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Abstract

It has long been recognized that there is considerable heterogeneity in individual risk
taking behavior but little is known about the distribution of risk taking types. We present
a parsimonious characterization of risk taking behavior by estimating a finite mixture
regression model for three different experimental data sets, two Swiss and one Chinese,
over a large number of real gains and losses. We find two distinct types of individuals:
In all three data sets, the choices of roughly 80% of the subjects exhibit significant
deviations from rational probability weighting consistent with prospect theory. 20%
of the subjects weight probabilities linearly and behave essentially as expected value
maximizers. Moreover, the individuals are assigned to one of these two groups with
probabilities of close to one resulting in a low measure of entropy. The reliability and
robustness of our classification suggest using a mix of preference theories in applied
economic modeling.
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1 Introduction

Risk is a ubiquitous feature of social and economic life. Many of our everyday choices, and

often the most important ones, such as what trade to learn and where to live, involve risky

consequences. While it has long been recognized that individuals differ in their risk taking

attitudes, surprisingly little is known about the distribution of risk preferences in the pop-

ulation (for an exception see Dohmen, Falk, Huffman, Sunde, Schupp, and Wagner (2005)).

Since preferences are one of the ultimate drivers of behavior, knowledge of the composition

of risk attitudes is paramount to predicting economic behavior. Economic models often allow

for heterogeneity, but this heterogeneity is usually confined to remain within the boundaries

of the standard model of preferences, expected utility theory (EUT). The empirical evidence,

however, reveals that heterogeneity in risk taking behavior is of a substantive kind, i.e. some

people evaluate risky prospects consistently with EUT, whereas other people deviate substan-

tially from expected utility maximization (Hey and Orme, 1994). Moreover, it seems to be the

case that rational decision makers revealing EUT-preferences constitute only a minority of the

population. To improve descriptive performance a plethora of alternative theories have been

developed (for an overview see Starmer (2000)). Unfortunately, no single best fitting model

has been identified so far (Harless and Camerer, 1994) and, depending on the individual, one

or the other model fits better. This finding poses a serious problem for applied economics.

What the modeler needs is a parsimonious representation of risk preferences which is empir-

ically well grounded and robust, and not a host of different functionals. Providing such a

parsimonious characterization of heterogeneity in risk taking behavior is the objective of this

paper.

Our method is based on a literature on classifying individuals which has recently emerged in

the social sciences. On the basis of statistical classification procedures, such as finite mixture

regression models, investigators have tried to discover which decision rules people actually

use when playing games or dealing with complex decision situations (El-Gamal and Grether,

1995; Houser, Keane, and McCabe, 2004). The finite mixture regression approach does not

require fitting a model for each individual which is - given the usual quality of the choice data

1



- frequently impossible. Instead, our approach reveals latent heterogeneity by estimating the

relative sizes of distinct behavioral groups and by endogenously assigning each individual to

a specific group characterized by a unique set of parameter values.

We apply such a finite mixture regression model to choice data from three different exper-

iments, two of which were conducted in Zurich, Switzerland. The third experiment took place

in Beijing, People’s Republic of China. We analyze 452 subjects’ decisions over real monetary

gains and losses, which comprise a total of about 18,000 choices. All three experiments were

designed in a similar manner and served to elicit certainty equivalents for binary lotteries.

Using a flexible sign-dependent functional as basic behavioral model, we show the following

results.

First, in all three data sets, we find two distinct behavioral types of risk taking behavior.

Second, the ratios of the different types in their respective populations are practically equal

in both the Swiss and the Chinese data sets and amount to roughly 20:80. Third, without

putting any a priori restrictions on parameter values we find that one of the two types, which

comprises about 20% of the individuals in each data set, exhibits near linear probability

weighting functions and value functions. Therefore, this group can essentially be characterized

as expected value maximizers. This result is particularly interesting in the light of Rabin’s

calibration theorem (Rabin, 2000) which shows that expected utility maximizers should be

approximately risk neutral for small stakes typically encountered in laboratory experiments.

Therefore, we label subjects belonging to this group of risk neutral people as “EUT-types”.

Fourth, in each data set, the second group, which comprises about 80% of the individuals,

is characterized by significant deviations from linear probability weighting and can be con-

veniently described as prospect theory types. Fifth, almost all the experimental subjects are

unambiguously assigned to one of the two distinct types. Measuring the quality of classifica-

tion by the average normalized entropy (El-Gamal and Grether, 1995) we obtain an extent

of ambiguous assignments of less than 5% of the maximum entropy, a value which is, to our

knowledge, unequaled in the literature. Thus, we observe almost no “ambiguous” types, i.e.

individuals that are assigned a high probability (of say 0.4) of being one type and a high

probability (of say 0.6) of being another type are practically absent. This clean classifica-
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tion suggests that the procedure is able to capture an essential manifestation of individual

heterogeneity.

Finally, for all three prospect theory groups we obtain similar parameter values for the

probability weighting function and the value function over losses, indicating a considerable

cross-cultural stability of preference parameters. For decisions over gains, however, Chinese

behavior differs substantially from Swiss behavior. Overweighting of probabilities is more

pronounced and the sensitivity to changes in probabilities is considerably lower for Chinese

subjects. Moreover, the Chinese value function is clearly concave, whereas the corresponding

Swiss ones are close to linearity. The total effect of both components render the Chinese

relatively more risk seeking for gains over a considerable range of probabilities. Thus, the

finite mixture regression helps to better understand the nature of cross-cultural differences.

These results show that the classification procedure successfully uncovers latent hetero-

geneity in the population. If there is heterogeneity of a substantive kind, as the data suggest,

basing predictions on a single preference theory is inappropriate and may lead to biased re-

sults. EUT preferences should be taken account of alongside prospect theory preferences even

if rational behavior constitutes only a minority in the population. As the literature on the

role of bounded rationality under strategic complementarity and substitutability has shown

(Haltiwanger and Waldman, 1985, 1989; Fehr and Tyran, 2005; Camerer and Fehr, 2006), the

mix of rational and irrational actors may be decisive for aggregate outcomes. Depending on

the nature of the strategic interdependence even a minority of players of a particular type

may determine the aggregate outcome. Therefore, the mix of types in the population is a

crucial variable in predicting market outcomes. Since the finite mixture regression provides a

robust and reliable classification of the individuals estimates of group sizes and group-specific

parameters may serve as a valuable inputs for applied economics.

To the best of our knowledge, there is no study showing a nearly identical classification

of risk preference types for three independent data sets. Related work by Harrison and Rut-

stroem (2006) and Harrison, Humphrey, and Verschoor (2005) also applies a finite mixture

regression model to several experimental data sets but decisively distinguishes itself from our

analysis. Their estimation procedure classifies choices assuming one type to be expected util-
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ity maximizing. In contrast, our estimation procedure assigns subjects endogenously to one

of two distinct types, one of which turns out to be consistent with EUT-preferences. Thus,

our results can be viewed as stronger evidence in favor of a non-negligible share of EUT indi-

viduals. In addition, our results show one feature which renders our classification particularly

convincing: Almost all individuals are assigned with a probability close to one to one of the

two endogenously emerging preference types.

The paper is structured as follows. Section 2 describes the experimental design for the

three experiments. The functional specification of the behavioral model and the finite mixture

regression model are discussed in Section 3. Section 4 presents descriptive statistics of the

data and the results of the classification procedure. Section 5 concludes.

2 Experimental Design

In the following section we describe the experimental setup and procedures. The experiments

took place in Zurich in 2003 and 2006 as well as in Beijing in 2005. In Zurich, all subjects were

recruited from the subject pool of the Institute of Empirical Research in Economics which

contains students of all fields of the University of Zurich and the Swiss Federal Institute of

Technology Zurich. In Beijing, subjects were recruited by flyer distributed at the campus of

Peking University. Since all three experiments are based on the same design principles, we

will present the prototype experiment Zurich 2003 in detail (Fehr-Duda, de Gennaro, and

Schubert, 2006) and describe to what extent the other two experiments deviate from the

prototype. The main distinguishing features of the different experiments are summarized in

Table 1.

We elicited certainty equivalents for a large number of two-outcome lotteries. One half

of the lotteries was framed as choices between risky and certain gains (“gain domain”). The

remaining decisions were presented as choices between risky and certain losses (“loss domain”).

For each lottery in the loss domain, subjects were endowed with a specific cash amount which

served to cover their potential losses and which rendered the expected payoff for the loss lottery

equal to the expected payoff of an equivalent gain lottery. In the Zurich 2003 and the Beijing
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Table 1: Differences in Experimental Design

Zurich 03 Zurich 06 Beijing 05

Number of:

Subjects 181 118 153

Lotteries 50 40 28

Observations 9,005 4,669 4,281

Procedure computerized computerized paper and pencil

Framing abstract and contextual abstract and

contextual contextual

experiments, 50% of the subjects were confronted with decisions framed in the standard gamble

format, the other 50% of the subjects had to make choices framed in contextual terms, i.e.

gains were represented as risky or sure investment gains, losses as repair costs and insurance

premiums, respectively1. The Zurich 2006 experiment was based on contextual lotteries only.

Outcomes x1 and x2 ranged from zero Swiss Francs to 150 Swiss Francs2. The payoffs in the

Beijing 2005 experiment were commensurate with the compensation in Zurich and amounted

to 4 to 55 Chinese Yuan. Probabilities p of the lotteries’ higher gain or loss, x1, varied from

5% to 95%. The gain lotteries for Zurich 2003 are presented in Table 2. The other two

experiments essentially included a subset of the Zurich 2003 lotteries. The expected payoff

per subject amounted to approximately 31 Swiss Francs and 20 Chinese Yuan, respectively,

which was considerably more than a local student assistant’s hourly compensation, plus a

show up fee of 10 Swiss Francs and 20 Chinese Yuan, thus generating salient incentives. The

lotteries appeared in random order on a computer screen3, in Beijing on paper.

For each lottery, the screen displayed a decision sheet containing the specifics of the lottery

1Pooling the data of both treatments does not change the results of our analysis.
2At the time of the Zurich 2003 experiment one Swiss Franc equaled about 0.80 U.S. Dollars.
3The experiment was programmed and conducted with the software z-Tree (Fischbacher, forthcoming).
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Table 2: Gain Lotteries (x1, p; x2)

p x1 x2 p x1 x2 p x1 x2

0.05 20 0 0.25 50 20 0.75 50 20

0.05 40 10 0.50 10 0 0.90 10 0

0.05 50 20 0.50 20 10 0.90 20 10

0.05 150 50 0.50 40 10 0.90 50 0

0.10 10 0 0.50 50 0 0.95 20 0

0.10 20 10 0.50 50 20 0.95 40 10

0.10 50 0 0.50 150 0 0.95 50 20

0.25 20 0 0.75 20 0

0.25 40 10 0.75 40 10

Outcomes x1 and x2 are denominated in Swiss Francs.

Figure 1: Design of the Decision Sheet

Decision situation:
22

Guaranteed payoff amounting to:
1 A o B
2 A o B
3 A o B
4 A o B
5 A o B
6 A o B
7 A o B
8 A o B
9 A o B

10 A o B
11 A o B
12 A o B
13 A o B
14 A o B
15 A o B
16 A o B
17 A o B
18 A o B
19 A o B
20 A o B 1

15
14
13
12

OK

20
19

Option B

7
6
5
4
3
2

Option A Your Choice:

A profit of CHF 20 with 

probability 75%             

and a profit of CHF 0 with 

probability 25% 

11
10
9
8

18
17
16

28
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and a list of 20 equally spaced certain outcomes ranging from the lottery’s maximum payoff to

the lottery’s minimum payoff as shown in Figure 1. The subjects had to indicate whether they

preferred the lottery or the certain payoff for each line of the decision sheet. The lottery’s

certainty equivalent was calculated as the arithmetic mean of the smallest certain amount

preferred to the lottery and the following certain amount on the list when the subject had for

the first time reported preference for the lottery. For example, if the subject had decided as

indicated by the small circles in Figure 1 her certainty equivalent would amount to 13.5 Swiss

Francs.

Before the subjects were permitted to start working on the experimental decisions they

had to correctly calculate the payoffs for two hypothetical choices. In the computerized

experiments, there were two trial rounds to familiarize the subjects with the procedure. At

the end of the experiment, one of their choices was randomly selected for payment. Subjects

were paid in private afterward. The subjects could work at their own speed, the vast majority

of them needed less than an hour to complete the experiment.

3 Econometric Model

This section discusses the specification of the finite mixture regression model which allows

controlling for latent heterogeneity in risk taking behavior in a parsimonious way. Estimating

the finite mixture model yields the relative sizes of a pre-specified number of groups and the

group-specific parameters of the underlying behavioral model. Moreover, as we use the Expec-

tation Maximization algorithm (Dempster, Laird, and Rubin, 1977) to compute the maximum

likelihood estimates of the model parameters we obtain Bayesian updates for the probabili-

ties of individual group membership. This procedure allows us to assign each individual to a

specific group.

For our purposes of classifying subjects according to risk taking type we need to specify

three ingredients of the mixture model: the basic theory of decision under risk, the functional

form of the decision model, and the specification of the error term.

The underlying theory of decision under risk should be able to accommodate a wide range
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of different behaviors. Sign- and rank-dependent models, such as cumulative prospect theory

(CPT), capture two robust empirical phenomena: nonlinear probability weighting and loss

aversion (Starmer, 2000). Therefore, a flexible approach, such as proposed by CPT, lends

itself to describing risk taking behavior4. Moreover, CPT nests EUT as special case. If there

is a group of people whose behavior can be described by EUT rather than by a non-degenerate

version of CPT, these individuals should be identified by the finite mixture regression.

Suppose that there are C different types of individuals in the population. According to

CPT, an individual belonging to a certain group c ∈ {1, . . . , C} values any binary gamble

Gg = (x1g, pg; x2g), g ∈ {1, . . . , G}, where |x1g| > |x2g|, by

v (Gg) = v(x1g)w(pg) + v(x2g)(1 − w(pg)).

The function v(x) describes how monetary outcomes, x, are valued, whereas the function w(p)

assigns a subjective weight to every outcome probability, p. The gamble’s certainty equivalent

ĉeg can then be written as

ĉeg = v−1 [v(x1g)w(pg) + v(x2g)(1 − w(pg))] .

In order to make CPT operational, we have to assume specific functional forms for the

value function v(x) and the probability weighting function w(p). A natural candidate for v(x)

is a sign-dependent power functional

v(x) =

 xα if x ≥ 0

−(−x)β otherwise,

which can be conveniently interpreted and has turned out to be the best compromise between

parsimony and goodness of fit in the context of prospect theory (Stott, 2006). The curvature

parameters are identifiable since our experimental design contains lotteries with both outcomes

being nonzero.

A variety of functionals for modeling probability weights w(p) have been proposed in the

literature (Quiggin, 1982; Tversky and Kahneman, 1992; Prelec, 1998). We use the two-

parameter specification suggested by Goldstein and Einhorn (1987) and Lattimore, Baker,

4In the case of binary lotteries, CPT reduces to the original version of prospect theory (Kahneman and
Tversky, 1979).
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and Witte (1992):

w(p) =
δpγ

δpγ + (1 − p)γ
, δ ≥ 0, γ ≥ 0.

We favor this specification because it has proven to account well for individual heterogeneity

(Wu, Zhang, and Gonzalez, 2004). The parameter γ largely governs the slope of the curve,

whereas the parameter δ largely governs its elevation. The smaller the value of γ, the more

strongly the probability weighting function deviates from linear weighting. The larger the

value of δ, the more elevated the curve, ceteris paribus. Linear weighting is characterized by

γ = δ = 1. In a sign-dependent model, the parameters may take on different values for gains

and for losses.

We now turn to the third step of model specification. In the course of the experiments,

we measured risk taking behavior of individual i ∈ {1, . . . , N} by her certainty equivalents

ceig for a set of different lotteries. Since CPT explains deterministic choice we have to add an

error term, εig, in order to estimate the parameters of the model based on the elicited certainty

equivalents. The observed certainty equivalent ceig can then be written as ceig = ĉeg + εig.

There may be different sources of error, such as carelessness, hurry or inattentiveness, resulting

in accidentally wrong answers (Hey and Orme, 1994). The Central Limit Theorem supports

the assumption that the errors are normally distributed and simply add white noise.

Furthermore, we allow for three different sources of heteroscedasticity in the error variance.

First, for each lottery the subjects have to consider 20 certain outcomes which are equally

spaced throughout the lottery’s range, |x1g−x2g|. Since the observed certainty equivalent, ceig,

is calculated as the arithmetic mean of the smallest certain amount preferred to the lottery

and the following certain amount where the lottery is preferred, the error is proportional to

the range of the considered lottery. Second, as the subjects are heterogeneous with respect

to their previous knowledge, their ability of finding the correct certainty equivalent as well as

their attention span we expect the error variance to differ by individual. Third, lotteries in

the gain domain may be judged differently from the ones in the loss domain. Therefore we

allow for domain-specific variance in the error term. This yields the form σig = ξi|x1g−x2g| for

the standard deviation of the error term distribution, where ξi denotes an individual domain-
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specific parameter. Note that the model allows to test for both individual-specific and domain-

specific heteroscedasticity by either imposing the restriction ξi = ξ, or by forcing all the ξi

to be equal in both decision domains. Both restrictions are rejected by their corresponding

likelihood ratio tests in all three samples with p-values close to zero. Therefore we control for

all three types of heteroscedasticity in the estimation procedure.

Having discussed all the necessary ingredients we now turn to the specification of the finite

mixture regression model. The basic idea of the mixture model is assigning an individual’s

risk-taking choices to one of C different types of behavior each characterized by a distinct

vector of parameters θc = (αc, βc, γ
′
c, δ

′
c)
′5. We denote the proportions of these different types

in the population by πc. Given our assumptions on the distribution of the error term, the

density of type c can be expressed as

f (cei,G; θc, ξi) =
G∏

g=1

1

σig

φ

(
ceig − ĉeg

σig

)
for the i-th individual, where φ(·) denotes the density of the standard normal distribution.

Since we do not know a priori to which group a certain individual belongs to, the proportions

πc are interpreted as probabilities of group membership. Therefore, each individual density of

type c has to be weighted by its respective mixing proportion πc which, of course, is unknown

and has to be estimated as well. Summing over all C components yields the individual’s

contribution to the model’s likelihood function L. The log likelihood of the finite mixture

regression model is then given by

ln L (Ψ; ce,G) =
N∑

i=1

ln
C∑

c=1

πc f (cei,G; θc, ξi),

where the vector Ψ = (θ′1, . . . , θ
′
C , π1, . . . , πC−1, ξ1, . . . , ξN)′ summarizes all the parameters of

the model which need to be estimated.

For estimating the model we use the iterative Expectation Maximization (EM) algorithm

which provides an additional feature: By Bayesian updating, the algorithm calculates in

each iteration an individual’s posterior probability τic of belonging to group c. The posterior

5The vectors γc and δc contain the domain-specific parameters for the slope and the elevation of the
probability weighting functions.
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probabilities τic represent a particularly valuable result of the estimation procedure. Not only

do we obtain the probabilities of individual group membership but we also have a method

of judging the quality of the classification at our disposal. If all the τic are either close to

zero or one all the individuals are unambiguously assigned to one specific group. The τic

can be used to calculate a summary measure of ambiguity, such as the average normalized

entropy (El-Gamal and Grether, 1995), in order to gage the extent of dubious assignments

and to discriminate between models with differing numbers of types. If the classification has

been successful we should observe a low measure of entropy. For example, if entropy increases

when the number of different types is increased from two to three, the group assignment of

the individuals is less reliable and the model tends to overfit the data. Therefore, the model

with two types is to be preferred. Thus, the entropy measure enables us to determine the

optimal number of distinct types.

We will briefly illustrate the intuition of the iterative estimation routine: Suppose that

there are several different types of individuals in the population, each characterized by a

distinct set of parameter values. If individual group membership were known, the estimates

for the relative group sizes πc would be the relative number of individuals in the respective

group and the group-specific parameter values θc could be obtained by separately maximizing

the joint density function of the respective group. However, as we cannot observe individual

group membership directly we face an incomplete data problem and the direct maximization

of the model’s likelihood function would be difficult (for details see the Appendix). The EM

algorithm now proceeds iteratively in two steps: First, by Bayesian updating an individual’s

posterior probability τic of belonging to a specific group c is obtained based on the actual fit of

the data. As these τic provide an estimate for unobserved individual group membership, they

can be used in the second step of the iteration to estimate a new set of model parameters. As

Dempster, Laird, and Rubin (1977) have shown, this procedure results in an increase of the

likelihood value in each iteration.

Various problems may be encountered when maximizing the likelihood function of a finite

mixture regression model and, therefore, a customized estimation procedure has to be used

which can adequately deal with these problems. Details of the estimation procedure, written
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in the R environment (R Development Core Team, 2006), are discussed in the Appendix.

4 Results

In the following section we describe observed risk taking behavior and present the results of

the finite mixture regression model. We discuss the quality of the classification procedure

and the number of heterogeneous groups identified in the data. Finally, we characterize the

representative types found in each data set by their behavioral parameters and discuss cross-

cultural differences.

RESULT 1: At the aggregate level, the data exhibit the fourfold pattern of risk attitudes pre-

dicted by CPT, i.e. subjects exhibit risk aversion for high-probability gains and low-probability

losses, and risk seeking for low-probability gains and high-probability losses.

Support. Observed risk taking behavior can be conveniently summarized by relative risk

premia RRP = (ev − ce)/|ev|, where ev denotes the expected value of a lottery’s payoff

and ce stands for its certainty equivalent. RRP > 0 indicates risk aversion, RRP < 0 risk

seeking, and RRP = 0 risk neutrality. In the context of EUT, risk preferences are captured

solely by the curvature of the utility function which in turn determines the sign of the relative

risk premium. Therefore, the sign of RRP should be independent of p, the probability of

the more extreme lottery outcome. In Figures 2 through 4, median risk premia sorted by p

show a systematic relationship between RRP and p, however: In all three data sets subjects’

choices display a fourfold pattern, i.e. they are risk averse for low-probability losses and high-

probability gains, and they are risk seeking for low-probability gains and high-probability

losses. Therefore, at a first glance, average behavior is adequately described by a model such

as CPT rather than EUT.

The median RRP s gloss over an important feature of the data, however: There is sub-

stantial latent heterogeneity in risk taking behavior which is uncovered by the finite mixture

regression.

RESULT 2: The heterogeneity of individuals’ risk preferences can be captured by two dis-

tinct types of behavior. Assuming three distinct types yields an inferior characterization of the

12



Figure 2: Median Relative Risk Premia Zurich 2003
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Figure 3: Median Relative Risk Premia Zurich 2006
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Figure 4: Median Relative Risk Premia Beijing 2005
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underlying heterogeneity.

Support. The finite mixture regression model classifies individuals according to a given

number of types. In order to evaluate the quality of classification, we calculated the average

normalized entropy ANE (El-Gamal and Grether, 1995) defined as

ANE = − 1

N

N∑
i=1

C∑
c=1

τic logC (τic) ,

for C groups and N individuals. Taking logC normalizes the entropy measure to lie within

[0, 1]. If all the τic are equal to zero or one, ANE = 0. In this case, all the individuals

can be perfectly assigned to one group. ANE = 1 reflects maximum entropy, i.e. all the

τic are equal to 1/C. Such a result indicates that group membership is totally ambiguous

and that categorization has failed. If this were the case, the model’s assumption that there

is a specific number of distinct types in the population could be refuted and, thus, using a

finite mixture regression model would be inappropriate. The first line in Table 3 displays the

average normalized entropy for two groups. All three data sets exhibit an average entropy of

less than 5% of the maximal entropy of one which is an extremely low degree of ambiguity by

any standard. In their experiment on Bayesian learning, for instance, El-Gamal and Grether
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(1995) find the average entropy to lie between 0.11 and 0.38 which they interpret to be “quite

small”.

These low values of ANE in our analysis indicate that nearly all the individuals can be

unambiguously assigned to one of the two groups. This result can also be inferred from the

distributions of the posterior probabilities of group assignment in Figure 5. In Figure 5 τEUT

denotes the posterior probability of belonging to the first group which can be characterized,

as we will demonstrate below, as expected utility maximizers. In all three data sets, the

individuals’ posterior probability of being an expected utility maximizer is either close to

one or close to zero for practically all the individuals. Our result is quite remarkable as

it substantiates that there are two distinct types in the population and not a continuity of

heterogeneous individuals. And it also shows that the underlying behavioral model provides

a sound basis of discriminating between types.

Given the extremely low degree of ambiguity in our two-group classification, an improve-

ment in entropy when three groups are assumed seems hardly possible. If the classification

procedure worked better for three groups than for two groups, the average normalized entropy

should be smaller for C = 3 than for C = 2. Table 3 shows that this is not the case in any of

the three data sets. So we can safely conclude that two groups are sufficient to capture the

essential characteristics of individual heterogeneity in risk taking behavior.

Table 3: Average Normalized Entropy

Groups Zurich 03 Zurich 06 Beijing 05

C = 2 0.049 0.033 0.031

C = 3 0.052 0.034 0.049

Aside from the high reliability of assignment, we also find stable mixing proportions across

all three data sets as the next result shows.

RESULT 3: The proportions of the two distinct types are essentially equal in all three data

sets and amount to a ratio of approximately 20:80.
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Figure 5: Distribution of Posterior Probability of Assignment to EUT
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Support. In all three graphs of Figure 5, there are about four times as many individuals

with τEUT close to zero as individuals with τEUT close to one. This finding is mirrored by the

estimates of the mixing proportions πc. Table 4 displays, for each data set, the group-specific

parameter estimates of the finite mixture regression model and their standard errors obtained

by the bootstrap method with 4, 000 replications (Efron and Tibshirani, 1993). Estimates of

the mixing proportion of the first group amount to about 20% and, consequently, to about

80% for the second group. Moreover, the 95%-confidence intervals for the estimates of πc for

all three data sets overlap. Therefore, the classification is not only unambiguous but also

results in roughly equal proportions of both types across our data sets.

This finding leads us to the next question. Can each of the two types found be characterized

by essentially the same patterns of behavior across all three data sets?

RESULT 4: One type of individual behavior, applying to approximately 20% of the subjects,

is characterized by near linear probability weighting and linear valuation of monetary outcomes.

Thus, these individuals behave in accordance with expected value maximization.

Support. As far as the first type is concerned, which comprises about 20% of the subjects,

Table 4 displays almost identical parameter estimates across all three data sets. Without

having imposed any restrictions on the parameters, we find that the first groups’ probability

weighting functions are roughly linear as the parameter estimates for both γ and δ are close to
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Table 4: Classification of Behavior

EUT-Types CPT-Types

Parameters Zurich 03 Zurich 06 Beijing 05 Zurich 03 Zurich 06 Beijing 05

Proportion π 0.176 0.224 0.201 0.824 0.776 0.799

(0.022) (0.026) (0.020) (0.022) (0.026) (0.020)

Gains

α 0.983 0.989 1.083 1.056 0.901 0.379

(0.012) (0.018) (0.103) (0.021) (0.026) (0.105)

γ 0.952 0.945 0.911 0.414 0.425 0.242

(0.014) (0.020) (0.034) (0.015) (0.015) (0.014)

δ 0.907 0.909 0.889 0.846 0.862 1.335

(0.012) (0.019) (0.054) (0.021) (0.028) (0.074)

Losses

β 1.009 1.014 1.020 1.108 1.121 1.156

(0.017) (0.024) (0.087) (0.027) (0.047) (0.108)

γ 0.871 0.953 0.948 0.417 0.452 0.306

(0.042) (0.020) (0.040) (0.016) (0.014) (0.013)

δ 0.966 1.049 1.066 1.021 1.060 0.925

(0.059) (0.033) (0.066) (0.027) (0.044) (0.054)

ln L 20,493 11,336 10,244

Parameters 375 249 319

Observations 9,005 4,669 4,281

Standard errors (in parentheses) are based on the bootstrap method with 4,000 replications.
Parameters include additional estimates for ξ̂i for domain- and individual-specific error variances.
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Figure 6: Probability Weighting Functions Zurich 2003
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Figure 7: Probability Weighting Functions Zurich 2006
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Figure 8: Probability Weighting Functions Beijing 2005
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one and, in many of the cases, cannot be statistically distinguished from one. The confidence

bands for the probability weighting functions reveal the same picture: Figures 6, 7, and 8

contain the graphs of the domain-specific probability weighting functions by type with their

confidence bands based on the percentile bootstrap method. The gray dotted lines correspond

to the estimated curves for the first type, referred to as “EUT-type”, the gray dashed lines

delimit the respective confidence bands. For both gains and losses, the confidence bands for

the first type include linear weighting over a wide range of probabilities. Moreover, as Table 4

reveals, the estimates for the power functional parameters α and β are also practically equal

to one, so these groups can be essentially characterized as expected value maximizers. In the

light of Rabin’s calibration theorem, we label the individuals belonging to these groups as

“EUT-types”.

The discriminatory power of our classification can also be traced at the behavioral level.

After assigning the subjects to one of the two groups based on their τic, the observed relative

risk premia can be broken down by type as depicted in Figure 9 for the Chinese data set. As

can be seen, the RRP s of the Chinese EUT-types are close to zero, reflecting near risk neutral

behavior in accordance with expected value maximization. A similar picture can be shown to
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emerge for the Zurich 2003 and Zurich 2006 experiments.

The next result characterizes the second group of individuals. The observed fourfold

pattern of risk attitudes, depicted in Figures 2 through 4, already suggests that nonlinear

probability weighting is a dominant feature of aggregate behavior.

RESULT 5: The second type of individuals, comprising about 80% of the subjects, exhibit

an inverted S-shaped probability weighting curve consistent with CPT.

Support. The second, much larger, class of individuals in each data set is characterized

by a typical inverted S-shaped probability weighting function. Consequently, we label these

individuals as “CPT-types”. The CPT-types’ probability weighting curves are pictured as

black lines in Figures 6, 7, and 8. The solid lines correspond to the estimated curves and

the dashed lines mark the confidence bands. For both gains and losses, all three figures show

nonlinear probability weighting curves. Examining the behavior of the Chinese CPT-types at

the level of observed relative risk premia in Figure 9, we find a pronounced fourfold pattern

of risk attitudes with more extreme deviations from risk neutrality than the aggregate risk

premia in Figure 4. As before, a similar picture can be shown to emerge for the Zurich 2003

and Zurich 2006 data. This finding demonstrates that aggregate data underestimate the true

extent of the CPT-types’ probability distortions.

Across all three data sets we found a surprisingly similarity of behavior of the first group,

the EUT-types. Is the second groups’ behavior also devoid of cultural specificities?

RESULT 6: A cross-cultural difference in the CPT-types’ behavior is manifest in the gain-

domain whereas in the loss domain parameter estimates exhibit consistent magnitudes across

all three data sets. For gains, the Chinese subjects weight probabilities more optimistically

than the Swiss subjects. Moreover, they exhibit a clearly concave value function whereas the

Swiss value functions are near linear.

Support. Inspection of the parameter estimates in Table 4 reveals the values for the loss

domain to be essentially of the same order of magnitude across all three data sets: All the

estimates for the curvature parameter β are close to 1.1, the estimated slope parameter γ of

the probability weighting function lies between 0.31 and 0.45, and the elevation parameter

estimates are in the vicinity of 1. The graphs of the CPT-types’ probability weighting functions
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Figure 9: Median Relative Risk Premia by Type Beijing 2005
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over losses all look similar when comparing Figures 6, 7, and 8. We find a substantial cultural

difference between Swiss and Chinese subjects in the gain domain, however. As the graphs

show, the Swiss probability weighting functions in Figures 6 and 7 exhibit the familiar shape,

i.e. intersection with the diagonal at probabilities of about 0.4, whereas the Chinese curve in

Figure 8 is much more elevated. When judging gains, the Chinese subjects seem to be much

more optimistic than the Swiss, i.e. they put a much higher weight on small and medium

probabilities. The Chinese probability weighting function is also considerably flatter in the

middle part than the Swiss curves which indicates a lower sensitivity towards changes in

probabilities by the Chinese. On the other hand, the Chinese value function is clearly concave

(estimated α equals 0.38), contrasting with the almost linear Swiss value functions (estimated

α equals 1.06 and 0.90, respectively).

5 Concluding Remarks

We conducted three experiments based on the same design principles and applied a finite

mixture regression model to the resulting data. For all three data sets a coherent picture

emerges. Irrespective of cultural background, we find an equal mix of two distinct groups.

The classification procedure performs extremely well resulting in less than 5% of the maximal

average normalized entropy which means that almost all the individuals are reliably assigned

to either one of the two distinct groups. The first group comprises about 20% of the subjects,

be they Swiss or Chinese, whose behavior can be characterized by expected utility theory.

Moreover, parameter estimates are almost identical for all three EUT-groups and correspond

to near risk neutral behavior in line with the prediction of Rabin’s calibration theorem.

The second group, encompassing 80% of the subjects, can be classified as prospect theory

types exhibiting an inverted S-shaped probability weighting function. When potential losses

are at stake, the behavior of CPT-types can be described by remarkably similar parameter

values. In the domain of gains, however, we find significant cross-cultural differences. Chinese

risk taking behavior can be explained by two countervailing forces: While probabilities are

weighted highly optimistically, the marginal value of monetary outcomes declines. The risk
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attitude of the Swiss subjects, however, manifests itself mostly in the shape of the probability

weighting function alone. When we estimate risk premia over a comparable range of outcomes,

we predict the Chinese to be more risk seeking than the Swiss for gains of low and medium

probability. Previous studies show that Chinese respondents are relatively more risk seeking

than American respondents (Hsee and Weber, 1999; Wang and Fischbeck, 2004). These results

are consistent with our estimates and can be explained predominantly by the specific shape

of the Chinese probability weighting function.

When we started this project we were quite confident that we would find a considerable

fraction of rational expected utility maximizers. What really surprised us is the robust share

of EUT-types, even across two so different cultures as the Swiss and Chinese. This consistent

magnitude of the EUT-groups lends support to prior evidence by Hey and Orme (1994) and

Lattimore, Baker, and Witte (1992). These rational actors constitute a non-negligible propor-

tion of the population whose behavior, depending on the nature of the strategic environment,

may be decisive for aggregate outcomes. The existence of a robust share of rational actors

suggests to use a mix of preference theories for modeling behavior rather than a single the-

ory which would yield systematically biased results. Moreover, for the majority of subjects,

prospect theory adequately describes behavior, but the parameter estimates exhibit culture-

specific values. Researchers should take this evidence into account when constructing and

estimating models of choice under risk.
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A Estimation of the Finite Mixture Regression Model

As it is generally the case in finite mixture models, direct maximization of the log likelihood

function

ln L (Ψ; ce,G) =
N∑

i=1

ln
C∑

c=1

πc f (cei,G; θc, ξi)

may encounter several problems, even if it is in principle feasible (for a general treatise see for

example McLachlan and Peel (2000)). First, the highly non-linear form of the log likelihood

causes the optimization algorithm to be rather slow or even incapable of finding the maximum.

Second, the likelihood of a finite mixture model is often multimodal and therefore we have

no guaranty that a standard optimization routine will converge towards the global maximum

rather than to one of the local maxima.

However, if individual group-membership were observable and indicated by tic ∈ {0, 1} the

individual contribution to the likelihood function would be given by

˜̀(Ψi; cei,G, ti) =
C∏

c=1

[πc f (cei,G; θc, ξi)]
tic

By using the above formulation and taking logarithms, the complete-data log likelihood func-

tion

ln L̃ (Ψ; ce,G, t) =
N∑

i=1

C∑
c=1

tic [ln πc + ln f (cei,G; θc, ξi)]

would follow directly. As relative group sizes sum up to one, their maximum likelihood esti-

mates, π̂c = 1/N
∑N

i=1 tic, would be given analytically by the relative number of individuals

in the respective group. Furthermore, the maximum likelihood estimates of the group-specific

parameters could be obtained separately in each group by numerically maximizing the corre-

sponding joint density function which would simplify the optimization problem considerably.

The EM algorithm proceeds iteratively in two steps, E and M, while it treats the unob-

servable tic as missing data. In the E-step of the (k + 1)-th iteration the expectation of the

complete-data log likelihood L̃, given the actual fit of the data Ψ(k), is computed. This yields,
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according to Bayes’ law, the posterior probabilities of individual group-membership

τic

(
cei,G; Ψ

(k)
i

)
=

π
(k)
c f

(
cei,G; θ

(k)
c , ξ

(k)
i

)
∑C

m=1 π
(k)
m f

(
cei,G; θ

(k)
m , ξ

(k)
i

)
which replace the unknown indicators of individual group-membership, tic. Given τic

(
cei,G; Ψ

(k)
i

)
,

the complete-data log likelihood, L̃, is maximized in the following M-step which yields the

updates of the model parameters,

π(k+1)
c =

1

N

N∑
i=1

τic

(
cei,G; Ψ

(k)
i

)
,

and (
θ

(k+1)
1 , . . . , θ

(k+1)
C , ξ

(k+1)
1 , . . . , ξ

(k+1)
N

)
=

arg max
θ1,...,θC ,ξ1,...,ξN

N∑
i=1

C∑
m=1

τim

(
cei,G; Ψ

(k)
i

)
ln f

(
cei,G; θ(k)

m , ξ
(k)
i

)
.

As Dempster, Laird, and Rubin (1977) show, the likelihood never decreases from one iteration

to the next, i.e. L
(
Ψ(k+1); ce,G

)
≥ L

(
Ψ(k); ce,G

)
, which makes the EM algorithm converge

monotonically towards the nearest maximum of the likelihood function regardless whether this

maximum is global or just local. In the Zurich 2003 data set, we therefore needed to apply a

stochastic extension, the Simulated Annealing Expectation Maximization (SAEM) algorithm

proposed by Celeux, Chauveau, and Diebolt (1995), in order to overcome the EM algorithm’s

tendency to converge towards local maxima. In each iteration, there is a non-zero probability

that the SAEM algorithm leaves the current optimization path and starts over in a different

region of the likelihood function which results in much higher chances of finding the global

maximum. But this robustness against multimodality of the objective function comes at the

cost of much higher computational demands.

As the EM algorithm is computationally highly demanding, even in its basic form, and

tends to become tediously slow when close to convergence our estimation routine relies on

a hybrid estimation algorithm (Render and Walker, 1984): It first uses either the EM or

the SAEM algorithm and takes advantage of their robustness before it switches to the direct
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maximization of the log likelihood by the much faster BFGS algorithm. The estimation routine

in this form turned out to be efficient and robust as it reliably converged towards the same

maximum likelihood estimates regardless of the randomly chosen start values.
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