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Abstract: 
 

This paper examines the impact of dolphin-safe eco-labeling and how it fundamentally altered the 
spatial distribution of fishing effort and fishermen's willingness to pay to avoid dolphins.  To do 
this, a dynamic discrete choice econometric model is applied to the Eastern Tropical Pacific tuna 
fishery. This econometric approach combines a dynamic programming component with the static 
discrete site choice model.  This estimator couples the current period projected profits associated 
with fishing a specific site with the value of all future location choices on the cruise, assuming 
choices are made optimally.  The key feature of this model is that it recovers behavioral 
parameters and solves the dynamic programming problem recursively.  The dynamic site choice 
model reveals a markedly higher impact on producers as compared to the commonly used static 
model following the labeling regime.  Further, in all but a few cases the common practice in 
dynamic choice models of setting discount factors equal to one is rejected.  
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I. Introduction 
 

Eco-labeling has been touted as a way for consumer preferences for environmentally benign 

products to be transmitted in markets.  The label, as the argument goes, provides information to 

consumers who may then pay a price premium for the labeled products.  Producers view demand 

for the eco-labeled products as quality differentiated and defined by the producer’s production 

method.  With a high enough price premium for the “green” good, producers may alter 

production practices to meet labeling certification requirements.  Sedjo and Swallow [34] and 

Basu et al. [2] have examined the welfare implications of labeled products in a general 

equilibrium setting.1  Their findings regarding when a labeling program is likely to send positive 

signals to producers shows that the cost of choosing the green method of production is a 

significant determinant, along with consumer preferences.  While many studies have examined 

the demand side of eco-labeling (Gudmundson and Wessels [11]; Bjorner et al. [4]; O’brien and 

Teisl [26]; and Nimon and Beghin [25]) including the dolphin-safe labeling program (Teisl et al. 

[42]), little attention has been devoted to the impacts on producers from labeling programs. This 

paper examines the impact of dolphin-safe tuna labeling on fishermen’s production practices and 

spatial choices in the Eastern Tropical Pacific Ocean (ETP hereafter).  

 

To examine this question, a model of fishing that links fishermen’s spatial choices during a cruise 

is developed.  This model is premised on the assumption that fishermen choose an optimal cruise 

trajectory and do not make spatial decisions myopically.  Since the dolphin-safe standard of the 

early 1990s required fishermen to avoid dolphins for the entire cruise, we believe that this model 

of fishing can better describe behavior than the commonly employed static site choice model.  In 

contrast to the restrictive static model which only considers the current period rewards from 

choosing a site, our model allows fishermen to base their site choice decisions on current fishing 

conditions and what they believe will happen in the future. Our model, therefore, allows 

fishermen to spatially hedge by choosing areas that are situated near other attractive fishing sites 

while avoiding dolphin bycatch.   

 

Although it is well accepted by neo-classical economists that agents behave dynamically when 

faced with inter-temporal discrete choices, the econometric modeling of this behavior has not 

been as prevalent as static discrete choice modeling.  In natural resource economics, the use of 

dynamic discrete choice modeling is complicated by the dimensions of the choice set, the 
                                                           
1 Basu et al. [2] examine the general implications for guaranteed child labor free products.  However, their 
theoretical findings yield insight for eco-labels. 
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endogenous evolution of an agent’s information, and the length of the time horizon studied.  

Researchers have been successful in the application of dynamic econometric techniques to 

problems having small choice sets because these models are tractable when the number of choice 

alternatives is small.   For problems having a large numbers of choices, the dynamic implications 

of site choice are commonly ignored and agents are assumed to behave myopically.  This is 

because the dynamic methods traditionally used become intractable when the choice set expands. 

 

To tackle problems where dynamic choices are being made and where there exist many choice 

alternatives and a large state space, we offer a computationally tractable middle ground estimator.  

In order to approximate dynamic behavior, our model assumes that the state space is known to the 

agent prior to taking their actions, thereby eliminating the stochastic evolution of the state space.  

While this assumption may seem restrictive, it is likely suitable for a large number of problems 

where the cost (to the agent) of obtaining and updating information for a large number of 

alternatives is high, yet the agent is adopting a decision rule that approximates dynamically 

optimal behavior.  This model therefore assumes that fishermen base their site characteristic 

expectations during a cruise on previously observed conditions. Hicks and Schnier [14] have 

investigated the suitability of this dynamic model for a wide range of fishery types using 

simulation methods.  A key finding in their work is that when potential distances traveled are 

large relative to the value of catch and/or the resource is heterogeneously distributed the dynamic 

estimator is preferred to the static random utility model (RUM).  In the paper, we argue that the 

ETP tuna fishery, because of its spatially dynamic characteristics, lends itself to the dynamic 

random utility model (DRUM) proposed by Hicks and Schnier [14]. 

 

Since its first use in the fishery economics literature by Bockstael and Opaluch [5] to investigate 

the supply response decision of fishermen in New England fisheries, the multinomial logit model 

has been the standard method employed to estimate RUMs in fisheries.  It has been utilized to 

investigate location choice in both the pink shrimp fishery (Eales and Wilen [10]) and in the New 

England groundfish fishery (Holland and Sutinen [15], [16]).2  Extending this model to a nested-

logit framework, other researchers have utilized static RUMs to investigate sea turtle 

conservation areas (Curtis and Hicks [8]), marine protected areas (Smith and Wilen [40], [41]) 

and essential fish habitat conservation areas (Hicks et. al. [13]).  Furthermore, these studies have 

spanned a diverse range of fisheries, from the sedentary sea urchin along the coast of Northern 

California (Smith [38]; Smith and Wilen [40], [41]), to highly migratory species in the Pacific 
                                                           
2 For a more in-depth discussion of the use of discrete choice models is fisheries see Smith [37]. 
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Ocean (Curtis and Hicks [8]) as well as the Atlantic Ocean (Mistiaen and Strand [23]).  One 

common denominator shared by all of these papers is that they do not explicitly account for the 

inter-temporal aspects of commercial fishing site choice; they lack a rigorous dynamic discrete 

choice framework.3 

 

The application of dynamic discrete choice models in the natural resource economics literature 

has been limited by the curse of dimensionality.  However, these models have been successfully 

used to solve the optimal stopping rule in forest rotation policy (Provencher [27]), recreational 

angling in the Great Lakes (Provencher and Bishop [28]) and search behavior in the Northern 

California sea urchin fishery (Smith and Provencher [39]).  In addition, these models have been 

used in agricultural economics to study the dairy cow replacement decision (Miranda and 

Schnitkey [20]).  The foundation for these models is the full-solution method developed by John 

Rust [29], which was initially used to analyze bus engine replacement decisions and has 

subsequently been used to investigate an individual’s retirement decisions (Rust and Phelan 

[31]).4    

 

The aforementioned studies have utilized the dynamic discrete choice framework because the 

static assumptions made in the RUM are too restrictive, given the purpose of their research.  They 

have also awakened other researchers to consider the dynamic nature of decision environments, 

as a realistic depiction of many observable choices possesses a dynamic component.  This has 

stimulated an area of research to develop middle ground estimators which are computationally 

tractable, yet capture the essence of complex dynamic programming models.  Although the 

dynamic programming models elegantly allow for the stochastic evolution of the state space 

within the discrete choice model, they become intractable as the choice set increases.  The 

limitations of these models will presumably be reduced as computer processor speeds and 

memory capacity increase.  However, with large choice set problems they will still exist and a 

middle ground estimator will be required to approximate dynamic behavior. 

 

In the fisheries literature several middle ground estimators have been investigated.  These 

estimators essentially append a proxy for the agent’s future rewards from choosing a site to the 
                                                           
3 Curtis and Hicks [8] approximate dynamic behavior by estimating the income stream from the duration of 
the cruise given a particular site selection.  However, the method used is ad hoc and does not formally 
estimate the dynamic model. 
4 There are two conventional methods used to estimate stochastic dynamic programming models; they are 
full solution methods proposed by Rust [29] and the non-full solution methods developed by Keane and 
Wolpin [19].  The model utilized here parallels the full solution method developed by Rust. 
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static model without resorting to stochastic dynamic programming methods. Expanding the 

multinomial logit model of site selection in fisheries, Curtis and Hicks [8] incorporate the 

expected future value and variance of wealth to investigate sea turtle closures off the coast of 

Hawaii.  They construct the expected future value of wealth in a given site by extrapolating the 

current site specific returns forward in time utilizing a spatially weighted return function.  They 

used these variables of location specific future returns to capture quasi-dynamic behavior.  In a 

similar effort to expand the static RUM to incorporate dynamic information, Baerenklau and 

Provencher [1] recently proposed appending the RUM to include two individual specific 

constants to represent the expected utility of taking two alternative actions,  the decision to take a 

fishing trip or not.  In addition they employed a random effects framework for both options to 

help control for agent heterogeneity.  Both of these models attempt to use static models to 

approximate dynamic behavior. However, neither directly estimates behavioral parameters which 

influence the current period rewards as well as the value of future optimal behavior.  Rather, each 

study utilizes an additive utility framework with the dynamic component separately identified. 

The model we propose estimates behavioral parameters that influence both the contemporaneous 

component of expected utility as well as the value of future optimal spatial behavior 

simultaneously.  

 

The model developed herein is limited by the fact that we assume all information is deterministic 

and known to the agent prior to making their site choice decision in any period.   If this 

assumption is relaxed, we would be forced to estimate the model via stochastic dynamic 

programming or utilizing a random grid search algorithm (Rust [30]), which would be intractable 

given the dimensions of the state space used in this research.  However, it is important to note that 

the information assumed to be possessed by agents in our dynamic model is the same as both the 

conventional static models discussed earlier and the approximations of dynamic behavior 

proposed by Curtis and Hicks [8] and Bearenklau and Provencher [1].  Therefore the data 

requirements are very similar to the conventional models used in the discrete choice literature.  

 

In the following section we outline the DRUM and the requirements relative to the static model.  

Section three provides a brief discussion of the ETP tuna fishery and the time period over which 

our study is conducted.  It also elaborates on the significance of the dolphin-safe tuna labeling 

initiatives in the late 1980’s and early 1990’s.  The fourth section summarizes our results and the 

final section discusses the importance of modeling dynamic behavior and the potential future 

applications of the DRUM developed. 
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II. Dynamic Random Utility Modeling (DRUM) 

 

The DRUM estimator we propose degenerates to the static RUM whenever the discount factor is 

equal to zero, whether by assumption or as revealed by agent behavior. Therefore, we will briefly 

discuss the RUM and then expand it to reflect the addition of dynamic decision making.  

Assuming that there exist N alternatives (ie. feasible fishing locations), the indirect utility 

function for location j in time period t is denoted, 

 

            (1) 

 

where, xjt is a vector of location specific characteristics which may vary over time and space and 

β is a parameter vector of preferences.5   Within the fisheries literature xjt often contains location 

specific information on expected revenues, expected climatic conditions and the distance traveled 

from one site to another, to cite a few. The agent knows jtv with certainty, whereas the researcher 

only observes );( βjtxR .  Therefore, it is assumed that research does not observe the random error 

component εjt.  Agents are assumed to select alternative j whenever the following is true, 

 

.,, NkNjktvjtv ∈∀∈∀≥          (2) 

 

Therefore, the agent’s unconditional expected utility at each time period t is, 
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Assuming that the random error component, εjt , is independently and identically distributed with 

an extreme value distribution, the probability that an agent selects alternative j in time period t 

can be expressed as, 

 

.
));(exp(

));(exp(
)Pr(

1
∑
=

= N

i
it

jt

xR

xR
j

β

β
         (4) 

                                                           
5 The indirect utility function may also possess variables which are assumed to only vary across time such 
as vessel specific characteristics, e.g. the number of crew members on board, but since our empirical 
application does not include this information we have elected to not incorporate this information in the 
indirect utility function. 
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In a complete dynamic model the state space xjt is assumed to be path dependent and evolve 

stochastically across time.  This assumption has substantially reduced the adoption of dynamic 

discrete choice models due to the computational difficulties required to obtain parameter 

estimates.  In the DRUM all of the observations in xjt are assumed to be deterministic except for 

the distance traveled from one location to another.  Therefore, the choice made in time period t 

effectively defines the distance traveled, and hence the travel costs that must be expended to 

reach each of the N alternatives at time t+1.  When the distance traveled between sites and/or the 

costs of traveling are high, the importance of a current period choice on future payoffs is 

magnified. The choice alternatives in our study are sets made while on a fishing trip.  Therefore, 

our application of the DRUM estimates intra-cruise dynamic behavior; however it could be 

extended to other types of dynamic behavior as well.  

 

In the DRUM estimated in this paper the endogenous evolution of the state space is defined by 

the evolution of the distance traveled from one site to another but it could be expanded to include 

experience at sites (Smith [38]), cumulative catch during the cruise, or a state dependent 

mechanism for updating expectations.  However, for simplification we focus only the evolution 

of the state space implied by the distance traveled from one site to another within a fishing cruise.  

This simplification allows us to extend dynamic discrete choice modeling to situations having 

numerous choice alternatives and long time horizons.  The DRUM broadens the RUM by 

allowing the agent to consider the impact of current period choice on all future choices.  In the 

DRUM, the agent’s objective function in time period t is to maximize, 
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E[.] represents the agent’s expectation operator, δ is the discount factor, dk(τ) is a binary control 

variable indicating whether site k is chosen in time period τ, S(τ) is the current state variables 

observed by the agent in time period τ which consists of all the xjt’s in time period τ and vkt is as 

defined earlier.  To maximize this objective function each agent must select a sequence of binary 

control variables, dk(t) for t=0,…,T indicating which site is selected in each time period. 

 

In the absence of forward looking behavior equation (5) degenerates to equation (3) as the future 

optimal rewards given an agent’s current state is fully discounted.  However, if future optimal 
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rewards are not fully discounted the agent’s maximum discounted expected utility is, 
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where, Vk(S(t),t) is the alternative specific value function of choosing the kth site in time period t.  

The value function, Vk(S(t),t) depends on the state space S(t) observed in time period t and follows 

the Bellman equation (Bellman [3]), 
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Given the definition of jtv defined in equation (1), the value function can be rewritten as, 
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Given this formulation, the agent selects the optimal trajectory of discrete choices which 

maximizes their contemporaneous expected utility as well as the expected discounted returns 

from a fishing trip (cruise) of length T.  In the DRUM application to the ETP tuna fishery we 

assume that T is known prior to leaving port; however this assumption can be relaxed by altering 

the value function expressed in equation (8).  The expected discounted reward function, δE[.], 

complicates the estimation procedure as it must be solved using backwards recursion and 

estimating the value function involves a multi-dimensional integral over the vector of random 

elements, {ε}.  Rust’s conditional independence assumption simplifies the latter complication, 

which assumes that the errors are distributed multi-variate extreme value, are conditional on the 

observable state variables, and are serially independent (Rust [29]).  This simplification allows 

the expected discounted reward function δE[.], to be depicted as an additively separable value 

function which may be solved recursively and depicted as follows, 
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where, γ is Euler’s constant and  

 

]1)1(),1(|)2),2(([);()1),1(( 1 =+++++=++ + tdtSttSVExRttSv kjtk δβ    (10) 

 

is the expected conditional value function in time period t+1 for each of the k alternatives.  Using 

the conditional independence assumption the alternative specific reward function in time period t, 

Vj(S(t),t), can be expressed as, 
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where all parameters are as defined earlier.  The addition of the third term in equation (11) 

defines the difference between the RUM and DRUM.  The parameter vector, β, must not only 

determine the contemporaneous indirect utility of selecting location j, it must also fit the 

additively separable expected value of future optimal behavior from the current time period 

forward to time period T.  This is easily seen focusing on Vj(S(T-1),T-1) where equation (11) 

becomes, 

 

.);(exp(ln);(max)1),1(( 11




























+++=−− ∑

∈
−−

Sk
kTjTjTj xRxRTTSV βγδεβ    (12) 

 

Further recursions of the value function compounds the nesting of the parameter vector, β, and 

the discount factor, δ, within the value function.  Given the assumed properties of the DRUM, the 

probability that an agent selects option j in time period t can be represented as, 
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which can be estimated using a multinomial logit likelihood function following the backward 

recursion formulation of Vj(S(t),t).  The similarities of the RUM and DRUM are readily evident 

when we assumes that δ = 0 because equation (13) degenerates to equation (4), thus depicting the 

“middle ground” properties of the DRUM estimator.   
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Estimation of equation (13) was accomplished using limited information maximum likelihood 

(LIML) techniques.6 Given starting parameters for β a gradient-based search algorithm is used to 

obtain parameter estimates that maximize the likelihood function.  Rust pointed out that the 

discount factor is often highly collinear with the parameter estimates (Rust [29]). Therefore, 

obtaining estimates for the discount factor δ requires a separate search over the feasible parameter 

space to obtain estimates which maximize the likelihood function.  Alternatively, one can assume 

a discount factor with the understanding that the parameter estimates obtained are contingent on 

the assumed discount factor.  To obtain estimates of δ within this paper we utilize the former 

method as we discovered that the parameter estimates of β vary substantially depending on the 

assumptions made regarding δ.  The method used to conduct the search for the optimal discount 

factor, δ*, is discussed following the description of the data.   In addition, we compare the 

parameter estimates for the optimal discount factor with those obtained when we assume that 

discount factor is zero (static RUM) or one, where one is often chosen in the literature when the 

time horizons are short (Rust [29]; Provencher [27]; Provencher and Bishop [28]; Bearenklau and 

Provencher [1]; Rust and Phelan [31]). 

 

One practical concern in implementing the DRUM is the proper characterization of the site-

specific reward function using observable data and whether the characterization is dynamically 

consistent.  To appreciate the importance of this consideration, note that an important 

independent variable in site choice models of commercial fishing, the expected site-specific 

revenue, is sometimes calculated based on a 10 day or 30 day moving average of site-specific 

revenues.  Studies employ moving averages of recent activity because it approximates the 

information on the most recent fleet activity that is likely to influence site choice.  Using this data 

in the dynamic model in equation (13) may yield an endogeneity problem.  For instance, if one is 

using 10 day moving average revenues at each site as a site selection predictor on the first day of 

the cruise and the cruise is expected to last 20 days, using this information within the value 

function would be dynamically inconsistent.  This is because future site selections (in periods 2, 

3, .., 11) would be incorporating information from the site choice in time period one even though 

the site choice has not yet been made.  To rectify this we use non-overlapping data for the time 

length of the cruise TC, where TC is a calendar measure of time, used in the Bellman equation.7  

                                                           
6 The maximum likelihood routine was maximized using the GAUSS Constrained Maximum Likelihood 
(CML) procedure. 
7 A distinction is made between the T used in equations (6) through (13) and TC because in our application 
T does not need to correspond with an explicit calendar time step but to an interval step in the agent’s 
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Lagging site specific revenues by at least the calendar length of the cruise will ensure that the 

information used to calculate the Bellman equation does not include information about actions 

which have not yet been made.8 

 

Following estimation of equation (13) the parameter estimates obtained from the DRUM have a 

similar, albeit mathematically different, interpretation as those obtained from the static RUM in 

equation (4).  Haab and McConnell (2002) have shown that for a ∆qt change in site quality in the 

static RUM, the willingness to pay (WTP) for this change in site quality at all sites can be written 

as, 

 

S
REV

s
qt

tt
q

qWTP
β

β∆
=∆ )(          (14) 

 

where, S
qβ  is the marginal utility for site characteristic q and S

REVβ  is the marginal utility of 

revenues (the superscript S indicates the parameter estimates are from the static RUM).  A similar 

expression can be obtained for the DRUM (denoted by the superscript D), where the WTP in each 

time period between the current time period, t, and the final time period, T, for a ∆qt change at all 

sites is, 

 

WTPτ (∆qτ ) =
∆qτβq

D

βREV
D     ∀τ = t,...,T        (15) 

 

The proof of equation (15) is contained in the appendix.9  Although the WTP measures expressed 

in equations (14) and (15) are identical, they will yield different estimates whenever the 

parameter estimates obtained from the RUM and DRUM differ.  This will be the focus of our 

                                                                                                                                                                             
choice set.  Whereas, TC references the time horizon over which the data used to estimate dynamic behavior 
is defined. 
8 Should the researcher find that site selection is highly dependent on behavior in the recent past and that 
the assumption fisherman calculate the optimal cruise trajectory prior to leaving port is overly restrictive, 
the model in equation (13) can be estimated using non-lagged data provided agents update the Bellman 
each period conditional on the new information available to them at that time. Since the value function is 
updated each period, this substantially increases the number of times that the Bellman equation must be 
evaluated for each candidate parameter vector during estimation.  For fisheries with only a few time steps 
this is feasible, but for fisheries with exceptionally long cruise lengths this significantly reduces the 
convergence speed of the LIML estimates of β and the search for δ*.  In addition, if the researcher allows 
for continuous updating of the Bellman then the dynamic consistency concerns must be considered. 
9 It is evident from the proof, that equation (15) holds for any quality change and WTP stream, so long as 
∆q and WTP are experienced in the same period(s) in the future. 
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empirical application as we discovered substantial differences in the WTP’s resulting from the 

informational assumptions implied under both models.  The following section discusses the 

dataset used in our empirical application, the ETP tuna fishery, as well as the precise specification 

of the econometric model and data requirements. 

 

III. Data Description and Model Specification 

 

Large purse seiners have been catching tuna in the Eastern Tropical Pacific Ocean (ETP 

hereafter) since the early nineteen-sixties.10  These vessels, typically some 220 feet in length, 

deploy seines that are as long as one mile and reach a depth of 600 feet deep in the water 

column.11   Purse seiners in the ETP have caught tuna using one of three predominant methods. In 

the first method (referred to as a log set), floating debris is targeted since it is known to attract 

tuna.  Purse seiners spot the debris, encircle it with their nets, and capture tuna.  Schools of tuna, 

once spotted, are also targeted (this method is referred to as school sets).  Schools often move 

quickly, and encirclement usually requires small speedboats to herd tuna.  By far the most 

predominant method of capturing tuna in the ETP involves dolphins (referred to as ‘dolphin 

sets’). In the ETP, tuna are often found near dolphins.  Compared to school and log sets, purse 

seiners can more easily spot dolphins than tuna or logs, since dolphins surface often for air. The 

search for tuna typically involves crew with binoculars, speedboats, and helicopters that are 

launched off of the purse seiner.  The degree of searching effort does differ across fishing 

methods, with log and school sets typically requiring more search activity.   Using some 

combination of these three methods of fishing, vessels typically set their gear in the water an 

average of 44 times during a cruise.12 

 

From the fisherman’s perspective, the ease of spotting dolphins coupled with the very strong 

association of large and valuable tuna with dolphins led to dolphin fishing being the most 

dominant method of fishing in the fishery (Joseph [18]).  Unfortunately, the process of encircling 

dolphins with the seine often leads to dolphin mortality. While mitigation efforts by the U.S. 

vessels in the industry drastically reduced dolphin mortality during the nineteen-seventies and 

eightees, fleet-wide kills by U.S. vessels routinely exceeded yearly totals set forth by the U.S. 
                                                           
10 In what follows, we summarize facts presented in two important documents describing tuna fishing in the 
Eastern Tropical Pacific Ocean: National Research Council [9] and U.S. International Trade Commission 
[43]. 
11 A ‘set’ refers to putting the seine in the water.  A ‘cruise’ is comprised of a series of ‘sets’ made before 
returning to port. 
12 This average is over the years 1979 through 1992 for the US monitored fleet in the ETP. 
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Secretary of Commerce as directed under the U.S. Marine Mammal Protection Act.13 Also, the 

U.S. fleet was required to employ observers who recorded various data on the cruise including 

location, amount of catch, sea conditions, the type of set, and dolphin mortality. At the same time 

that the U.S. vessels were being required to use mitigation efforts to reduce dolphin kills, foreign 

vessels in the fishery were fishing on dolphins and were responsible for a significant level of 

dolphin mortality.14  In 1987, the famous Labudde video was aired on numerous national news 

outlets showing the sometimes brutal treatment of dolphins by the ETP purse seine fleet. Shortly 

thereafter, the Secretary of Commerce embargoed all foreign tuna that was caught without using 

the U.S. prescribed mitigation efforts.15   

 

The embargo was eventually lifted because a General Agreement on Tariffs and Trade panel 

ruled that products could not be discriminated against based on production practices and methods, 

thereby setting the stage for dolphin-safe labeling in the United States.  Although import 

restrictions were off the table, it was possible to label products differently depending on how it 

was produced.  Tuna from cruises that consisted exclusively of school or log sets could be labeled 

“Dolphin-safe”, while tuna associated with a cruise that at any time fished on dolphins could not.  

U.S. canneries began labeling dolphin-safe tuna in April of 1990 and soon thereafter, the Dolphin 

Protection Consumer Information Act placed government credibility behind the label. 

 

Our study uses data collected by the National Marine Fisheries Service as part of the U.S. 

observer program of purse seine fishing in the ETP.16  For the time period considered in this 

study, all large purse seine cruises required the presence of observers.  Consequently, the data 

completely characterizes U.S. flagged tuna purse seiners fishing in the ETP.  Figure 1 shows the 

spatial extent of the fishery for each of the three set types in the ETP fishery.  Notice the 

extremely large spatial extent of the fishery.  Vessels during the period 1979-1992, on average, 

travel 14,000 miles and switch areas (the grids in Figure 1) 7.7 times during a cruise.  

Additionally, significant changes in location (of at least 1000 and 2000 miles) occur, on average 

2.87 and 2.00 times per cruise, respectively.  The choice of location is the single most important 

                                                           
13 However, the U.S. fishery was closed only in 1986 due to too much dolphin mortality.  In other years, the 
quota was exceeded, yet the fishery was not closed. 
14 Mitigation efforts included installing a Medina Panel on the seine (to submerge some parts of the seine 
during a process known as backing down), using swimmers to lift dolphins over the seine, and avoiding 
fishing during nighttime and heavy seas). 
15 Brower [6] provides an excellent summary of the Labudde video and a sense of the public uproar 
surrounding the issue. 
16 The observer program of tuna purse seiners in the ETP is currently administered by the Inter-American 
Tropical Tuna Commision. 
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decision made during a cruise.  Figure 1 also demonstrates the concentration of log and school 

sets predominantly near coastlines, while dolphin sets occur throughout the geographic range of 

the fishery.  

 

To be certified as dolphin-safe, fishermen had to fish on log and school sets for the entire cruise.  

The dolphin-safe definition greatly reduced the geographic range of the fishery (see Figures 2 and 

3 for the dolphin-safe and non dolphin-safe cruises made after the institution of the label).  The 

label effectively eliminates entire areas of the ocean to fishing by requiring fishermen to target 

schools and logs for an entire cruise.  While in a probabilistic sense it might be possible to fish 

anywhere in the ocean and happen upon a log or school, this is undoubtedly more costly to do in 

some areas than in others.  

 

Figure 4 illustrates the trend in set type selection within the ETP tuna fishery from 1979 through 

1992.   The effect of pre and post dolphin-safe tuna labeling are readily evident in the trend of 

dolphin set utilization during this time period.  In the early 80’s dolphin sets were the most 

prevalent set choice and by the mid 80’s this method dominated the fishing practices within the 

ETP tuna fleet.17  Around the late 80’s, presumably around the time period of consumer 

awareness, dolphin sets began to rapidly decrease.  By the time dolphin-safe tuna labeling was 

enacted, 1990, dolphin sets had dropped precipitously.  Although, dolphin sets appear to rebound 

in 1992 this is anomalous because it is based on a very small number of observations and occurs 

during a time period when many of the vessels in the U.S. monitored ETP tuna fleet shifted their 

homeport designation and were no longer recorded in our data set.  When considering the impacts 

to producers from the labeling policy, there is certainly a dynamic component across sets since 

the dolphin-safe criteria applies to an entire cruise. 

 

In addition to the shift in set types over the time period 1979 through 1992, there also occurred a 

shift in the spatial distribution of the fleet within the ETP.  Figures 5 and 6 illustrate the set type 

choice by site for the time periods 1988-89 and 1990-92 respectively.  In the years 1988 and 1989 

a majority of the fleet activity took place in sites 17 through 25, located in the open ocean 

southwest of Mexico.  This shifted in 1990 through 1992 where a majority of the fleet activity 

took place in sites 34 through 40, off the coast of Panama.  This shift in the spatial distribution 

could to some degree be explained by a shift in the spatial distribution of tuna, but this is 

something which we can not measure in our data set.  However the locations selected in 1990 
                                                           
17 This trend was exacerbated by the El-Nino events in the ETP at that time. 
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through 1992 were also those regions in which school sets and log sets were the predominate 

technology choice in the years 1988 and 1989.  In 1988 and 1989 73.7%, 80.8% and 100% of the 

set choices made in sites 37, 38 and 39 respectively where either log sets or school sets.  These 

same three sites possessed the largest number of sets over the time period 1990 through 1992.  

Therefore, the predominant utilization of these fishing methods within these sites suggests that 

vessels selected these sites to facilitate their compliance with tuna safe labeling, not as a result of 

a shifting spatial distribution within the tuna population. 

 

Model Specification 

 

There are three econometric models that we estimate utilizing two alternative data assumptions.  

The first econometric model utilizes data from 1980 and 1981.  This data set was selected 

because it represents a time period prior to the full-blown tuna-dolphin controversy and labeling.  

Parameter estimates obtained utilizing this data set represent the baseline parameters for the ETP 

tuna fishery.  The econometric model is,18 
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Distj|k represents the expected distance traveled to site j from site k (a vessels current location), 

ExpRevj is the expected revenues from visiting site j, Searchj is the expected amount of search 

time (expressed in hours) they will incur if they visit site j before they encounter tuna, 

SearchDumj is a dummy variable indicating whether or not the site was previously visited, 

DolphKillj is the expected number of dolphins they will kill if they visit site j, DolphSetj is the 

percentage of sets in site j that were dolphin sets and LogSetj is the percentage of sets in site j that 

were log sets.  All variables except for Distj|k and ExpRevj were based on yearly averages from the 

previous year of fishing activity.  Distj|k represents the number of kilometers (expressed in 1000 

kilometers) necessary to travel from their current grid location to all other grid locations.  All 

distances are calculated using grid centerpoints.  ExpRevj (expressed in $1000s) changes 

depending on which of the two different data assumptions are utilized in the estimation.   

 

The first specification, model 16.1, uses the 30 day moving average lagged one year, expressed as 

                                                           
18 Recall that in the DRUM, the utility from choosing a site, consists of the contemporaneous reward 
function (R(xjt;β)) and the value function for all future optimal behavior.  
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ExpRevyear-1, for ExpRevj.  The second specification, model 16.2, uses the 30 day moving average 

lagged 90 days, expressed as ExpRevt-90days, for ExpRevj.  These two models both assume that the 

Bellman equation is not updated each period, therefore the cruise trajectory is determined prior to 

leaving port.  The results from these regressions are illustrated in Table 1. 

 

The second econometric model captures the behavioral changes resulting from the consumer’s 

awareness and concern for dolphin-safe fishing practices and the advent of dolphin-safe tuna 

labeling.  Utilizing data from 1988 through 1992 we estimate the following model, 
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Equation (17) incorporates the same variables used in equation (16) with the addition of Dum90 

which indicates whether or not the time period is after 1990.  April of 1990 was the point of 

inception for dolphin-safe tuna labeling in the ETP tuna fishery and Dum90 is interacted with 

DolphKillj, LogSetj and DolphSetj to estimate structural changes in the site choice model resulting 

from this change in marketing practices.19  Estimation of equation (17) was conducted in the same 

manner as equation (16) with two separate models estimates, models 17.1 and 17.2, each 

possessing informational assumptions identical to models 16.1 and 16.2 respectively.  The results 

from these regressions are illustrated in Table 2. 

 

The third econometric model differentiates producers during the period 1990-1992 who engaged 

in dolphin-safe cruises and those that did not.  Model (17), does allow for variation following the 

beginning of the labeling program, but does not fully exploit the spatial differences between those 

obeying dolphin-safe practices and those which do not.  More importantly, the model does not 

allow choice parameters to differ across the probability of encountering dolphin sets versus log 

and school sets.  Consequently, the estimator is likely straight-jacketing the representative cruise 

following 1990 to be a mixture of dolphin-safe and unsafe fishing practices.  To alleviate this 

restriction we focus our attention on behavior during the period 1990-1992 and we allow the set 

                                                           
19 We include all tuna caught in 1990 using dolphin-safe methods as dolphin-safe since the labeled product, 
rolled out by the canneries in April of 1990 required fishermen to engage in dolphin-safe cruises for a 
period prior to April of 1990. 
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type variables to differ according to dolphin-safe behavior while on the cruise.20   We estimate the 

following model, 
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The variable DolphSafe is a binary variable equal to 1 if the entire cruise met the dolphin-safe 

criteria and 0 otherwise.  

 

Estimating the models discussed above proceeded in four steps.  First, the static RUM was 

estimated with the resulting parameter estimates indicated in the first column of each models 

result within Tables 1, 2 and 3.  Secondly, we conducted a search from zero to one using steps of 

0.1 to obtain our first approximation of the discount factor using the DRUM estimator, denoted 

δInitial.  After obtaining this estimate we conducted a search for the discount factor over the 

interval [δInitial-0.1, δInitial+0.1] using steps of 0.02.  This generated our second estimate of the 

discount factor, denoted δSecond.  Finally, we conducted a search over the interval [δSecond-0.02, 

δSecond+0.02] using steps of 0.0025 to obtain our final estimate of the “optimal” discount factor, 

δ*.21  To select the “optimal” discount factor we used the log-likelihood value obtained from each 

iteration of the search algorithm to determine the best fit for the data.  Parameter estimates 

reported in Tables 1, 2 and 3 for the two respective models are illustrated assuming that the 

discount factor is equal to one, the second column for each model, and equal to the “optimal” 

discount factor we obtained via our search algorithm, the third column for each model.22   

 

The Impact of the Dolphin-Safe Labeling Program 

 

Using the results in equations (14) and (15), we can examine fishermen’s WTP for a 10% 

increase in the probability of encountering log sets with a corresponding decrease in encountering 

                                                           
20 The choice of whether or not to abide by dolphin-safe fishing practices may be an endogenous decision 
made by captains after departing from port. By construction, model 18 assumes that this decision is made 
prior to leaving port; we believe this is a reasonable way to proceed given that our data does not reflect the 
intentions of fishermen regarding dolphin sets. 
21 This procedure required estimating the log-likelihood for the DRUM 39 times to obtain the final 
estimates.  The marginal for error in the “optimal” discount factor is ±0.0025.  
22 For models 18.1 and 18.2 the “optimal” discount factor obtained via our search algorithm was one.  
Therefore, we only express results when the discount factor is zero (RUM) and one. 
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dolphin sets at all sites in the ETP. 23,24  This WTP, given model (16) can be written as, 
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For model (17) this relationship can be expressed as, 
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Notice that this expression is allowed to differ according to whether fishing occurred prior to the 

institution of the labeling program (Dum90=0) or after (Dum90=1). 

 

Focusing attention solely on fishing activity after the institution of the labeling program, we can 

use model 18 to express the willingness to pay for more log sets for cruises not meeting the 

dolphin-safe criteria as  
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and for dolphin-safe cruises as, 
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Comparing the results obtained from estimating equation (16) with those obtained from equations 

(17) and (18), we can investigate three different behavioral changes in fishermen operating in the 

ETP tuna fishery.  Differences in parameter estimates for β1 through β7 capture the change in 

behavior resulting from a time period of little concern for dolphin-safe tuna fishing practices to a 

time period where concerns were mounting.  Comparing the full parameter estimates β1 through 

                                                           
23 Since the probability of encountering each settype must sum to one, a 10% increasing in log sets must 
come at a price of decreasing dolphin sets by 10%, holding the number of school sets constant.   
24 One can derive similar expressions for how fishermen value dolphin kills.  However, since the dolphin-
safe criteria is based on whether dolphin-sets are targeted and not whether dolphins were killed while 
fishing, it is of secondary importance for measuring the impact of dolphin-safe labeling. 
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β10, netting the effect of dolphin-safe tuna labeling, will capture the complete effect of dolphin-

safe tuna labeling.  Focusing solely on the parameter estimates obtained from equation (17) we 

can investigate the marginal changes surrounding the dolphin-safe tuna labeling practice.  The 

parameter estimates from equation (18) allow us to investigate asymmetric willingness to pay 

measures for those abiding by dolphin-safe tuna labeling practices and those not.  This allows us 

to quantify the spillover production costs resulting from dolphin-safe labeling.  In addition to 

these behavioral comparisons, we can also focus on the informational assumptions implied by the 

two alternative models.  The results are discussed in the following section. 

 

IV. Results and Discussion 

 

An examination of the estimates from models 16-18 reveal similar patterns with regard to the 

parameters on distances traveled, search time, and expected revenues.  All things equal, 

fishermen are more likely to choose sites nearby, and also favor sites with a history of lower 

search times and higher revenues.  While the signs of these parameters are the same across all 

models including the static RUM and DRUM, the magnitudes differ substantially.  In particular, 

the static model assigns a higher relative weight to both search time and current period revenues 

than the dynamic model.  Since, the dynamic model allows both current and future expected 

search and revenues to influence a current site choice, the model places less weight on the current 

period.  Collectively, the current period and future values of search and revenues has an impact 

that spans beyond a single choice occasion in the DRUM.  

 

This study focuses on the impact of the dolphin-safe designation.  While an examination of the 

data in Figure 4 shows an increase in dolphin sets during the nineteen-eighties, this does not 

necessary imply that this method yielded the most economic returns per a set.   It only implies 

that dolphin sets were the most commonly method used to capture tuna.  The two reasons for the 

prevalence of dolphin sets are 1) they occur with great frequency throughout the range of the ETP 

fishery and 2) dolphin sets are easier to initially locate than either log or school sets.  As referred 

to earlier, school sets are costly and often require the use of aircraft.  On the other hand, log sets 

are less costly because they do not require spotter planes or the costly removal of dolphins from 

the seine. Therefore, although we see a large number of dolphin sets within the fishery, fishermen 

may still possess a positive willingness to pay for log sets because of the costs they avoid 

utilizing this method.  This may be true for those vessels obeying and not obeying the dolphin-

safe labeling requirements.  Additionally, it is common for vessels to repeatedly target floating 
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logs once located.  Therefore, in a dynamic sense locating a log is very valuable to fishermen. 

However, since the number of potential log sets depends on an exogenous environmental factor, 

the presence of debris in the open ocean, the desire to utilize this set type may not be a true choice 

variable in the vessel’s optimization.  What we may observe is vessels fishing in areas possessing 

a higher concentration of log sets in the past in order to lower their production costs.  This will be 

investigated further in the econometric results. 

 

Estimates of the fleet’s WTP to avoid areas associated with large numbers of dolphin kills are 

contained in Table 4 and the WTP for increasing the probability of encountering log sets (at a 

corresponding decrease in dolphin sets) is presented in Table 5. During the years 1980 and 1981 

both models, the RUM and DRUM, indicate that vessels were WTP more to fish in sites which 

possessed a higher number of dolphin kills.25  This propensity, at a time when the tuna-dolphin 

issue was not at the forefront of national debate, is linked to the strong association of tuna and 

dolphins.  Although all of the statistically significant WTP measures for the models are positive 

during this time period, the magnitudes of these measures are different across the models.  In 

general the RUM estimates are below those obtained by the DRUM.26  The magnitude of these 

differences results from the static versus dynamic information assumptions made in both models.  

In the static RUM, the marginal propensity to visit a site which possesses a larger number of 

dolphin kills is made only incorporating the impact that it will have on the current rewards.  The 

decision to visit a given site does not incorporate the implications of visiting that site on future 

expected returns.  In the DRUM the decision to visit a site with a higher number of dolphin kills 

is made based on whether or not it will also place them in a region where dolphins are expected to 

be in the future, thereby increasing the relative importance of visiting an area with a higher 

number of dolphin kills. 

 

In 1988 and 1989, around the time of dolphin-safe fishing concerns but prior to the institution of 

the dolphin-safe label, the WTP measures for visiting sites possessing a higher number of dolphin 

kills had reversed.  In all the models estimated the WTP was negative, indicating that vessels in 

the ETP tuna fleet were WTP a substantial amount of money to avoid dolphins.  Comparing the 

magnitude of these WTP measures across the RUM and DRUM results indicates that they are 

                                                           
25 Results in Table 4 are expressed as a one unit increase in the expected number of dolphin kills within a 
given site. 
26 In model 16.1 the RUM estimates of WTP are similar to those obtained via the DRUM.  However, given 
that the coefficient on ExpRevyear-1 is not highly significant in the RUM, this estimate of WTP is not 
reliable. 
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larger for the RUM.  This is the opposite of what we found over the years 1980 and 1981 when 

the DRUM was greater than the RUM.  However since the differences across the models are 

marginal, usually within a hundred dollars of each other, they have a similar marginal effect in 

both models. 

 

The WTP estimates for visiting sites possessing a higher number of dolphin kills during the time 

period 1990 through 1992 is not consistent and, in many cases, are not statistically significant 

from those obtained over the years 1988 and 1989.  It is important to recall that whether a vessel 

attains dolphin-safe status is not tied to dolphin mortality, but rather whether dolphins were 

intentionally targeted for the cruise.  For those vessels remaining in the fishery after the label who 

choose to target dolphins, there is really no reason to avoid areas with high dolphin kills, since the 

fleet-wide quota set during a time when dozens of vessels were in the fishery simply was no 

longer binding.  For dolphin-safe cruises, high mortality areas signal likely concentrations of tuna 

and since these vessels are not conducting dolphin sets, it is seen as a positive attribute. By 1992, 

most of the U.S. vessels remaining in the ETP fleet were not conducting dolphin-safe cruises and 

were exporting their product to Italy (U.S. International Trade Commission [43]).  This explains 

why in Figure 3 there was an increase in dolphin sets within the dataset.   

 

These results may also be attributed to the fact that although vessels tried to avoid dolphins 

during this time period, they were not further impacted by the dolphin-safe tuna labeling practices 

because they were already taking actions to mitigate the adverse effect they had on dolphins by 

not directly targeting them via dolphin sets.  This would manifest itself in a higher WTP for 

increasing the number of log sets within the econometric results.  To investigate this phenomenon 

further, it is necessary that we separate out the “labeled” vessels, those who obey dolphin-safe 

practices, and “unlabeled” vessels, those who conduct dolphin sets.  The econometric estimates 

from models 18.1 and 18.2 can be used to determine whether or not these segments possessed 

asymmetric WTP measures for visiting sites with a higher concentration of log sets. 

 

The primary signal for the impact of the dolphin-safe designation will be whether fishermen, in 

an attempt to comply with the label, choose areas where the probability of encountering the safe 

methods of fishing- log and/or school sets- are prevalent. There are two benefits to conducting log 

sets over dolphin sets and school sets, (i) they may be conducted at a lower cost than either set 

type because they require less vessel fuel usage and they do not require the use of spotter planes, 

(ii) a log set may be continual fished, once they have been found.  The first advantage of log sets 
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would be captured by both the RUM and DRUM parameter estimates as they both incorporate 

current period rewards.  However, the second benefit will not be completely captured by the 

RUM because it does not allow for the dynamic component to influence site selection and a 

vessel’s WTP to visit sites which possess a larger number of log sets.   

 

Given this reasoning, one would expect that vessels in the ETP tuna fishery possess a positive 

WTP for increasing log sets and that the DRUM estimates of this WTP will exceed those 

obtained using the static RUM.  Table 5 expresses a vessel’s WTP for a 10% increase in log sets 

in all sites for each of the three econometric models estimated.  The WTP measures for increasing 

the probability of log sets within the ETP tuna fishery are generally consistent with our 

expectations.  The primary exception occurs in model 16 when we utilize the ExpRevyear-1 

variable. Otherwise the DRUM estimates exceed the RUM estimates of WTP.  The most 

consistent estimates of WTP across the three models result from the DRUM, whereas the RUM 

estimates of WTP possess a broader range of values.  In addition, the WTP measures are 

predominately lower when using the ExpRevt-90days variable compared to the  ExpRevyear-1 variable.  

 

The most striking results occur within Model 18, where the “labeled” and “unlabeled” cruises are 

separated out.  Both the RUM and DRUM estimates of WTP for log sets are greater for the 

“labeled” vessels then the “unlabeled” vessels.  However, the RUM estimates for “unlabeled” 

vessels indicate a negative WTP for log sets, whereas the DRUM estimates are positive yet lower 

than “labeled” vessels.  These differences between the RUM and DRUM are most likely driven 

by the informational assumptions of both models.  The RUM estimates do not account for the 

opportunistic value of log sets, the ability to repeatedly fish a log set, whereas the DRUM model 

does.  Therefore, the RUM assigns more weight to the school and dolphin sets than the DRUM.  

This said, the DRUM results indicate that “labeled” vessels value log sets over 2.64 and 2.34 

times as much as “unlabeled” vessels using the ExpRevyear-1 and ExpRevt-90days variables 

respectively.  This strongly supports the hypothesis that dolphin-safe tuna labeling altered the 

spatial behavior of vessels within the ETP fleet and generated two distinct classes of vessels.  

These results show that fishermen are willing to pay a great deal to expand potential fishing areas 

of the ocean beyond the “safe areas” depicted in Figure 3.  This willingness to pay probably 

reflects a desire to hedge against natural shocks (e.g. weather patterns) by having a larger spatial 

choice set from which one can likely conduct safe cruises. 

 

V. Conclusion 
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This paper proposes a middle-ground estimator that strikes a balance between utilizing rigorous 

dynamic optimization algorithms and the simplicity of static models.  Applying this method to the 

ETP tuna fishery, we illustrate that static models yield substantially different parameter estimates 

and WTP measures than if we assume that fishermen are forward looking.  These differences are 

due to the dynamic nature of the DRUM estimator, which looks not only at the contemporaneous 

expected utility of fishing in a given site, but the expected future optimal behavior given the 

current choice alternative.  The most pronounced effect of this assumption is the difference in the 

fleets WTP to increase log sets surrounding the implementation of dolphin-safe labeling 

practices.  The static RUM substantially underestimates the benefit of fishing in an area which 

possesses a larger number of log sets because it does not capture the dynamic factors which make 

a log set area more favorable.  Log set regions are primarily near other log set regions, therefore 

increasing the impact they have on future optimal behavior and log sets can be repeatedly fished.  

These factors are not captured by the RUM estimates. 

 

In addition to the illustrated differences between the RUM and DRUM estimations of WTP, we 

have shown that the tuna-dolphin issue and later the enactment of dolphin-safe tuna labeling did 

alter the spatial and production behavior of fishermen within the ETP tuna fishery.  This 

manifested itself in a shift from being WTP to visit sites which possessed more dolphin kills in 

the early 1980s, invariably yielding the explosion of dolphin sets in the fishery through the mid 

1980s, to being WTP to avoid dolphin in the late 1980s and early 1990s.  This also generated a 

shift in the fleets WTP for increasing the amount of log sets within the tuna fishery during this 

time period.  However, these WTP measures are much larger in the DRUM due to the 

assumptions made regarding dynamic behavior and there relevance to log set utilization.  

Combined these results suggest that the dolphin-safe tuna labeling did have a substantial short-

run effect on the tuna fleet.  This evidence, coupled with the exodus of many ETP seiners to the 

Western Tropical Pacific, provides evidence that the costs of meeting the dolphin-safe 

requirements were not fully compensated by consumer willingness to pay. 

 

Although the DRUM estimated has been applied to the ETP tuna fishery, it can be utilized in a 

number of alternative environments.  It may be used in recreational demand modeling, and other 

applications were dynamic behavior is believed to be present but the dimensions of the choice set 

preclude the use of alternative dynamic optimization algorithms, such as stochastic dynamic 

programming.  In addition, this model can feasible be used to investigate heterogeneous behavior 
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in dynamic models via the synthesis of the DRUM with either random coefficient models, which 

have already been utilized in the multi-nomial logit framework (McFadden and Train [22]; Smith 

[38]), or latent class regression models, such as finite mixtures models, which have been recently 

used in the recreational demand literature (Scarpa and Thiene [33]; Morey et. al [24]).  These are 

all fruitful extensions, especially given the segmentation results generated in model 18 that we 

intend to investigate in future research. 
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Tables and Figures: 

Table 1: Regression Results – ETP 1980-81. 
 

Coefficient  Static 
Model 
16.1 

Dynamic 
Model 
16.1  

Dynamic 
Model 

16.1 (δ*)   

 Static 
Model 
16.2 

Dynamic 
Model 
16.2 

Dynamic 
Model  

16.2 (δ*)   
         

Distance  -4.2609 -4.3634 -4.2975  -4.2559 -4.3721 -4.2899 
  (-91.43) (-90.32) (-91.83)  (-91.35) (-90.36) (-92.00) 

ExpRevyear-1  0.0025 0.0018 0.0020  ------- ------- ------- 
  (1.59) (7.13) (3.71)  ------- ------- ------- 

ExpRevt-90days  ------- ------- -------  0.0071 0.0001 0.0023 
  ------- ------- -------  (4.55) (0.168) (3.17) 

ExpRev  ------- ------- -------  ------- ------- ------- 
  ------- ------- -------  ------- ------- ------- 

Search  -0.2080 -0.0319 -0.0739  -0.2071 -0.0349 -0.0833 
  (-9.97) (-3.06) (-6.03)  (-8.99) (-3.30) (-6.50) 

SearchDum  -0.5328 -0.1503 -0.2239  -0.5299 -0.1550 -0.2395 
  (-9.22) (-7.03) (-8.54)  (-9.08) (-7.00) (-8.61) 

DolphKill  0.0036 0.0026 0.0026  0.0037 0.0027 0.0028 
  (0.88) (3.38) (1.85)  (0.91) (3.46) (1.81) 

LogSet  1.4412 0.3094 0.4414  1.4169 0.3045 0.4757 
  (13.50) (10.82) (11.78)  (13.26) (10.36) (11.66) 

DolphSet  0.5960 0.1381 0.1659  0.5889 0.1401 0.1850 
  (6.37) (6.65) (5.37)  (6.32) (6.69) (5.50) 
         
δ  0 1 0.9050  0 1 0.8725 
         

# of Obs.  3999 3999 3999  3999 3999 3999 
Mean Log-         
Likelihood  -1.42349 -1.41118 -1.40521  -1.42135 -1.41425 -1.40556 
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Table 2: Regression Results – ETP 1988-92. 
 

Coefficient  Static 
Model 
17.1 

Dynamic 
Model 
17.1  

Dynamic 
Model 

17.1 (δ*)   

 Static 
Model 
17.2 

Dynamic 
Model 
17.2 

Dynamic 
Model  

17.2 (δ*)  
         

Distance  -4.3026 -4.3323 -4.3166  -4.2902 -4.3217 -4.2917 
  (-140.11) (-140.65) (-141.08)  (-139.55) (-139.99) (-140.58) 

ExpRevyear-1  0.0043 0.0018 0.0019  ------- ------- ------- 
  (4.66) (7.43) (6.80)  ------- ------- ------- 

ExpRevt-90days  ------- ------- -------  0.0087 0.0025 0.0036 
  ------- ------- -------  (7.59) (7.91) (8.68) 

ExpRev  ------- ------- -------  ------- ------- ------- 
  ------- ------- -------  ------- ------- ------- 

Search  -0.0720 -0.0199 -0.0260  -0.0714 -0.0165 -0.0287 
  (-5.25) (-3.96) (-4.55)  (-5.26) (-3.24) (-4.47) 

SearchDum  -0.3826 -0.1124 -0.1299  -0.3618 -0.1031 -0.1356 
  (-8.76) (-7.19) (-7.79)  (-8.27) (-6.38) (-7.47) 

DolphKill  -0.0101 -0.0027 -0.0033  -0.0100 -0.0027 -0.0039 
  (-3.14) (-1.84) (-2.07)  (-3.07) (-1.85) (-2.23) 

LogSet  0.8332 0.3319 0.3592  0.8229 0.3433 0.3984 
  (5.46) (9.60) (9.11)  (5.35) (10.18) (8.49) 

DolphSet  0.8163 0.1384 0.1565  0.8007 0.1282 0.1793 
  (8.70) (6.51) (6.49)  (8.55) (6.02) (6.31) 

DolphKill*D90  0.0068 0.0044 0.0047  0.0055 0.0044 0.0047 
  (0.88) (2.07) (1.95)  (0.49) (1.97) (1.62) 

LogSet*D90  -0.6786 -0.0258 -0.0326  -0.6647 -0.0948 -0.0738 
  (-3.48) (-0.62) (-0.68)  (-3.40) (-3.61) (-1.24) 

DolphSet*D90  -0.6940 -0.1050 -0.1286  -0.6999 -0.0281 -0.1617 
  (-5.50) (-3.97) (-4.30)  (-5.55) (-0.69) (-4.56) 
         
δ  0 1 0.9700  0 1 0.9275 
         

# of Obs.  9319 9319 9319  9319 9319 9319 
Mean Log-         
Likelihood  -1.44576 -1.44122 -1.44063  -1.44392 -1.44082 -1.43919 
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Table 3: Regression Results – ETP 1990-1992 
 

Coefficient  Static 
Model 
18.1 

Dynamic 
Model 
18.1  

 Static 
Model 
18.2 

Dynamic 
Model 
18.2 

       
Distance  -3.8472 -4.0365  -3.8370 -4.0336 

  (-93.77) (-94.83)  (-93.46) (-94.10) 
ExpRevyear-1  0.0095 0.0032  ------- ------- 

  (6.97) (8.05)  ------- ------- 
ExpRevt-90days  ------- -------  0.0088 0.0047 

  ------- -------  (5.78) (9.88) 
ExpRev  ------- -------  ------- ------- 

  ------- -------  ------- ------- 
Search  -0.0854 -0.0653  -0.0841 -0.0605 

  (-4.24) (-5.99)  (-4.30) (-5.69) 
SearchDum  -0.4122 -0.1690  -0.4060 -0.1534 

  (-6.72) (-7.30)  (-6.61) (-6.62) 
DolphKill  -0.0030 0.0021  -0.0053 0.0023 

  (-0.44) (1.58)  (-0.74) (1.64) 
LogSet*(1-DumSafe)  0.2423 0.6436*  0.2152 0.7108* 

  (1.48) (15.53)  (1.30) (16.58) 
DolphSet**(1-DumSafe)  1.2576 0.3305  1.2676 0.3393 

  (11.49) (11.80)  (11.49) (11.83) 
LogSet*DumSafe  0.8308 0.6509  0.9416 0.6715 

  (4.68) (19.72)  (5.36) (19.50) 
DolphSet*DumSafe  -0.5771 -0.1783  -0.6164 -0.2075 

  (-2.85) (-3.71)  (-3.02) (-4.32) 
       
δ  0 1  0 1 
       

# of Obs.  4454 4454  4454 4454 
Mean Log-       
Likelihood  -1.60245 -1.52979  -1.60417 -1.52776 

*The optimal discount factor found by the LIML grid search was δ*=1. 
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Table 4: Willingness to Pay for Dolphin 

( - indicates a willingness to pay to avoid dolphin kills) 

Model 

Assumption 

  

1980-1981 

 

1988-1989 

 

1990-1992 

16.1-RUM  1,440.00** ---------- ---------- 

16.1-DRUM  1,444.44 ---------- ---------- 

16.1-DRUM (δ*)  1,300.00 ---------- ---------- 

     

16.2-RUM  521.13 ---------- ---------- 

16.2-DRUM  27,000.00** ---------- ---------- 

16.2-DRUM (δ*)  1,217.39 ---------- ---------- 

     

17.1-RUM  ---------- -2,348.84 -767.44* 

17.1-DRUM  ---------- -1,500.00 944.44 

17.1-DRUM (δ*)  ---------- -1,736.84 736.84 

     

17.2-RUM  ---------- -1,149.43 -517.24* 

17.2-DRUM  ---------- -1,080.00 680.00 

17.2-DRUM (δ*)  ---------- -1,083.33 222.22* 

     
* indicates that coefficient on DolphKill*D90 was insignificant. 

 **indicates that the coefficient on expected revenues is not statistically significant; therefore the WTP 

estimates are not statistically significant. 
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Table 5: Willingness to Pay for a 10% increase in Log Sets  

(The negative of these numbers indicates the WTP for a 10% increase in dolphin sets).  

Revenue 

Estimate 

Model 

Estimated 

 Log Set 

1980-81 

Model 16 

Log Set 

1988-89 

Model 17 

Log Set 

1990-92 

Model 17 

Log Set (Dirty 

Cruise) 1990-1992 

Model 18 

Log Set (Clean 

Cruise) 1990-1992 

Model 18 

 RUM  33,808.00 393.02 751.16 -10,687.37 14,820.00 

ExpRevyear-1 DRUM (δ=1)  9,516.17 10,750.00 15,150.00 9,784.38 25,912.50 

 DRUM (δ*)  13,775.00 10,668.42 15,531.58 9,784.38* 25,912.50* 

        

 RUM  11,661.97 255.17 659.77 -11,959.10 17,704.54 

ExpRevt-90days DRUM  164,400.00** 8,604.00 5,936.00 7,904.26 18,702.13 

 DRUM (δ*)  12,204.35 6,086.11 8,402.78 7.904.26* 18,702.13* 

        

*Recall δ*=1. 

**indicates that the WTP estimate is not statistically significant. 
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Figure 1. Total Vessel activity by set type in the ETP fishery (1979-1992) 
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Figure 2.  Vessel Activity in ETP targeting dolphins (1979-1992) 
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Figure 3.  Dolphin-safe Vessel Activity in the ETP (1979-1992) 
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Figure 4:  

Trend in Set Type Utilization from 1979-1992
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Figure 5: 

Set Type Choice by Site : 1988-89
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Figure 6: 

Set Type Choice by Site : 1990-92
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Appendix: 

Following work by Hanemann (1982), we can define the willingness to pay for an improvement 
in quality from the current period until T at all sites by the amount ∆τ  as the series of payments 
made each period from the current period until period T that equates the expected utility with and 
without the quality change at all sites (denote these payments as (WTPτ )).  Given the assumed 
form of the error structure and a starting point j, this can be written as 
 
(A.1)
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where S∆ = {xkt +1

j ,Netrevkt +1
j −WTPτ ,qkt +1

j + ∆τ }, γ is Euler’s constant, and βq
D  and βN

D  are the 
coefficients on a site specific quality measure and the marginal utility of income, respectively.  
The latter expression for the state space under the policy change, S∆, makes explicit the notion 
that both ∆τ  and WTPτ  are experienced each period from the current period onward until the end 
of the time horizon, T. 
 
Consider a two site, three period model that demonstrates how our model works and how the 
dynamics of location choice fundamentally alters the interpretation of model parameters.  The 
derived result is easily extended to a choice set containing S sites and T time periods.  Following 
the notation in the paper, denote xkτ

m  as the vector of site-specific explanatory variables for site k 
in time τ given a starting point of site m.  Also, denote the vector β D  as the estimated parameters 
from the DRUM model.  To see how a payment of WTPτ  defined by equations 15 and satisfies 
(A.1), consider the matrix of site-specific utilities for the DRUM model in Table (A.1).
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Table(A.1).  Matrix of Site-Specific Utilities for a Two site Three Period Model 
Time Period Starting Location Location Choice 

  a b 
3 a xa 3

a β D + βq
D∆τ − βN

DWTPτ   (1) xb3
a β D + βq

D∆τ − βN
DWTPτ   (2) 

3 b xa 3
b β D + βq

D∆τ − βN
DWTPτ   (3) xb3

b β D + βq
D∆τ − βN

DWTPτ   (4) 
  a b 

2 a xa 2
a β D + βq

D∆τ − βN
DWTPτ + δ γ + ln(e1 + e2)( )  

(A.5) 
xb 2

a β D + βq
D∆τ − βN

DWTP + δ γ + ln(e3 + e4 )( )   
(A.6) 

2 b xa 2
b β D + βq

D∆τ − βN
DWTPτ + δ γ + ln(e1 + e2)( )  

(A.7) 
xb 2

b β D + βq
D∆τ − βN

DWTPτ + δ γ + ln(e3 + e4 )( )   
(A.8) 

  a b 
1 a xa1

a β D + βq
D∆τ − βN

DWTPτ + δ γ + ln(e5 + e6)( )  
(A.9) 

xb 2
a β D + βq

D∆τ − βN
DWTPτ + δ γ + ln(e7 + e8)( )   
(A.10) 

1 b xa 2
b β D + βq

D∆τ − βN
DWTPτ + δ γ + ln(e5 + e6)( ) 
(A.11) 

xb 2
b β D + βq

D∆τ − βN
DWTPτ + δ γ + ln(e7 + e8)( )   
(A.12) 
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Simplify the last term in equation (A.5): 
 

 (A.13)  

δ γ + ln(e1 + e2)( )= δ γ + ln exa 3
a β D +β q

D ∆τ −β N
DWTPτ + exb 3

a β D +β q
D ∆τ −β N

DWTPτ( ) 
 
  

 
 

= δ γ + ln exa 3
a β D

+ exb 3
a β D[ ]eβ q

D ∆τ −β N
DWTPτ( ) 

 
  

 
 

= δ γ + ln exa 3
a β D

+ exb 3
a β D( )+ ln eβ q

D ∆τ −β N
DWTPτ( ) 

 
  

 
 

= δγ + δ ln exa 3
a β D

+ exb 3
a β D( )+ δ βq

D∆τ − βN
DWTPτ( )

 

   
 
Using similar logic, one can derive 
 
(A.14)  δ γ + ln(e3 + e4 )( )= δγ + δ ln exa 3

b β D

+ exb 3
b β D( )+ δ βq

D∆τ + βN
DWTPτ( ). 

 
Given the results found in (A.13) and (A.14), simplify equations (A.5) and (A.6): 
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Finally, assume that the agent starts in area a in period 1, and simplify equation (9) using the two 
preceding results in equations (5’) and (6’).  First, begin with the last term in equation (9), which 
can be written: 
 

(A.15) 
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a β D + ln e xa 3

b β
+e xb 3

b β 

 
 

 

 
  

 
 
 

 

 
 
 + δ ln eβ q

D ∆τ (1+δ )−β N
DWTPτ (1+δ )+δγ( )

= δγ + δ ln e
xa 2

a β D + ln e xa 3
a β

+e xb 3
a β 

 
 

 

 
 
+ e

xb 2
a β D + ln e xa 3

b β
+e xb 3

b β 

 
 

 

 
  

 
 
 

 

 
 
 + δ βq

D∆τ (1+ δ) − βN
DWTPτ (1+ δ) + δγ( )

= γ(δ + δ2) + δ ln e
xa 2

a β D + ln e xa 3
a β

+e xb 3
a β 

 
 

 

 
 
+ e

xb 2
a β D + ln e xa 3

b β
+e xb 3

b β 

 
 

 

 
  

 
 
 

 

 
 
 + βq

D∆τ (δ + δ 2) − βN
DWTPτ (δ + δ 2)
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Finally, using the preceding result, we can derive a simplified version of the site-specific utility at  
a conditional on starting at a in period 1: 
 
(A.16) 
 

xa1
a β D + βq

D∆(1+ δ + δ2) − βN
DWTP(1+ δ + δ 2) + γ(δ + δ2) + δ ln e

xa 2
a β D + ln e xa 3

a β
+e xb 3

a β 

 
 

 

 
 
+ e

xb 2
a β D + ln e xa 3

b β
+e xb 3

b β 

 
 

 

 
  

 
 
 

 

 
 
 

 
 
Using the same technique yields a similar expression for equation (A.10), the expected utility of a 
choice of site b given a starting point of a  
 
(A.17) 
 

xb1
a β D + βq

D∆τ (1+ δ + δ 2) − βN
DWTPτ (1+ δ + δ 2) + γ(δ + δ 2) + δ ln e

xa 2
b β D + ln e xa 3

a β
+e xb 3

a β 

 
 

 

 
 
+ e

xb 2
b β D + ln e xa 3

b β
+e xb 3

b β 

 
 

 

 
  

 
 
 

 

 
 
 

. 
Finally, using (A.7 and A.8) and substituting into (A.3), we show that the result given in (A.2) 
holds.
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γ + ln e

xa1
a β D +β q

D ∆τ (1+δ +δ 2 )+β N
DWTPτ (1+δ +δ 2 )+γ (δ +δ 2 )+δ ln e

xa 2
a β D +ln e

xa 3
a β

+e
xb 3
a β 

 
 
 

 

 
 
 

+e
xb 2
a β D +ln e

xa 3
b β

+e
xb 3
b β 

 
 
 

 

 
 
 

 

 

 
 
  

 

 

 
 
  
+ e

xb1
a β D +β q

D ∆τ (1+δ +δ 2 )+β N
DWTPτ (1+δ +δ 2 )+γ (δ +δ 2 )+δ ln e

xa 2
b β D +ln e

xa 3
a β

+e
xb 3
a β 

 
 
 

 

 
 
 

+e
xb 2
a β D +ln e

xa 3
b β

+e
xb 3

b β 

 
 
 

 

 
 
 

 

 

 
 
  

 

 

 
 
  

 

 

 
 
 
  

 

 

 
 
 
  

−

γ + ln e

xa1
a β D +γ (δ +δ 2 )+δ ln e

xa 2
a β D +ln e

xa 3
a β

+e
xb 3
a β 

 
 
 

 

 
 
 

+e
xb 2
a β D +ln e

xa 3
b β

+e
xb 3
b β 

 
 
 

 

 
 
 

 

 

 
 
  

 

 

 
 
  
+ e

xb1
a β D +γ (δ +δ 2 )+δ ln e

xa 2
b β D +ln e

xa 3
a β

+e
xb 3
a β 

 
 
 

 

 
 
 

+e
xb 2
a β D +ln e

xa 3
b β

+e
xb 3

b β 

 
 
 

 

 
 
 

 

 

 
 
  

 

 

 
 
  

 

 

 
 
 
  

 

 

 
 
 
  

 

 

 
 
 
 
 

 

 

 
 
 
 
 

= 0

 
 
Simplifying yields 

γ + γ(δ + δ 2) + ln e

xa1
a β D +δ ln e

xa 2
a β D +ln e

xa 3
a β

+e
xb 3

a β 

 
 
 

 

 
 
 
+e

xb 2
a β D +ln e

xa 3
b β

+e
xb 3
b β 

 
 
 

 

 
 
 

 

 

 
 
  

 

 

 
 
  
+ e

xb1
a β D +δ ln e

xa 2
b β D +ln e

xa 3
a β

+e
xb 3
a β 

 
 
 

 

 
 
 

+e
xb 2
a β D +ln e

xa 3
b β

+e
xb 3

b β 

 
 
 

 

 
 
 

 

 

 
 
  

 

 

 
 
  

 

 

 
 
 
  

 

 

 
 
 
  

+ βq
D∆τ (1+ δ + δ2) − βN

DWTPτ (1+ δ + δ2) −

γ + γ(δ + δ2) + ln e

xa1
a β D +δ ln e

xa 2
a β D +ln e

xa 3
a β

+e
xb 3
a β 

 
 
 

 

 
 
 

+e
xb 2
a β D +ln e

xa 3
b β

+e
xb 3
b β 

 
 
 

 

 
 
 

 

 

 
 
  

 

 

 
 
  
+ e

xb1
a β D +δ ln e

xa 2
b β D +ln e

xa 3
a β

+e
xb 3
a β 

 
 
 

 

 
 
 

+e
xb 2

a β D +ln e
xa 3
b β

+e
xb 3
b β 

 
 
 

 

 
 
 

 

 

 
 
  

 

 

 
 
  

 

 

 
 
 
  

 

 

 
 
 
  

 

 

 
 
 
 
 

 

 

 
 
 
 
 

= 0
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All terms cancel except for βq
D∆τ (1+ δ + δ2) − βN

DWTPτ (1+ δ + δ 2) = 0, which says that the 
discounted streams of marginal utility resulting from paying WTPτ  and enjoying ∆τ  must be 
equal for the expected utilities given in (A.3) to be equal.  Rearranging yields the result 

demonstrated in (A.2), WTPτ =
βq

D∆τ

βq
D .  While this expression is similar to (A.1), the quantities 

WTPτ and ∆τ  are experienced every period from the time of the current choice until period T.  
While the interpretation of parameters is similar to the static model, this derivation demonstrates 
that the interpretation must include the stream of improvements in quality and payments made by 
fishermen at each period forward during the cruise.   
 

 


