sets¥nsuch thatD (£, —C) > A, for all k, andu* € X be a
sequence converging to somé € X. Then, for any positive numbér there exists a positive number
A’, such that

D (Ey, + L ||u* — u°|| By,—C) > A’ for k large enough

Proof Assume ab absurdo that there exists a sequen¢e such that
D (Ek + L Huk — uOH By, —C) <eg.
Recall that, by definition
D(Ep+1 Huk - uOH By,~C) =inf{D(y,~C) | y € Ex + L Huk - uOH By}.
Therefore for every fixed there existg/* € Ej, + L ||u* — u°|| By such that
D (yk, —0) <D (Ek iy Huk _ uOH By, —C) i % ,
that is

1 1
G <D<E LH k_ OHB _ ) L
gelg%§y<§7y>_ »+ L||u" —u’||By,—C tSert

We get

1
k

< —
gerg%ﬁ?y ) <ep+ p

for y* = e* + L ||u¥ — u|| bF, e € Ey, b* € By. Hence, by trivial estimations we obtain
maXeecrnsy (&, €k> = max¢ecnsy (&, e’ + L Huk - UOH bk — L Huk - UOH bk>
< maxgeonsy (€, eF + L Huk — uOH b*) + maxeconsy (€, —L Huk — uUH b*)
1
S B T

The latter contradict® (Ey, —C) > A. O

Lemma 4.3 For any subsetd C Y it holds
DA -C)=D(A+C,-C).



Theorem 4.2 can be reverted under constraint qualific§liéom Definition 4.1.

Theorem 4.3 Let 2 be feasible for svp (1). Assume that the constraint qualificafidmolds for svp
1) at (2%, w?), w" € G (2°) N (—K). Assume the couple?, y%), 3° € F (20), is ai-minimizer for
problem (1) andr” be C-Lipschitz. Then® € p-MincF (z°) and the condition

H' (330, (yo,wo) ;u) N(—C x K(w®) =0, vue X\{0}, (11)

is satisfied.

Proof There exists a neighbourhodtof z° such that, for every feasiblec U it holds
D(F(z)—y° -C) > A Ha: - :EOH .

Assume, by contradiction, that condition (11) does not hold. Thus there eédgt&o) €
H' (2° (y°,w) ;u) suchthafv?, 2%) € — (C x K (w")). Hencez? € —K (w”) and it can be written
as

. w" —w
2= lim ————
k—+o00 tr

for somew* € G (2° + t,u). Since the constraint qualificatidd holds, then it follows that there exists
some suitable sequenaé — v, such that fork large enough it holdss (20 + txuf) N —K # 0. It
follows

Y

D <tlk (F (azo +tkuk> — yo,—0)> > A HukH .

SinceF is assumed to b€'-Lipschitz, we have

D (F (xo + tkuk) — 40, —C) > Aty Huk

whence

1 1
. (F (:co +tku0) —yo) C . (F (:130 +tkuk> —yo) +L Huk —’LLOH By +C.
k k

It follows

D (;k (F (2 + tyu”) — ¢, —C)) >

1
>D <t (F( 0+tkuk) —yO—I—LHuk—UOHBy—I—C,—C)>
k

=D (;k (F (wo —|—tkuk> -+ L Huk - uOH By, —C)) > A

(the last inequality follows from Lemma 4.2, using also Lemma 4.3). Hence, we have also

D (3 (=) —c) =,

wherey” € F (20 + t;u”) is such that

and by continuity ofD (-, —C') also



Thereforev® ¢ —C, which completes the proof. 0

The condition of Theorem 4.3 is not true if the constraint qualification is not assumed. The next example
gives an illustration even for the case of a single-valued problem.

Example4.1letf,g: R - R,C =R;, K = R_. Assumef(z) = z* andg(z) = —2?, (2°,4°) =
(0,0). Sinceg(0) = 0 = v’ K (v°) = R_ and ¢’ (0) = 0, we havey’ (0)u = 0 € R for all

u € R. Therefore constraint qualification 4.1 does not hold. Clegtly,y°) is the only feasible
point and hence arminimizer. However condition (11) is not satisfied as one can not find any couple
(€%, 1%) € (C" x K’ (w")) such that

€ f (@) uy+ (0% g (2%) u) > 0.

5 Optimality under convexity type conditions
In general we cannot state the reversal of Theorem 4.1.

Example 5.1 Consider the svf' : R ~» R, F(z) = [—z?, %] and the point(z°, y°) = (0,0). Assume
that the constraint is given by the functiéh : R ~ R defined asG (z) = [¢% — 1,2% + 1], with
the point(z%,w") = (0,—1). Itis easy to calculate that condition (8) is fulfilled @t°, (y°, w") ; u),
u € R, but the couplgz?, ") is not aw-minimizer.

However, similarly to known results in scalar optimization, a reversal of Theorem 4.1 holds under some
convexity type properties of the involved functions. First we state the following lemmas, which we quote
from [5].

Lemmab5.1 Let C ¢ R™ be a closed convex cone ang, as > 0 be two positive humbers. Then
C (a1) (a2) C C (a1 + a2).

Lemmab5.2 LetY = R™ andC C Y be a closed convex cone. Assume thefsvfX ~ Y is C-
Lipschitz with constant in the neighbourhood’ of somez", andy® € F (2°). Suppose that for some
o> 0itholdsC (20) # Y and F (z°) N (y° — C (20)) = {y°}. Then for each: € U N X;, and each
y € F(z)n (y° — C (o)) itholds|ly — y°|| < (L/o) [lz —2°|.

Lemma 5.3 LetC C R™ be pointed closed convex cone. Then for ahya® € R™ the set(a’ — C) N
(a® + C) is bounded.

Theorem 5.1 LetY = R™, Z = R/, and letC c Y and K C Z be closed convex and pointed cones.
Suppose that? is feasible for svp (1)° € F (z"), w° € G (2°) N (—K). Assume thaF is C-convex
along-rays starting afz°, 4°) andG is K-convex along-rays starting t:°, w). Assume also that for
all w € X \ {0} there existsf,, € Y andg,, € Z such that

F (2% +tu) Ccy’ +tfu+C,

12
G (2" +tu) Cw® +tg, + K . (12)

Then if condition (8) is satisfiedz,y°) is aw-minimizer for svp (1).

11



Proof By convexity along-rays of' and G with respect to the ordering cones, it follows that the map
H(z) = (F(z),G (z)) is C x K-convex along-rays starting &t°,y°, w°). Set, for simplicity,n® =
(y°,w"). We have

(1=t +tH (z) C H ((1 —t)2° + tz) + (C x K)

forallz € X, ¢t € (0,1). Therefore
tH (z) —th’ C H (2 +t (z —2°)) = h" + (C x K,
and hence, for = z — 2V it holds
H(z)—h'cC % (H (2" +tu) — %) + (C x K).

Hence for allh € H(z) andt € (0,1) there existdi' € H (2 + tu) and(c!, k') € (C x K) such that

= h) = h 0 ()

By (12) there existé,, = (fu, gu) Such that
+(H (24 1) = 1) C thy + (€ X K)
Therefore,

%(htho)e(hfhof(CxK))m(hqu(CxK)).

The latter according to Lemma 5.3 is a bounded set. Hence there exists some se¢guenge such
that

% (ht — ho) — e H (mo,ho,u) , 0 = (UO,ZO) ,
wherev® € F' (2°,4%,u) andz® € G’ (2°, 4%, u). Forh € H (z), it holds, by convexity
h—h = tl (W' — hO) + (c'*, k") |
k
and for all(¢,n) € ¢’ x K'itholds

<£7y_y0> + <777w - ’LU0>

= tlk (&9 —y°) + (n,wy, — w°)) + (&, c'*) + (n, k')

tr (<£7ytk - y0> + <n7wtk - ’w0>) .

Passing to the limit ag, — 0" and by (8) we see thatforalle H (z), £ € C', ne K' (v°) C K'it
holds
&y —y") + (nw—u’) 0.
Moreover(n,w®) = 0 and one can choose € G (z) N (—K) so that(n,w) < 0. So for all feasible
xz € X andy € F(x) it holds
&y —y°) > (n,—w) >0,
thatisy — y° ¢ —intC. Finally, F' (z) N (y° — intC) = @ for every feasibler. O

We can test the assumption of the previous theorem by few examples. First we note on an unconstrained
example, that the existence fif is essential.

12



Example 5.2 Consider vwp (3) with = X, =R, Y = R? C =R%, and

FiR-RE f(z)=(z, —/]zl).

Thenf is C-convex-along-rays atz?, °), wherez® = 0 andy® = (0, 0). Condition (6) is satisfied.
At the same timéz?, 4°) is not aw-minimizer. To prove the convexity propertyfofve must check the
inclusion(1 — ¢)y° + tf(z) € f((1 — )2 + tz) + R2, for eachz € R and0 < ¢ < 1. This follows
fromtf(x) — f(tx) = (0, (v/t —t) \/|z|) € R2. For the derivative off we have

/ _J {0} , u=0,
f(xo,u)—{ 0 , u#0.

The second row follows frof /¢) (f (° +tu) — y") = (u, —+/|u|/t). From here obviously fou # 0 it
holds f/(z°, u) N (—int R ) = ). For eachz < 0 we havef(z) = (z, —+/|z|) € —intR2. Therefore
20 is not (even local)o-minimizer.

Finally, as an illustration of an application of Theorem 5.1 we present the next example.

Example53Let X = Xp = R, Y = R? Z = R, and letC = R?, K = R;. Suppose that
F : Xo ~ R?is given by

_ 0, 1] % [0, 1] ey
Fle)= { (-1, 0] % {0}) U ({0} x [-1,0)) . z=0.

andG (z) = |z| — 1. Putz® = 0 andy® = (0, 0), w® = —1. It can be easily checked thét fulfill
all the assumptions of Theorem 5.1. To show®heonvexity-along-rays of at (z°,3") we must check
thattF (z) C F (tz) + R% for 0 < ¢t < 1. For z # z¥ this is the true inclusion0, 1] x [0, 1] C
([0, 1] x [0, 1]) + R2. For z = z° the validity follows from the true inclusidr-¢, 0] C [—1, 0]. Easy
calculations give that

_{ R2 , u#0,
| Rox {0hu ({0} xR-) , u=0,

and G’ (2°,w%u) = |u|, whence it is obvious that condition (8) is satisfied. Further,do# 0 the
vectorsf, = (0, 0) andg, = 0 satisfy conditions (12). Thefx?, 4°) is a globalw-minimizer, which
follows from Theorem 5.1.

F’ (J:O,yo;u)
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