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Abstract

A constrained optimization problem with set-valued data is considered. Different kind of so-
lutions are defined for such a problem. We recall weak minimizer, efficient minimizer and proper
minimizer. The latter are defined in a way that embrace also the case when the ordering cone is not
pointed. Moreover we present the new concept of isolated minimizer for set-valued optimization.
These notions are investigated and appear when establishing first-order necessary and sufficient opti-
mality conditions derived in terms of a Dini type derivative for set-valued maps. The case of convex
(along rays) data is considered when studying sufficient optimality conditions for weak minimizers.
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1 Introduction

In this paper we focus on the following set-valued constrained optimization problem (in the sequel svp)

minC F (x) , x ∈ G(x) ∩ (−K) 6= ∅ , (1)

whereF : X  Y , andG : X  Z are set-valued functions (svf) defined from a Banach SpaceX into
Banach spacesY andZ respectively and bothF andG are nonempty-valued overX. We suppose that a
ordering relation onY andZ is induced by the closed convex conesC ⊂ Y andK ⊂ Z respectively. We
will assume that in general these cones are not pointed, since pointedness is too restrictive assumption,
when constrained problems are concerned. As for notation, throughout the paper we denote set-valued
functions with capital letters and squiggled arrow, while, when single-valued examples are considered,
the lower case letter and straight arrow will identify the functions. When we say a pointx ∈ X is feasible
we mean, throughout the paper, thatG(x) ∩ (−K) 6= ∅.
The svp (1) can be regarded as a generalization of a single-valued vector optimization problem. As it is
well known (see e.g. [19]) the notion of a solution to the latter problem can be defined in different ways.
We shall distinguish efficient, weakly efficient, strict efficient, properly efficient and isolated solutions
of a vector (constrained or unconstrained) optimization problem. Some of these notions have already
been considered elsewhere as related to (1). The notion of weak-minimizer (w-minimizer) or efficient-
minimizer (e-minimizer) has been widely studied and some first order necessary and sufficient conditions
have been presented in terms of suitable notions of derivatives (see e.g. [1, 5, 14] for the unconstrained
case, [18, 21] for the constrained problem).

Here we concentrate on the notion ofi-minimizer (isolated minimizer) which extends the concept of
isolated minimizer of order1 introduced for scalar problems by Auslender in [2]. Notions of optimality
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for problem (1) are presented in Section 2, together with some basic notations and some preliminary
facts on set-valued functions. The case of unconstrained set-valued optimization has been studied in [5].
Here, for the sake of completeness, we recall in Section 3 some of the results from [5]. Sections 4 and
5 present the main results for the constrained problem. In Section 4 optimality conditions for svp with
Lipschitz type functions are considered, while Section 5 deals with convexity type assumptions.

2 Preliminary

We denote byR the set of the reals andR = R∪{−∞}∪{+∞} its two point extension with the infinite
elements. For the norm and the dual pairing in a normed space we write‖ · ‖ and〈·, ·〉. From the context
it should be clear to exactly which spaces these notations are applied. We denote byBX = {x ∈ X |
‖x‖ < 1} andBY = {y ∈ Y | ‖y‖ < 1} the open unit balls respectively inX andY . Similarly, the
notationsSX = {x ∈ X | ‖x‖ = 1} andSY = {y ∈ Y | ‖y‖ = 1} are used for the unit spheres. When
X or Y are finite dimensional, of dimensionn andm respectively, we identify them with the Euclidean
spacesRm andRn respectively.

The notion of the positive polar cone is used in the sequel. We recall that for a closed convex coneA ⊂ Y
its positive polar cone is defined byA′ = {ξ ∈ Y | 〈ξ, y〉 ≥ 0 for all y ∈ A}. For a subsetB of a normed
space and an elementy0 of the same space, we setcone (A− y0) := {λ(y − y0) | λ ≥ 0, y ∈ A}.

We introduce the following concepts of solutions for problem (1). The pair(x0, y0), y0 ∈ F (x0), x0 fea-
sible, is said to bew-minimizer (respectivelye-minimizer) if there exists a neighbourhoodU of x0 such
that ifx ∈ U∩X0, x feasible, thenF (x)∩

(
y0 − intC

)
= ∅ (respectivelyF (x)∩

(
y0 − (C \ {0}

)
= ∅).

Obviously, ifC 6= Y , eache-minimizer isw-minimizer.

Define the weakly efficient frontier (w-frontier)w-MinCA and efficient frontier (e-frontier) e-MinCA
of a setA ⊂ Y with respect to the coneC by w-MinCA = {y ∈ A | A ∩ (y − intC) = ∅} and
e-MinCA = {y ∈ A | A ∩ (y − (C \ {0})) = ∅}. If C 6= Y it holds intC ⊂ C \ {0}, whence
w-MinCA ⊃ e-MinCA (for vector optimization theory based on notions of efficient frontiers see Luc
[19]).

Putting x = x0 in the above definitions we see that if(x0, y0) is a w-minimizer (respectivelye-
minimizer) for svp (1) theny0 belongs to thew-frontier (respectivelye-frontier) of the setF (x0). Thus,
in order that(x0, y0), y0 ∈ F (x0), be a minimizer of certain type for svp (1) necessary some frontier-type
limitations for the pointy0 do occur.

For a setA ⊂ Y the distance fromy ∈ Y to A is given byd(y,A) = inf{‖a − y‖ | a ∈ A}. It is
convenient to allow also value+∞ of the distance function puttingd(y, ∅) = +∞.

The oriented distance fromy toA is defined byD(y,A) = d(y,A) − d(y, Y \ A). It takes values inR
and in particularD(y, ∅) = +∞ andD(y, Y ) = −∞. The functionD is introduced in Hiriart-Urruty
[12, 13] and since then is often used in vector optimization. In [10], whenA is a convex set, the authors
prove thatD(y,A) = sup‖ξ‖=1 (〈ξ, y〉 − supa∈A〈ξ, a〉) and apply this characterization to approximate
set-valued functions by single valued ones. Let us underline that this formula works also forA = ∅ or
A = Y . From this representation, ifC is a convex cone and taking into account

inf
a∈C

〈ξ, a〉 =
{

0 , ξ ∈ C ′,
−∞ , ξ /∈ C ′,

we get easily

D(y,−C) = sup
‖ξ‖=1, ξ∈C′

(〈ξ, y〉) , (2)
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whereC ′ = {ξ | 〈ξ, y〉 ≥ 0 is the positive polar cone ofC (further we use similar notation also for other
positive polar cones).

We define next the oriented distanceD(M,A) from a setM ⊂ Y to the setA ⊂ Y puttingD(M,A) =
inf{D(y,A) | y ∈M}.

LetC ⊂ Y be a cone and leta be a real number. The set

C(a) = {y ∈ Y | D(y, C) ≤ a ‖y‖} .

is a closed (but not necessarily convex) cone, which is a consequence of the positive homogeneity of the
oriented distanceD(·, C) and the norm‖ · ‖.

We define, for a the vector optimization problem (vvp)

minC f(x) , g(x) ∈ −K . (3)

with f : X → Y , g : X → Z a feasible pointx0 (i.e. g
(
x0

)
∈ −K is ap-minimizer (proper minimizer)

if there existsa, 0 < a < 1, and a neighbourhoodU of x0 such thatf(x) − f(x0) /∈ −intC(a) for
x ∈ U , x feasible. Clearly, whenC is pointed closed convex cone,Y is finite dimensional, anda > 0
is sufficiently small, thenC(a) is also a pointed closed convex cone andp-minimizers coincides with
Henig proper efficient points.

The notion of proper minimizer can be applied also to svp. We say that the point(x0, y0), y0 ∈ F (x0),
x0 feasible, is ap-minimizer for (1) if there existsa, 0 < a < 1, and a neighbourhoodU of x0, such that
x ∈ U , x feasible, andy ∈ F (x) imply y − y0 /∈ −intC(a) .

For a given a setA ⊂ Y the setp-MinCA = {y ∈ A | A ∩ (y − C(a)) = {y} for somea, 0 < a < 1}
is the properly efficient frontier (p-frontier) ofA with respect toC. Obviouslye-MinCA ⊃ p-MinCA.

For x = x0 the definition of ap-minimizer for svp (1) gives now that if(x0, y0), y0 ∈ F (x0), is a
p-minimizer for svp (1) theny0 ∈ p-MinCF (x0).

Another concept of optimality is the concept of an isolated minimizer (i-minimizer). We say that(x0, y0),
y0 ∈ F (x0), is a i-minimizer for svp (1) ifx0 is feasible and there is a neighbourhoodU of x0 and a
constantA > 0 such thatD(F (x) − y0,−C) ≥ A ‖x − x0‖ andy0 ∈ p-MinCF (x0) for x ∈ U ∩X0,
x feasible. In [5] under Lipschitz type conditions it has been shown that thei-minimizers are alsop-
minimizers.

The notion of isolated minimizer has been popularised by Auslender [2]. For vector functions it has been
extended in [6, 7, 8, 9] and under the name of strict efficiency in [15, 16, 17].

In the definition of ai-minimizer for svp appears explicitly the inclusiony0 ∈ p-MinCF (x0), which
deserves some explanation. For vvp (3) with locally Lipschitz functionf eachi-minimizer is also a
p-minimizer, see [7]. In order that similar relation occurs for svp (1), we need to insert explicitly this
assumption. It is necessary satisfied for ap-minimizer and does not follow from inequalityD(F (x) −
y0,−C) ≥ A ‖x − x0‖ being used in the definition of ai-minimizer for svp (1). It should be clear that
p-minimizers are not necessarilyi-minimizers.

Example 2.1 LetX = Y = Z = R, F be given asF (x) = [x2, 2x2], that is the image ofx ∈ R is
the interval[x2, 2x2], G(x) =

[
−x2 − 1,−x2

]
andC = K = R+. Note that for alla > 0 it holds

C(a) = C. Then it is easy to check that(x0, y0) = (0, 0) is ap-minimizer, but noti-minimizer.

The notion of isolated minimizer for vector optimization is frequently studied under assumption of
Lipschitz data. We recall [1] that the svfF : X  Y is locally Lipschitz atx0 ∈ X, if there ex-
ists a neighbourhoodU of x0 and a constantL > 0, such that forx1, x2 ∈ U it holds F (x2) ⊂
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F (x1) + L ‖x2 − x1‖BY . The svfF : X  Y is locally Lipschitz, if it is locally Lipschitz at each
x0 ∈ X. The property can be analogously defined with respect to the closed convex coneC (the order-
ing cone in the image space). The svfF : X  Y is locally Lipschitz w.r.t.C at x0 ∈ X, or locally
C-Lipschitz atx0, if there exists a neighbourhoodU of x0 and a constantL > 0 such that it holds

F (x2) ⊂ F (x1) + C + L ‖x2 − x1‖ clBY for all x1, x2 ∈ U ∩X0 .

We say that svfF : X0  Y is locallyC-Lipschitz if it is locallyC-Lipschitz at eachx0 ∈ X0. For a
review of the properties of locallyC-Lipschitz functions we refer to [5].

Because of the convexity ofC, svf F is locallyC-Lipschitz if and only if the set-valued functionx  
F (x) + C is locally Lipschitz.

Further we recall [1] that for svfΦ : T0  Y given on a subsetT0 of the topological spaceT the upper
limit Limsupt→t0Φ(t) is defined by

Limsupt→t0Φ(t) = {y ∈ Y | lim inf
t→0+

d(y,Φ(t)) = 0}.

We shall now define the (upper) Dini-derivative of a svfΦ : X0  Y at (x0, y0), y0 ∈ Φ(x0), in the
directionu ∈ X, as the upper limit

Φ′(x0, y0;u) = Limsup
t → +0

1
t

(
F (x0 + tu)− y0

)
. (4)

The definitions of a derivative of a set-valued map are introduced in different ways, see e.g. [1, 4, 14].
Many of them are defined geometrically. Among the others, because of its wide applications, we recall
thecontingent derivativein the following definition and we illustrate in the example below some calculus
of such a derivative and its relation to the Dini type derivative used in this paper.

Definition 2.1 Let F : X  Y be a set valued map. The contingent derivativeDF ((x, y) ;u) of F
at (x, y), y ∈ F (x) in the directionu is the set valued map fromX to Y such that its graph (recall
GraphH := {(x, y) ∈ X × Y | y ∈ H (x)}, for anyH : X  Y ) is the Bouligand tangent cone to the
graph ofF at (x, y).

Example 2.2 LetX = Y = R, andΦ : [−1, 2] R be given (outside this interval the svf is arbitrary)
as

Φ(x) =
{

[x2, 4− (x− 2)2] , 1 < x ≤ 2,
[−x+ 2, 12− (x+ 2)2] , −1 ≤ x ≤ 1.

It can be computed thatΦ′(1, 1;+1) = [2,+∞) and Φ′(1, 1;−1) = [1,+∞). Moreover the contin-
gent derivative is the svfDΦ for which it can easily be seen thatDΦ ((1, 1) ;+1) = Φ′ (1, 1;+1) and
DΦ ((1, 1) ;−1) = Φ′ (1, 1;−1).

3 The unconstrained problem

In this section after [5] we recall first-order optimality conditions for the unconstrained problem

minC F (x) . (5)

In the next Sections we generalize these results for the constrained problem (1). We start withw-
minimizers.
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Theorem 3.1 (Necessary Conditions,w-minimizers) Consider svp (5) withF : X  Y andC closed
convex cone. Let(x0, y0), y0 ∈ F (x0), be aw-minimizer. Then

∀u ∈ X : F ′(x0, y0;u) ∩ (−intC) = ∅ . (6)

Remark 3.1 The dual form of condition (6) is

∀u ∈ X : ∀ ȳ0 ∈ F ′(x0, y0;u) : ∃ ξ̄0 ∈ C ′ \ {0} : 〈ξ̄0, ȳ0〉 ≥ 0 .

The next theorem characterizes thei-minimizers of unconstrained svp with locallyC-Lipschitz svf.

Theorem 3.2 (Sufficient Conditions,i-minimizers) Consider svp (5) withY = Rm, C 6= Y a closed
convex cone and svfF : X  Y being locallyC-Lipschitz. Suppose that(x0, y0), y0 ∈ F (x0), is such
thaty0 ∈ p-MinCF (x0) and

∀u ∈ X \ {0} : F ′(x0, y0;u) ∩ (−C) = ∅ . (7)

Then(x0, y0) is a i-minimizer for (5).

Remark 3.2 Like for Theorem 3.1 sufficient condition (7) can be stated in dual form as

∀u ∈ X \ {0} : ∀ ȳ0 ∈ F ′(x0, y0;u) : ∃ ξ̄0 ∈ C ′ \ {0} : 〈ξ̄0, ȳ0〉 > 0 .

The reversal of Theorem 3.2 can also be stated.

Theorem 3.3 (Necessary Conditions,i-minimizers) Consider svp (5) withC closed convex cone and
svfF : X  Y . Suppose that(x0, y0), y0 ∈ F (x0), is ani-minimizer for (5). Theny0 ∈ p-MinCF (x0)
and condition (7) holds.

The following result proved in [5] offers sufficient conditions forw-minimizers underC-convexity as-
sumptions. The result is stated for global solutions. We recall that the pair(x0, y0), y0 ∈ F (x0), is said
to be a globalw-minimizer for svp (1) if for everyx ∈ X0 it holdsF (x) ∩ (y0 − intC) = ∅. Similarly,
one can define global versions of all the optimality concepts introduced in Section 2.

We say that the the nonempty-valued svfF : X0  Y isC-convex-along-rays at(x0, y0) if the setX0 is
star shaped atx0 and(1− t)y0 + tF (x) ⊂ F ((1− t)x0 + tx) +C for all x ∈ X0 and0 < t < 1. Recall
thatX0 is star shaped atx0 if (1− t)x0 + tx ⊂ X0 for all x ∈ U ∩X0 and0 < t < 1. For single-valued
functions the concept of a convex-along-rays function is introduced in Rubinov [20] and studied in the
framework of abstract convexity and global optimization.

Theorem 3.4 (Sufficient Conditions,w-minimizers) Consider svp (1) withY = Rm and C ⊂ Y
pointed closed convex cone. Suppose that(x0, y0), y0 ∈ F (x0), is such thatX0 is star shaped at
x0, F : X0  Y isC-convex-along-rays at(x0, y0), and condition (6) is satisfied. Suppose also that for
each directionu ∈ X0(x0) there exists a vectorgu ∈ Y such thatF (x0 + tu) ⊂ y0 + tgu + C. Then
(x0, y0) is a globalw-minimizer for (1).

Examples show that the conditionF (x0 + tu) ⊂ y0 + tgu + C cannot be avoided in the statement of
Theorem 3.4 (see [5]).
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4 Constrained optimization

In connection with svp (1) we consider the set-valued functionH : X  Y × Z

H(x) = (F,G)(x) = F (x)×G(x)

We assume, unless otherwise specified, thatF andG are (respectively) locallyC-Lipschitz and locally
K-Lipschitz functions. We will made also use of the closed convex coneK(w) ⊂ Z,w ∈ G(x), defined
as the cone whose polar is the setK ′(w) = {ξ ∈ K ′ | 〈ξ, w〉 = 0}. It can be shown, thatK(w) is the
contingent cone ofK atw.

Remark 4.1 It is easily seen that whenF is C-Lipschitz andG is K-Lipschitz, thenH is (C ×K)-
Lipschitz. Moreover, sinceK ⊂ K(w), for any(x,w), x ∈ X, w ∈ G(x), anyK-Lipschitz functionG
is alsoK(w)-Lipschitz.

According to (4), for givenx0 ∈ X, y0 ∈ F (x0), w0 ∈ G(x0) andu ∈ X the first-order Dini derivative
of H is

H ′
(
x0, (y0, w0);u

)
= Limsup

t → +0

H(x0 + tu)− (y0, w0)
t

.

Theorem 4.1 (Necessary condition forw-minimizers) Let x0 ∈ X be feasible for problem (1) and
(x0, y0) be aw-minimizer. Then for allw0 ∈

(
G(x0) ∩ (−K)

)
andu ∈ X it holds

H ′
(
x0, (y0, w0);u

)
∩

(
−intC × (−intK(w0))

)
= ∅ , (8)

andy0 ∈ w- minC F (x).

Proof Assume, by contradiction that there exists some(v0, z0) ∈ H ′
(
x0, (y0, w0);u

)
∩ −int (C ×

K(w0)), for someu ∈ X andw0 ∈ G(x0) ∩ −K. Therefore one can write, for some sequenceyn ∈
F (x0 + tnu) andwn ∈ G(x0 + tnu):

v0 = limn→+∞
yn − y0

tn
and z0 = limn→+∞

wn − w0

tn
.

We claim now that there exists somen0 such thatG(x0 + tnu) ∩ −intK 6= ∅ for all n > n0, that is
x0 + tnu is feasible forn > n0. SetΓK′ := {ξ ∈ K ′ | ‖ξ‖ = 1}. Let now ξ̄ ∈ ΓK′ , we show that
there exists a positive integern(ξ̄) and a neighbourhoodV (ξ̄), such that〈ξ, wn〉 < 0, for n > n(ξ̄) and
ξ ∈ V (ξ̄). RecallingK ′ (w0

)
⊂ K ′ we split the proof in two parts.

1. Let first assumēξ ∈ ΓK′(x0). We have〈ξ̄, z0〉 < −δ < 0, for someδ = δ(ξ̄) > 0, and so

lim
n→+∞

1
tn
〈ξ̄, wn − w0〉 = lim

n→+∞

1
tn
〈ξ̄, wn〉 = 〈ξ̄, z0〉 < 0

Hence there existsn(ξ̄) such that∀n > n(ξ̄) it holds〈ξ̄, wn〉 < 0.
Now let 〈ξ̄, wn〉 < −ε < 0, for someε > 0 andn > n

(
ξ̄
)
. Then

〈ξ, wn〉 = 〈ξ̄, w〉+ 〈ξ − ξ̄, wn〉 < −ε+
∥∥ξ − ξ̄

∥∥∥∥wn − w0 + w0
∥∥ ≤

≤ −ε+
∥∥ξ − ξ̄

∥∥ (∥∥wn − w0
∥∥ +

∥∥w0
∥∥)
.
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Since clearlywn → w0, we have that for everyβ > 0 there existsn(β) > 0 so that
∥∥wn − w0

∥∥ <
β. Now we consider̄n = max{n(β), n(ξ̄)} and we get

〈ξ, wn〉 < −ε+
∥∥ξ − ξ̄

∥∥ (β +
∥∥w0

∥∥) < −1
2
ε,

as far as
∥∥ξ − ξ̄

∥∥ < ε

2(β + ‖w0‖)
, which definesV (ξ̄).

2. Let now assumēξ ∈ ΓK′ \ ΓK′(w0). We have now〈ξ̄, w0〉 < −ε < 0, for someε = ε(ξ̄) > 0.
Then:

〈ξ, wn〉 = 〈ξ̄, w0〉+ 〈ξ, wn − w0〉+ 〈ξ − ξ̄, w0〉 < −ε+
∥∥wn − w0

∥∥ +
∥∥ξ − ξ̄

∥∥∥∥w0
∥∥ <

< −ε+ o(n) +
∥∥ξ − ξ̄

∥∥∥∥w0
∥∥ < −ε+

ε

3
+
ε

3
< 0,

for n large enough, i.e.n > n(ξ̄) and
∥∥ξ − ξ̄

∥∥ < − ε

3 ‖w0‖
, which definesV

(
ξ̄
)
.

SinceΓK′ is a compact set, we can find a finite number of elementsξ1, . . . , ξs ∈ ΓK′ such thatΓK′ ⊂⋃s
i=1 V (ξi). Let n0 = max{n (ξi) , i = 1, . . . , s}. Forn > n0, it holds〈ξ, wn〉 < 0, ∀ξ ∈ ΓK′ and

hence,∀ξ ∈ K ′. This shows thatwn ∈ −intK ⊂ −K and so pointsx0 + tnu are feasible forn > n0.

From the assumptions, we havev0 ∈ −intC, which implies the contradictionyn − y0 ∈ −intC, for n
large enough. 2

Remark 4.2 It can be easily derived the following dual form of (8): For all
(
v0, z0

)
∈

H ′
(
x0, (y0, w0);u

)
, there existξ ∈ C ′ andη ∈ K ′ (w0

)
, (ξ, η) 6= (0, 0), such that

〈ξ, z0〉+ 〈η, v0〉 ≥ 0 .

We present now sufficient conditions in terms ofH ′
(
x0, (y0, w0);u

)
to have

(
x0, y0

)
a i-minimizer for

the constrained problem (1). To do this, we first need the following technical result.

Lemma 4.1 Let x0 be feasible for problem (1). Suppose there exist vectorsy0 ∈ F
(
x0

)
andw0 ∈

G
(
x0

)
∩ −K, such that for some positiveA andα it holds

D
(
H (x)− h0,−

(
C ×K

(
w0

)))
≥ A

∥∥x− x0
∥∥α
, ∀x ∈ U

(
x0

)
\ {x0} ,

whereh0 =
(
y0, w0

)
. Then there existsA′ ∈ R such that

D
(
F (x)− y0,−C

)
≥ A′

∥∥x− x0
∥∥α

, ∀x ∈ U
(
x0

)
\ {x0}.

Proof Assume there exitsA such that

D
(
(F (x) , G (x))−

(
y0, w0

)
,−

(
C ×K

(
w0

)))
≥ A

∥∥x− x0
∥∥α
, ∀x ∈ U

(
x0

)
\ {x0} .

Setθ = (a, b) ∈ F (x) × G (x) andξ = (ξ1, ξ2) ∈ C ′ × K ′ (w0
)
∩ S (S denotes the unit sphere in

Y × Z). Hence the latter means

inf
θ

max
ξ

(
〈ξ1, a− y0〉+ 〈ξ2, b− w0〉

)
≥ A

∥∥x− x0
∥∥α

7



or equivalently

max
ξ

(
〈ξ1, a− y0〉+ 〈ξ2, b− w0〉

)
≥ A

∥∥x− x0
∥∥α
, ∀ (a, b) ∈ F (x)×G (x) .

Let nowx be any feasible point, that is there exists, eventually dependent onx, someb (x) ∈ G (x)∩−K.
We can now evaluate the previous inequality along any couple(a, b (x)), a ∈ F (x). Then, certainly
〈ξ2, b (x)−w0〉 = 〈ξ2, b (x)〉 ≤ 0. Moreover, by assumptions, the maximum should be attained at some
ξ̂, that is, for every feasiblex ∈ U

(
x0

)
, x 6= x0, and for all(a, b) ∈ H (x) fixed, there exist̂ξ1, ξ̂2,

eventually dependent onx, a, b (respectively), such that

〈ξ̂1, a− y0〉+ 〈ξ̂2, b− w0〉 ≥ A
∥∥x− x0

∥∥α
.

Whenb = b (x), we have〈ξ̂2, b (x)− w0〉 ≤ 0. Therefore it holds

〈ξ̂1, a− y0〉 ≥ A
∥∥x− x0

∥∥α
for all x ∈ U(x0) \ {x0}, a ∈ F (x) , (9)

andξ̂1 6= 0. Note that ifξ̂1 = 0, then we would get the contradiction

0 ≥ 〈ξ̂2, b (x)− w0〉 ≥ A
∥∥x− x0

∥∥ > 0 .

Now, since
(
ξ̂1, ξ̂2

)
∈ S, recalling that̂ξ1 depends onx, a, b, we have

0 < sup
{∥∥∥ξ̂1∥∥∥ | x ∈ U

(
x0

)
feasible, a ∈ F (x)

}
< τ < +∞ .

Hence for alla ∈ F (x) from equation (9) one finally gets

1∥∥∥ξ̂1∥∥∥〈ξ̂1, a− y0〉 ≥ A∥∥∥ξ̂1∥∥∥
∥∥x− x0

∥∥α ≥ A

τ

∥∥x− x0
∥∥α
.

PuttingA′ =
A

τ
we complete the proof. 2

We characterize now thei-minimizers.

Theorem 4.2 (Sufficient condition fori-minimizer) LetC ⊂ Rn be a closed convex cone,F : X  
Rn andG : X  Rm be, respectively,C-Lipschitz andK-Lipschitz. Assumex0 is feasible for svp (1)
andy0 ∈ p-Min CF

(
x0

)
. If for somew0 ∈ G

(
x0

)
∩ (−K) holds

H ′ (x0,
(
y0, w0

)
;u

)
∩ (−C ×K

(
w0

)
) = ∅, ∀u ∈ X \ {0}, (10)

then
(
x0, y0

)
is i-minimizer.

Proof The assumptions guarantee that
(
x0,

(
y0, w0

))
∈ p-MinC×K(w0)H

(
x0

)
. Then Lemma 4.1 en-

sures that
(
x0,

(
y0, w0

))
is i-minimizer for the unconstrained problemminC×K(w0)H (x), x ∈ X.

Applying Theorem 3.2 we complete the proof. 2

Remark 4.3 The latter condition (10) can be expressed also in a dual form, namely: for all
(
v0, z0

)
∈

H ′ (x0,
(
y0, w0

)
;u

)
, and for allu ∈ X, there exists a couple

(
ξ0, η0

)
∈

(
C ′ ×K ′ (w0

))
,
(
ξ0, η0

)
6=

(0, 0), such that
〈ξ0, z0〉+ 〈η0, v0〉 > 0 .
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Remark 4.4 The assumptionG to beK-Lipschitz in Theorem 4.2 can be replaced withG to beK
(
w0

)
-

Lipschitz. SinceK
(
w0

)
⊃ K, the latter assumption is weaker.

Dealing with isolated minimizers of svp (1) we can also prove a reversal of the previous sufficient con-
ditions under the following constraint qualification of Kuhn-Tucker type.

Definition 4.1 We say that the constraint qualificationQ holds for svp (1) at
(
x0, w0

)
if for any z0 ∈

−K
(
w0

)
, z0 = lim

wk − w0

tk
, wherew0 ∈ G

(
x0

)
∩ −K, tk → 0+, wk ∈ G

(
x0 + tku

)
, u ∈ X, there

exist sequencesuk ∈ X, γk ∈ G
(
x0 + tku

k
)
∩ −K such thatγk → w0 anduk → u.

The proof of the necessary condition fori minimizers is based on the following lemmas.

Lemma 4.2 LetEk be a sequence of sets inY such thatD (Ek,−C) ≥ A, for all k, anduk ∈ X be a
sequence converging to someu0 ∈ X. Then, for any positive numberL there exists a positive number
A′, such that

D
(
Ek + L

∥∥uk − u0
∥∥BY ,−C

)
≥ A′ for k large enough.

Proof Assume ab absurdo that there exists a sequenceεk ↓ 0 such that

D
(
Ek + L

∥∥∥uk − u0
∥∥∥BY ,−C

)
≤ εk .

Recall that, by definition

D
(
Ek + L

∥∥∥uk − u0
∥∥∥BY ,−C

)
= inf

{
D (y,−C) | y ∈ Ek + L

∥∥∥uk − u0
∥∥∥BY

}
.

Therefore for every fixedk there existsyk ∈ Ek + L
∥∥uk − u0

∥∥BY such that

D
(
yk,−C

)
≤ D

(
Ek + L

∥∥∥uk − u0
∥∥∥BY ,−C

)
+

1
k
,

that is

max
ξ∈C′∩SY

〈ξ, yk〉 ≤ D
(
Ek + L

∥∥∥uk − u0
∥∥∥BY ,−C

)
+

1
k
≤ εk +

1
k
.

We get

max
ξ∈C′∩SY

〈ξ, yk〉 ≤ εk +
1
k

for yk = ek + L
∥∥uk − u0

∥∥ bk, ek ∈ Ek, bk ∈ BY . Hence, by trivial estimations we obtain

maxξ∈C′∩SY
〈ξ, ek〉 = maxξ∈C′∩SY

〈ξ, ek + L
∥∥uk − u0

∥∥ bk − L
∥∥uk − u0

∥∥ bk〉
≤ maxξ∈C′∩SY

〈ξ, ek + L
∥∥uk − u0

∥∥ bk〉+ maxξ∈C′∩SY
〈ξ,−L

∥∥uk − u0
∥∥ bk〉

≤ εk +
1
k

+ max
ξ∈C′∩S

〈ξ,−L
∥∥∥uk − u0

∥∥∥ bk〉 → 0 .

The latter contradictsD (Ek,−C) ≥ A. 2

Lemma 4.3 For any subsetA ⊂ Y it holds

D (A,−C) = D (A+ C,−C) .
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Theorem 4.2 can be reverted under constraint qualificationQ from Definition 4.1.

Theorem 4.3 Let x0 be feasible for svp (1). Assume that the constraint qualificationQ holds for svp
(1) at

(
x0, w0

)
, w0 ∈ G

(
x0

)
∩ (−K). Assume the couple

(
x0, y0

)
, y0 ∈ F

(
x0

)
, is a i-minimizer for

problem (1) andF beC-Lipschitz. Theny0 ∈ p-MinCF
(
x0

)
and the condition

H ′ (x0,
(
y0, w0

)
;u

)
∩ (−C ×K(w0)) = ∅, ∀u ∈ X \ {0}, (11)

is satisfied.

Proof There exists a neighbourhoodU of x0 such that, for every feasiblex ∈ U it holds

D
(
F (x)− y0,−C

)
≥ A

∥∥x− x0
∥∥ .

Assume, by contradiction, that condition (11) does not hold. Thus there exists
(
v0, z0

)
∈

H ′ (x0,
(
y0, w0

)
;u

)
such that

(
v0, z0

)
∈ −

(
C ×K

(
w0

))
. Hencez0 ∈ −K

(
w0

)
and it can be written

as

z0 = lim
k→+∞

wk − w0

tk

for somewk ∈ G
(
x0 + tku

)
. Since the constraint qualificationQ holds, then it follows that there exists

some suitable sequenceuk → u, such that fork large enough it holdsG
(
x0 + tku

k
)
∩ −K 6= ∅. It

follows
D

(
F

(
x0 + tku

k
)
− y0,−C

)
≥ Atk

∥∥∥uk
∥∥∥ ,

whence

D

(
1
tk

(
F

(
x0 + tku

k
)
− y0,−C

))
≥ A

∥∥∥uk
∥∥∥ .

SinceF is assumed to beC-Lipschitz, we have

1
tk

(
F

(
x0 + tku

0
)
− y0

)
⊂ 1
tk

(
F

(
x0 + tku

k
)
− y0

)
+ L

∥∥∥uk − u0
∥∥∥BY + C .

It follows

D

(
1
tk

(
F

(
x0 + tku

0
)
− y0,−C

))
≥

≥ D

(
1
tk

(
F

(
x0 + tku

k
)
− y0 + L

∥∥∥uk − u0
∥∥∥BY + C,−C

))
= D

(
1
tk

(
F

(
x0 + tku

k
)
− y0 + L

∥∥∥uk − u0
∥∥∥BY ,−C

))
≥ A′

(the last inequality follows from Lemma 4.2, using also Lemma 4.3). Hence, we have also

D

(
1
tk

(
yk − y0

)
,−C

)
≥ A′ ,

whereyk ∈ F
(
x0 + tku

0
)

is such that

v0 = lim
yk − y0

tk
,

and by continuity ofD (·,−C) also

D
(
v0,−C

)
≥ A′ > 0 .
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Thereforev0 6∈ −C, which completes the proof. 2

The condition of Theorem 4.3 is not true if the constraint qualification is not assumed. The next example
gives an illustration even for the case of a single-valued problem.

Example 4.1 Let f, g : R → R, C = R+, K = R−. Assumef(x) = x3 andg(x) = −x2,
(
x0, y0

)
=

(0, 0). Sinceg (0) = 0 = w0, K
(
w0

)
= R− and g′ (0) = 0, we haveg′ (0)u = 0 ∈ R for all

u ∈ R. Therefore constraint qualification 4.1 does not hold. Clearly
(
x0, y0

)
is the only feasible

point and hence ani-minimizer. However condition (11) is not satisfied as one can not find any couple(
ξ0, η0

)
∈

(
C ′ ×K ′ (w0

))
such that

〈ξ0, f ′
(
x0

)
u〉+ 〈η0, g′

(
x0

)
u〉 > 0 .

5 Optimality under convexity type conditions

In general we cannot state the reversal of Theorem 4.1.

Example 5.1 Consider the svfF : R R, F (x) =
[
−x2, x2

]
and the point

(
x0, y0

)
= (0, 0). Assume

that the constraint is given by the functionG : R  R defined asG (x) =
[
x2 − 1, x2 + 1

]
, with

the point
(
x0, w0

)
= (0,−1). It is easy to calculate that condition (8) is fulfilled at

(
x0,

(
y0, w0

)
;u

)
,

u ∈ R, but the couple
(
x0, y0

)
is not aw-minimizer.

However, similarly to known results in scalar optimization, a reversal of Theorem 4.1 holds under some
convexity type properties of the involved functions. First we state the following lemmas, which we quote
from [5].

Lemma 5.1 Let C ⊂ Rm be a closed convex cone anda1, a2 > 0 be two positive numbers. Then
C (a1) (a2) ⊂ C (a1 + a2).

Lemma 5.2 Let Y = Rm andC ⊂ Y be a closed convex cone. Assume the svfF : X  Y is C-
Lipschitz with constantL in the neighbourhoodU of somex0, andy0 ∈ F

(
x0

)
. Suppose that for some

σ > 0 it holdsC (2σ) 6= Y andF
(
x0

)
∩

(
y0 − C (2σ)

)
= {y0}. Then for eachx ∈ U ∩X0 and each

y ∈ F (x) ∩
(
y0 − C (σ)

)
it holds‖y − y0‖ ≤ (L/σ) ‖x− x0‖.

Lemma 5.3 LetC ⊂ Rm be pointed closed convex cone. Then for anya1, a2 ∈ Rm the set
(
a1 − C

)
∩(

a2 + C
)

is bounded.

Theorem 5.1 LetY = Rm, Z = Rl, and letC ⊂ Y andK ⊂ Z be closed convex and pointed cones.
Suppose thatx0 is feasible for svp (1),y0 ∈ F

(
x0

)
, w0 ∈ G

(
x0

)
∩ (−K). Assume thatF isC-convex

along-rays starting at
(
x0, y0

)
andG isK-convex along-rays starting at

(
x0, w0

)
. Assume also that for

all u ∈ X \ {0} there existsfu ∈ Y andgu ∈ Z such that

F
(
x0 + tu

)
⊂ y0 + tfu + C ,

G
(
x0 + tu

)
⊂ w0 + tgu +K .

(12)

Then if condition (8) is satisfied,
(
x0, y0

)
is aw-minimizer for svp (1).
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Proof By convexity along-rays ofF andG with respect to the ordering cones, it follows that the map
H (x) = (F (x) , G (x)) is C ×K-convex along-rays starting at

(
x0, y0, w0

)
. Set, for simplicity,h0 =(

y0, w0
)
. We have

(1− t)h0 + tH (x) ⊂ H
(
(1− t)x0 + tx

)
+ (C ×K)

for all x ∈ X, t ∈ (0, 1). Therefore

tH (x)− th0 ⊂ H
(
x0 + t

(
x− x0

))
− h0 + (C ×K) ,

and hence, foru = x− x0 it holds

H (x)− h0 ⊂ 1
t

(
H

(
x0 + tu

)
− h0

)
+ (C ×K) .

Hence for allh ∈ H(x) andt ∈ (0, 1) there existsht ∈ H
(
x0 + tu

)
and

(
ct, kt

)
∈ (C ×K) such that

1
t

(
ht − h0

)
= h− h0 −

(
ct, kt

)
.

By (12) there existshu = (fu, gu) such that

1
t

(
H

(
x0 + tu

)
− h0

)
⊂ thu + (C ×K) .

Therefore,
1
t

(
ht − h0

)
∈

(
h− h0 − (C ×K)

)
∩ (hu + (C ×K)) .

The latter according to Lemma 5.3 is a bounded set. Hence there exists some sequencetk → 0+ such
that

1
t

(
ht − h0

)
→ ψ0 ∈ H ′ (x0, h0, u

)
, ψ0 =

(
v0, z0

)
,

wherev0 ∈ F ′
(
x0, y0, u

)
andz0 ∈ G′

(
x0, y0, u

)
. Forh ∈ H (x), it holds, by convexity

h− h0 =
1
tk

(
htk − h0

)
+

(
ctk , ktk

)
,

and for all(ξ, η) ∈ C ′ ×K ′ it holds

〈ξ, y − y0〉+ 〈η, w − w0〉

=
1
tk

(
〈ξ, ytk − y0〉+ 〈η, wtk − w0〉

)
+ 〈ξ, ctk〉+ 〈η, ktk〉

≥ 1
tk

(
〈ξ, ytk − y0〉+ 〈η, wtk − w0〉

)
.

Passing to the limit astk → 0+ and by (8) we see that for allh ∈ H (x) , ξ ∈ C ′, η ∈ K ′ (w0
)
⊂ K ′ it

holds
〈ξ, y − y0〉+ 〈η, w − w0〉 ≥ 0 .

Moreover〈η, w0〉 = 0 and one can choosew ∈ G (x) ∩ (−K) so that〈η, w〉 ≤ 0. So for all feasible
x ∈ X andy ∈ F (x) it holds

〈ξ, y − y0〉 ≥ 〈η,−w〉 ≥ 0 ,

that isy − y0 6∈ −intC. Finally,F (x) ∩
(
y0 − intC

)
= ∅ for every feasiblex. 2

We can test the assumption of the previous theorem by few examples. First we note on an unconstrained
example, that the existence offu is essential.
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Example 5.2 Consider vvp (3) withX = X0 = R, Y = R2, C = R2
+, and

f : R → R2, f(x) = (x, −
√
|x|) .

Thenf is C-convex-along-rays at(x0, y0), wherex0 = 0 andy0 = (0, 0). Condition (6) is satisfied.
At the same time(x0, y0) is not aw-minimizer. To prove the convexity property off we must check the
inclusion(1 − t)y0 + tf(x) ∈ f((1 − t)x0 + tx) + R2

+, for eachx ∈ R and0 < t < 1. This follows
from tf(x)− f(tx) = (0, (

√
t− t)

√
|x|) ∈ R2

+. For the derivative off we have

f ′(x0, u) =
{
{(0, 0)} , u = 0 ,

∅ , u 6= 0 .

The second row follows from(1/t)(f(x0 + tu)− y0) = (u,−
√
|u|/t). From here obviously foru 6= 0 it

holdsf ′(x0, u) ∩ (−int R2
+) = ∅. For eachx < 0 we havef(x) = (x, −

√
|x|) ∈ −int R2

+. Therefore
x0 is not (even local)w-minimizer.

Finally, as an illustration of an application of Theorem 5.1 we present the next example.

Example 5.3 Let X = X0 = R, Y = R2, Z = R, and letC = R2
+, K = R+. Suppose that

F : X0  R2 is given by

F (x) =
{

[0, 1]× [0, 1] , x 6= 0,
([−1, 0]× {0}) ∪ ({0} × [−1, 0]) , x = 0,

andG (x) = |x| − 1. Putx0 = 0 andy0 = (0, 0), w0 = −1. It can be easily checked thatG fulfill
all the assumptions of Theorem 5.1. To show theC-convexity-along-rays ofF at

(
x0, y0

)
we must check

that tF (x) ⊂ F (tx) + R2
+ for 0 < t < 1. For x 6= x0 this is the true inclusion[0, 1] × [0, 1] ⊂

([0, 1]× [0, 1]) + R2
+. For x = x0 the validity follows from the true inclusion[−t, 0] ⊂ [−1, 0]. Easy

calculations give that

F ′
(
x0, y0;u

)
=

{
R2

+ , u 6= 0,
(R− × {0}) ∪ ({0} × R−) , u = 0,

andG′
(
x0, w0;u

)
= |u|, whence it is obvious that condition (8) is satisfied. Further, foru 6= 0 the

vectorsfu = (0, 0) andgu = 0 satisfy conditions (12). Then
(
x0, y0

)
is a globalw-minimizer, which

follows from Theorem 5.1.
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