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Abstract

We study non-uniform constraint satisfaction problems where the underlying signa-

ture contains constant and function symbols as well as relation symbols. Amongst

our results are the following. We establish a dichotomy result for the class of

non-uniform constraint satisfaction problems over the signature consisting of one

unary function symbol by showing that every such problem is either complete for

L, via very restricted logical reductions, or trivial (depending upon whether the

template function has a fixed point or not). We show that the class of non-uniform

constraint satisfaction problems whose templates are structures over the signature

λ2 consisting of two unary function symbols reflects the full computational signif-

icance of the class of non-uniform constraint satisfaction problems over relational

structures. We prove a dichotomy result for the class of non-uniform constraint

satisfaction problems where the template is a λ2-structure with the property that
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the two unary functions involved are the reverse of one another, in that every such

problem is either solvable in polynomial-time or NP-complete. Finally, we extend

some of our results to the situation where instances of non-uniform constraint sat-

isfaction problems come equipped with lists of elements of the template structure

which restrict the set of allowable homomorphisms.

1 Introduction

Constraint satisfaction problems consist of finding assignments of values to
variables subject to constraints on the values which can be simultaneously
assigned to certain specified subsets of variables [23]. They are of great
importance in computer science and artificial intelligence, and have strong
links with database theory, combinatorics and universal algebra. For ex-
ample, the general constraint satisfaction problem is nothing other than
the conjunctive-query containment problem from database theory and the
homomorphism problem from combinatorics [2]; and there is a strong link
between the tractability of constraint satisfaction problems and the study
of the closure of relations under certain operations in universal algebra [16].
This diversity has meant that the study of these constraint satisfaction prob-
lems has progressed on a number of different fronts and according to different
motivations.

Our formulation of constraint satisfaction involves the existence of a
homomorphism from one finite structure to another, and in this paper we
are concerned with the computational complexity of constraint satisfaction
problems when the structures involved are restricted. The general constraint

satisfaction problem, CSP, has: as its instances pairs of finite structures
(A,B) over the same signature; and as its yes-instances instances (A,B)
for which there is a homomorphism from A to B. The general constraint
satisfaction problem is trivially in NP (non-deterministic polynomial-time)
and is easily shown to be NP-complete (via polynomial-time many-one re-
ductions); and it is usual to restrict the problem so that all finite structures
come from some specific class of finite structures or, further, so that the sec-
ond component, the template, of any instance is some fixed finite structure.
The former problems are called uniform constraint satisfaction problems, as
the two structures in an instance can be arbitrarily drawn from the given
class of structures, whilst the latter problems are called non-uniform con-
straint satisfaction problems, as the second structure in an instance must
be a given fixed structure (rather than thinking of instances of non-uniform
constraint satisfaction problems as pairs of finite structures (A, T ), with T
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fixed, we simply think of them as finite structures A, with yes-instances those
instances A for which there exists a homomorphism to T ). The computa-
tional complexity of these restricted problems is then studied with the ulti-
mate goal being a classification as to the conditions under which a (uniform
or non-uniform) constraint satisfaction problem has a given computational
complexity.

There are two outstanding and well-known results which illustrate this
attempt at classification. The first was established by Schaefer [21] who
completely classified the complexity of a non-uniform constraint satisfaction
problem when the template is a finite structure whose domain consists of
two elements, i.e., the template is a Boolean structure. He showed that if
the template belongs to one of six specific classes of Boolean structures then
the non-uniform constraint satisfaction problem is solvable in polynomial-
time, otherwise it is NP-complete. Note the dichotomy here: a non-uniform
constraint satisfaction problem with a Boolean template is either in P (deter-
ministic polynomial-time) or is NP-complete (recall that, in general, if P 6=
NP then there is an infinite collection of distinct classes of polynomial-time
equivalent problems between P and NP: see [11], for example). The second
result is due to Hell and Nešetřil [13] who showed that if all structures in-
volved are finite undirected graphs (without self-loops) then the non-uniform
constraint satisfaction problem is solvable in polynomial-time if the template
is bipartite, otherwise it is NP-complete (again, note the dichotomy).

It is with such dichotomy results that we are concerned in this paper.
Apart from those established by Hell and Nešetřil and by Schaefer, there
are many others, of one flavour or another: see [1, 3, 5, 6, 8, 9, 10, 19, 20]
for a selection. Let us discuss some of these results further as they have a
direct bearing on our contributions and provide much of our motivation.

Perhaps the focal paper as regards the classification of non-uniform con-
straint satisfaction problems is [10] for it was in that paper that Feder and
Vardi (inspired by the results of Hell and Nešetřil and of Schaefer) posed
the question of whether it might be the case that every non-uniform con-
straint satisfaction problem is solvable in polynomial-time or NP-complete.
In more detail, Feder and Vardi essentially: considered the relationship be-
tween the class of non-uniform constraint satisfaction problems and a logic,
MMSNP, embodying essential characteristics of constraint satisfaction; con-
sidered sub-classes of non-uniform constraint satisfaction problems which
reflect the full computational significance of the whole class; and studied
requirements for tractability as regards non-uniform constraint satisfaction
problems. It is the second of these investigations which is particularly rele-
vant to our studies; and key is Feder and Vardi’s result that the problem of
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deciding whether the class of non-uniform constraint satisfaction problems
over relational structures has a dichotomy is equivalent to that of deciding
whether the class of non-uniform constraint satisfaction problems involving
digraphs has a dichotomy (we later make precise our definitions of classes
such as these and of our notion of equivalence: indeed, definitions of all con-
cepts mentioned here are defined in full later on). That is, the (sub-)class
of non-uniform constraint satisfaction problems consisting of the class of
non-uniform constraint satisfaction problems involving digraphs reflects the
full computational significance of the class of non-uniform constraint sat-
isfaction problems over relational structures (in fact, Feder and Vardi also
provided other even more restricted classes of non-uniform constraint satis-
faction problems involving digraphs which reflect the full computational sig-
nificance of the class of relational non-uniform constraint satisfaction prob-
lems, e.g., the class where the template digraph is necessarily balanced).

Whilst Feder and Vardi’s question as to whether the class of non-uniform
constraint satisfaction problems exhibits a dichotomy is still unanswered,
significant partial positive results have been proven, notably, though not
always, for classes where the template is a digraph of a particular type (we
refer the reader to Feder and Vardi’s equivalence result mentioned above).
For example, in [6] it was proven that the class of non-uniform constraint
satisfaction problems where the template is a digraph in the form of an ori-
ented cycle has a dichotomy. Furthermore, the search for a classification
of non-uniform constraint satisfaction problems has resulted in the study
of a number of related concepts. For example, if every instance A of some
non-uniform constraint satisfaction problem comes complete with a list Uu
of elements of the template T , for every element u ∈ |A|, then the problem
of deciding whether there is a homomorphism ϕ from A to T with the ad-
ditional property that for every element u ∈ |A|, ϕ(u) ∈ Uu, is known as a
list homomorphism problem. It has been proven that every list homomor-
phism problem where the template is a reflexive undirected graph (that is,
every vertex has a self-loop) is solvable in polynomial-time, if the template
is an interval graph, and NP-complete otherwise [7]. If the template is an
irreflexive undirected graph (that is, no vertex has a self-loop) then the list
homomorphism problem is solvable in polynomial-time, if the complement
of the template is a circular arc graph of clique cover number 2, and NP-
complete otherwise [8]. Finally, if the template is a general undirected graph
(that is, a vertex may or may not have a self-loop) then it is still the case
that the list homomorphism problem is either solvable in polynomial-time
or NP-complete [9].

All of the results mentioned above concern non-uniform constraint satis-
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faction problems over relational structures. Our study in this paper is essen-
tially of non-uniform constraint satisfaction problems where the underlying
signature contains constant and function symbols as well as relation sym-
bols; and our results can be summarized as follows. After presenting basic
definitions and concepts in Section 2, in Section 3 we consider the class of
non-uniform constraint satisfaction problems over a signature consisting of
one unary function symbol. We show a dichotomy in that every such problem
is either complete for L (deterministic log-space), via very restricted logical
reductions, or trivial (depending upon whether the template function has a
fixed point or not). In Sections 4 and 5, we consider the class of non-uniform
constraint satisfaction problems over a signature λ2 consisting of two unary
function symbols, as well as over signatures consisting of a mix of constant,
function and relation symbols. Amongst other results, we show that the
class of non-uniform constraint satisfaction problems whose templates are
λ2-structures reflects the full computational significance of the class of non-
uniform constraint satisfaction problems over relational structures; and we
establish similar results when the template is even further restricted. In Sec-
tion 6, we prove a dichotomy result for the class of non-uniform constraint
satisfaction problems where the template is a λ2-structure with the property
that the two unary functions involved are the reverse of one another. Finally,
in Section 7 we extend some of our results to the situation where instances
of non-uniform constraint satisfaction problems come equipped with lists.
In particular: we show that any list homomorphism problem where the tem-
plate consists of a single unary function is solvable in polynomial-time; and
we prove that there is a dichotomy result for the class of list homomorphism
problems where the template consists of an arbitrary number of unary func-
tions (the complexity of such a list homomorphism problem is determined
by whether the template admits a choice majority function, similarly to as
in [7, 8, 9]).

2 Basic definitions

A signature consists of a finite collection of constant symbols, function sym-
bols and relation symbols, and each function and relation symbol has an
associated arity. A finite structure A over the signature σ, or σ-structure,
consists of a finite set |A|, the domain or universe, together with a con-
stant cA (resp. function fA, relation RA) for every constant symbol c (resp.
function symbol f , relation symbol R) of σ, with functions and relations
being of the appropriate arity (we often dispense with superscripts in the
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names of our constants, functions and relations when it is clear as to which
structure we are dealing with). The size of a structure A is the size of the
domain and is denoted |A| also. A structure is relational if it is over a signa-
ture consisting entirely of relation symbols (which we refer to as a relational

signature).
A homomorphism ϕ : A → B from a σ-structure A to a σ-structure B is

a map ϕ : |A| → |B| such that:

• any constant of A is mapped to the corresponding constant of B;

• if f is a function symbol of arity a then

fA(u1, u2, . . . , ua) = v ⇒ fB(ϕ(u1), ϕ(u2), . . . , ϕ(ua)) = ϕ(v),

for all u1, u2, . . . , ua, v ∈ |A|;

• if R is a relation symbol of arity b then

RA(u1, u2, . . . , ub) holds ⇒ RB(ϕ(u1), ϕ(u2), . . . , ϕ(ub)) holds,

for all u1, u2, . . . , ub ∈ |A|.

If there exists a homomorphism from A to B then we write A → B.
Let C be a class of finite structures. The uniform constraint satisfaction

problem CSPC has: as its instances pairs (A,B) of structures from C over
the same signature; and as its yes-instances those instances (A,B) for which
there exists a homomorphism from A to B. The size of an instance (A,B)
is |A| + |B|. If all structures in C are over the same signature and T ∈ C

then the non-uniform constraint satisfaction problem CSPC(T ) has: as its
instances structures A ∈ C; and as its yes-instances those instances A for
which there exists a homomorphism from A to T . The size of an instance
A is |A|. If C is the class of all σ-structures and T is a σ-structure then
we abbreviate CSPC(T ) by CSP(T ). We should add that the individual
tractability of an infinite collection of non-uniform constraint satisfaction
problems {CSPC(T ) : T ∈ C} does not automatically yield the tractabil-
ity of the uniform constraint satisfaction problem CSPC; for it may be the
case that the size of the template, whilst a constant in a non-uniform prob-
lem, might play an exponential role in some time bound (see [17] for an
examination of this issue).

We shall be involved with problems solvable in L and complete for this
complexity class. As regards completeness, the notion of reduction we work
with comes from finite model theory and is the quantifier-free projection.
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Before giving a definition of a quantifier-free projection, we present an exam-
ple of a quantifier-free projection from one problem to another. As it turns
out, we will need this actual reduction later on. The reader is referred to, for
example, [14, 15, 22] for more on quantifier-free projections and other logical
reductions (especially [15]), and their relevance as low-resource reductions:
we only sketch the issues here.

Let the signature σ2++ consist of the binary relation symbol E and the
two constant symbols c and d. We can think of a σ2++-structure as a di-
graph, possibly with self-loops, with two designated vertices (which may be
identical). The problem DTC0,1 has: as its instances the class of σ2++-
structures which, when considered as digraphs with self-loops, have the
property that every vertex has out-degree at most 1; and as its yes-instances
those instances with the property that there is a path in the digraph from the
vertex c to the vertex d. The problem DTC1 has: as its instances the class
of σ2++-structures which, when considered as digraphs with self-loops, have
the property that every vertex has degree exactly 1; and as its yes-instances
those instances with the property that there is a path in the digraph from
the vertex c to the vertex d.

We shall derive four quantifier-free formulae over the signature σ2++ and
we shall use our formulae to describe, given an instance A of DTC0,1, an
instance ρ(A) of DTC1: the first formula will define the vertex set of ρ(A);
the second formula will describe the edge relation of our instance; and the
third and fourth formulae will describe the source and target vertices.

The domain of ρ(A) is |A|2. We assume that, regardless of the signa-
ture, we always have a binary relation succ at our disposal that is always
interpreted as a successor relation on the domain of any structure, i.e., as
a relation of the form:

{(ij , ij+1) : j = 0, 1, . . . , n− 1},

when the domain of a structure of size n is {i0, i1, . . . , in−1}, and also two
constant symbols, 0 and max, that are always interpreted as the least
and greatest elements, respectively, of the successor relation succ (more
of this successor relation later). Let us suppose for simplicity that the
elements of |A| are {0, 1, . . . , n − 1} and abbreviate ‘succ(u,w)’ by ‘w =
u + 1’. The vertices of {(u,w) : w = 0, 1, . . . , n − 1} will form a path
(u, 0), (u, 1), . . . , (u, n − 1) in ρ(A), with a self-loop at (u, n − 1), except
that:

• if (u,w) is an edge of EA, where u 6= w, then there is no edge
((u,w), (u,w + 1)) in ρ(A) nor self-loop ((u, n − 1), (u, n − 1)), if
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w = n− 1, but there is an edge ((u,w), (w, 0)) in ρ(A); and

• if (u, u) is an edge of EA then there is no edge ((u, u), (u, u + 1)) in
ρ(A) but there is a self-loop ((u, u), (u, u)).

The source vertex of ρ(A) is the vertex (cA, 0) and the target vertex is
(dA, 0). It is easy to see that an instance A of DTC0,1 is a yes-instance
if, and only if, the instance ρ(A) is a yes-instance of DTC1 (as whenever
u 6= w, there is an edge (u,w) in EA if, and only if, there is a path from
vertex (u, 0) to vertex (w, 0) in ρ(A)).

The formulae ψ0, ψE , ψc and ψd describing the above construction are
as follows:

ψ0(x1, x2) ≡ x1 = x1

ψE(x1, x2, y1, y2) ≡ (x1 = y1 ∧ y2 = x2 + 1 ∧ ¬E(x1, x2))

∨(x1 = y1 ∧ x2 = y2 = max ∧ ¬E(x1,max))

∨(x1 6= x2 ∧ y1 = x2 ∧ y2 = 0 ∧ E(x1, x2))

∨(x1 = x2 ∧ x1 = y1 ∧ x2 = y2 ∧ E(x1, x2))

ψc(x1, x2) ≡ x1 = c ∧ x2 = 0

ψd(x1, x2) ≡ x1 = d ∧ x2 = 0

The formula ψ0(x1, x2) tells us that the vertex set of ρ(A) is the whole of
|A|2 (it might have restricted the vertex set to be some appropriately defined
subset of |A|2 but in this case didn’t); and ψE , ψc and ψd describe the edge
relation, the source vertex and the target vertex of ρ(A), respectively.

So, we can say that DTC1 is a quantifier-free first-order translation of
DTC0,1 (as the defining formulae are quantifier-free first-order); but we can
actually say more. Note that the above formula ψE is of the following form:

∨
{(αi ∧ βi) : i = 1, 2, . . . , k},

for some k ≥ 1, where:

• each αi is a conjunction of atoms and negated atoms not involving any
relation or function symbols of the underlying signature (σ2++ in the
illustration above);

• the αi’s are mutually exclusive, i.e., for any valuation on the variables
(and constants) of any αi and αj , where i 6= j, it is not the case that
both αi and αj hold;

• each βi is an atom or a negated atom (over the underlying signature).
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Indeed, the formulae ψc and ψd are trivially of this form too; and, further-
more, ψ0 is a quantifier-free first-order formula not involving any relation or
function symbols of the underlying signature. Hence, there is a quantifier-

free projection from the problem DTC0,1 to the problem DTC1. It was
proven in [22] that DTC0,1 is complete for L via quantifier-free projections;
and consequently DTC1 is also complete for L via quantifier-free projections.

Quantifier-free projections are so called because the defining formulae
are quantifier-free first-order and any ‘bit’ of a target instance, e.g., edge of
ρ(A), above, depends only upon at most one ‘bit’ of the source structure,
e.g., edge of A, above. They are extremely restricted reductions between
problems and can easily be translated into other restricted circuit-based
or model-based reductions, e.g., logtime-uniform NC1-reductions, used in
complexity theory (see [14]). The (built-in) successor relation and the two
associated constants give us an ordering of our data which often enables us
to model machine-based computations where all data (such as input strings
and instantaneous descriptions) is ordered.

We have one final remark: in our example above, we used quantifier-
free first-order formulae to describe an edge relation and two constants.
We can equally well use such formulae to describe functions by treating an
m-ary function f as an (m + 1)-ary relation Rf where for any elements
u1, u2, . . . , um, there exists exactly one w such that Rf (u1, u2, . . . , um, w)
holds (constants, i.e., 0-ary functions, are described in this way too).

3 One unary function

In this section we show that the class of non-uniform constraint satisfaction
problems with template a unary function has a dichotomy: such a problem
is either L-complete (via quantifier-free projections) or trivial.

Let λ1 be the signature consisting of one unary function symbol f . The
decision problem Hom-Alg1 is the problem CSPC, where C is the class of all
λ1-structures (we introduce the notation Hom-Alg , here and in what follows,
to accentuate the algebraic aspect of function symbols).

Let A be a λ1-structure and let σ2 = 〈E〉, where E is a binary rela-
tion symbol (so, σ2-structures are digraphs, possibly with self-loops). The
digraph of A is the σ2-structure Ȧ = 〈|A|, E〉, where E(u,w) holds if, and
only if, f(u) = w (note that it may be the case that E(u, u) holds in Ȧ).
The proof of the following lemma is trivial.

Lemma 1 Let A and B be λ1-structures. Then A → B if, and only if,

Ȧ → Ḃ.
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Proposition 2 The problem Hom-Alg1 is in L.

Proof By Lemma 1, we can assume that we are given pairs of digraphs of
unary functions as instances rather than pairs of unary functions.

Let Ȧ be the digraph of some unary function A. Then, in general, Ȧ
consists of a collection of connected components where each component is
a directed cycle, which may have any length greater than 0 (and so may
be a self-loop), some of whose vertices are roots of in-trees (our notion of
connectivity in a digraph is with respect to the underlying undirected graph).
These components can be visualized as in Fig. 1. We call these components
cycles with pendant in-trees. We define the length of a cycle with pendant
in-trees as the length of the directed cycle.

.

an in-tree a directed cycle with pendant in-trees

directed cycle

in-trees

. ..
......

..

.
.

.

Figure 1. The components of the digraph of a unary function.

Let (Ȧ, Ḃ) be a pair of digraphs of unary functions where |Ȧ|+ |Ḃ| is n.
Suppose that there is a homomorphism taking some connected component
A0 of Ȧ to a connected component B0 of Ḃ. If A0 is a cycle with pendant
in-trees of length γ then B0 must be a cycle with pendant in-trees of length
δ where δ divides γ. Furthermore, if A0 and B0 are cycles with pendant
in-trees of lengths γ and δ, respectively, and δ divides γ then there is a
homomorphism from A0 to B0. Hence, the following is a necessary and
sufficient condition for a homomorphism from Ȧ to Ḃ to exist.

• For every cycle with pendant in-trees of length γ in Ȧ, there must
exist a cycle with pendant in-trees of length δ in Ḃ where δ divides γ.

This condition can easily be verified using O(logn) space. For example,
we can ascertain whether a vertex u lies on the cycle of a cycle with pendant
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in-trees in Ȧ by walking along the path emanating from u and stopping after
n moves (when u doesn’t lie on a cycle) or after we have returned to u (when
u does lie on a cycle). By counting as we walk, we obtain the length of the
cycle (if u lies on a cycle). We can then work through the vertices of Ḃ
checking to see whether they lie on the cycle of a cycle with pendant in-
trees in Ḃ; and if a vertex does lie on the cycle of a cycle with pendant
in-trees then we can check whether the length of this cycle divides c. Hence,
the problem Hom-Alg1 ∈ L.

Proposition 3 The problem Hom-Alg1 is L-hard (via quantifier-free pro-

jections).

Proof Let A be an instance of DTC1 (and so is a σ2-structure). Define
the unary function fA as follows. The domain of fA is |A|2 × {0, 1} and:

• if c = d then:

– fA((u,w, b)) = (c, c, 0), for all (u,w, b) ∈ |A|2 × {0, 1};

• if c 6= d then:

– if (u,w) ∈ E where u 6= d, w 6= c and u 6= w then fA((u, u, 0)) =
(u,w, 0) and fA((u,w, 0)) = (w,w, 0)

– if (u, u) ∈ E where u 6= d then fA((u, u, 0)) = (u, u, 1) and
fA((u, u, 1)) = (u, u, 0)

– fA((d, d, 0)) = (c, c, 0)

– for any element (u,w, b) ∈ |A|2 × {0, 1} \ {(d, c, 0)} for which
fA((u,w, b)) is still undefined, define fA((u,w, b)) = (d, c, 0), and
define fA((d, c, 0)) = (d, c, 1).

Essentially, apart from the trivial case where c = d, the digraph of fA is
obtained from the digraph whose edge relation is E as follows:

• take a copy of the digraph (with self-loops) whose edge relation is E,
and replace any edge emanating from vertex d with the edge (d, c);
and

• replace every edge (u,w), apart from the edge (d, c), by a pair of edges
(u, eu,w) and (eu,w, w), where eu,w is a new vertex.
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Other vertices are actually introduced in the formal constructive process
(defined above), with two of these vertices being (d, c, 0) and (d, c, 1). The
construction is completed by introducing edges from all vertices, apart from
(d, c, 0), to (d, c, 0); and also an edge from (d, c, 0) to (d, c, 1). Now define
the function gA to have domain {0, 1} and to be such that gA(0) = 1 and
gA(1) = 0. We claim that A ∈ DTC1 if, and only if, (fA, gA) 6∈ Hom-Alg1.

The trivial case is straightforward (note that if the digraph of fA has
a self-loop then there is not a homomorphism from fA to gA): so suppose
henceforth that c 6= d. Suppose that there is a path in the digraph whose
edge relation is E from vertex c to vertex d. Then in the digraph of fA,
there is a odd length cycle with pendant in-trees of length greater than 1.
Hence, there is no homomorphism from fA to gA.

Suppose that there is not a path in the digraph whose edge relation is
E from vertex c to vertex d. Then all components of the digraph of fA are
even length cycles with pendant in-trees. Hence, there is a homomorphism
from fA to gA.

The construction of the unary functions fA and gA from A can easily be
described by quantifier-free projections (see, e.g., [22] for concrete illustra-
tions of logical formulae describing translations between problems) and so
the result follows as DTC1 is L-complete via quantifier-free projections.

The following is now immediate from Propositions 2 and 3.

Theorem 4 The problem Hom-Alg1 is L-complete (via quantifier-free pro-

jections).

The problem Hom-Alg1 is uniform in the sense that any unary function
can appear as either the first or second component of an instance. We obtain
non-uniform versions of Hom-Alg1 by fixing the second component. The
problem Hom-Alg1(T ), for some λ1-structure T , is the problem CSP(T ).

The following is immediate from the proofs of Propositions 2 and 3.

Theorem 5 Let T be the λ1-structure corresponding to the unary function

f whose domain is {0, 1} and f(0) = 1 and f(1) = 0. The problem Hom-

Alg1(T ) is L-complete (via quantifier-free projections).

Hence, not only is the uniform problem Hom-Alg1 L-complete, there are
also non-uniform problems Hom-Alg1(T ) that are L-complete (moreover,
even when T has only two elements).

Actually, we can say more about non-uniform problems of the form Hom-

Alg1(T ). Whilst the proof of Proposition 3 is such that the template has a
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digraph that is a cycle of length 2, we can actually replace this template with
any λ1-structure T so long as the digraph of T has a cycle of pendant in-trees
of length at least 2 as follows. Suppose that Ṫ has cycles of pendant in-trees
of lengths δ1, δ2, . . . , δk, for some k > 0. Adopting the terminology of the
proof of Proposition 3 and with reference to this proof, in our construction
process when we replace an edge of the digraph of fA with a path of 2 edges,
instead we replace the edge with a path of δ1δ2 . . . δk edges. So, if there is a
path in the digraph whose edge relation is E from vertex c to vertex d then
the digraph of fA has a cycle with pendant in-trees of length γ.δ1δ2 . . . δk+1,
for some γ ≥ 1, and all other cycles with pendant in-trees (if there are any)
have lengths divisible by δ1δ2 . . . δk. Also, if there is no such path in the
digraph whose edge relation is E then the digraph of fA is such that every
cycle with pendant in-trees has length divisible by δ1δ2 . . . δk. Hence, we
obtain the following corollary.

Corollary 6 Let T be any λ1-structure that is without a fixed point. The

problem Hom-Alg1(T ) is L-complete (via quantifier-free projections).

Trivially, if the λ1-structure T has a fixed point then Hom-Alg1(T ) con-
sists of every λ1-structure and is identical to the problem Hom-Alg1(T1),
where fT1 is the function whose domain has one element. Note that whereas
the ‘trivial’ cases of Hom-Alg1(T ) are identical to Hom-Alg1(T1), so there is
an analogous remark to be made about Hell and Nešetřil’s dichotomy: the
‘trivial’ cases, here the cases where the problem is solvable in polynomial-
time, are identical to the case where the template graph consists of a solitary
edge.

4 Two unary functions

We now consider the class of non-uniform constraint satisfaction problems
with template two unary functions. Let λ2 be the signature consisting of
the two unary function symbols f and g. We define the decision problem
Hom-Alg2 to be the problem CSPC, where C is the class of pairs of λ2-
structures; and for any λ2-structure T , we define the problem Hom-Alg2(T )
to be the problem CSP(T ). Our main result in this section is that whether
this class of problems has a dichotomy is at least as hard as whether the class
of non-uniform constraint satisfaction problems with template an arbitrary
relational structure has a dichotomy; where by ‘dichotomy’ we mean that
every such problem is either in P or complete for NP via polynomial-time
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Turing-reductions (we actually prove the converse result later). We then go
on to prove a restricted version of this result.

In future, for brevity, we shall refer to whether the class of non-uniform
constraint satisfaction problems with template two unary functions has a
dichotomy as the problem ∆(λ2), and do likewise for other similar prob-
lems. For example, whether the class of non-uniform constraint satisfaction
problems with template an arbitrary relational structure has a dichotomy
is the problem ∆(σ : σ relational); and whether the class of non-uniform
constraint satisfaction problems with template a digraph has a dichotomy is
the problem ∆(σ2). We denote the fact that the problem ∆(λ2) is at least
as hard as ∆(σ : relational), for example, by ∆(σ : relational) ≤ ∆(λ2).

Remark 7 From now on, whenever we talk about a dichotomy, we mostly
mean whether every problem is either in P or is complete for NP via
polynomial-time Turing-reductions. We reserve the notation ‘NP-complete’
to mean complete for NP via polynomial-time (many-one) reductions. Most
dichotomy results, notably those due to Schaefer and to Hell and Nešetřil
mentioned in the Introduction, are such that every problem is in P or
is NP-complete. If a problem is NP-complete then it is complete for
NP via polynomial-time Turing-reductions but it is unknown whether the
converse is true. Furthermore, all reductions in Section 5 of [10], where
various dichotomy problems over relational signatures are considered, in-
volve polynomial-time reductions; and so the resulting dichotomy problems
therein are with respect to P and NP-completeness via polynomial-time
reductions (as opposed to P and NP-completeness via polynomial-time
Turing-reductions as it is for us in this paper).

We shall begin by detailing a transformation of a σ2-structure G, which
we regard as a simple digraph with vertex set V (G) and edge set E(G) (and
possibly with self-loops), into a λ2-structure λ2(G). The λ2-structure λ2(G)
is defined as follows.

• The domain of λ2(G) consists of:

{1, 2, 3, 4} ∪ {vu : u ∈ |G|} ∪ {eu,w : u,w ∈ |G| are such that

EG(u,w) holds}.

• f(1) = 2, f(2) = 1, f(3) = 2, f(4) = 1, g(1) = 4, g(2) = 3, g(3) = 4
and g(4) = 3 in λ2(G).

• If vu ∈ |λ2(G)| then f(vu) = 3 and g(vu) = 1 in λ2(G).
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• If eu,w ∈ |λ2(G)| then f(eu,w) = vu and g(eu,w) = vw in λ2(G).

The λ2-structure λ2(G) can be visualized in Fig. 2.
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Figure 2. The λ2-structure λ2(G).

Consider an arbitrary λ2-structure F . We write the digraph (resp.
graph) F to denote the digraph (resp. graph) with vertex set |F| where
there is a directed (resp. undirected) edge (x, y) if, and only if, either
f(x) = y or g(x) = y in F (unlike in the previous section, we no longer
take the trouble to differentiate between a λ2-structure and the digraph it
describes). The f-digraph (resp. f-graph) of F is the subdigraph (resp.
subgraph) of the digraph (resp. graph) F obtained by retaining only the
edges resulting from the unary function f (the g-digraph and the g-graph of
F are defined similarly).

The λ2-structure F is bipartite if it is bipartite as a graph, and connected

if it is connected as a graph. A neighbour of a vertex x in the digraph F is
any vertex y for which there is an edge (x, y) or (y, x).

Lemma 8 Let G and H be σ2-structures. Then G → H if, and only if,

λ2(G) → λ2(H).

Proof Suppose that ψ : G → H. Define the map ϕ : |λ2(G)| → |λ2(H)| as
follows:

• ϕ(i) = i, for any i ∈ {1, 2, 3, 4};

• ϕ(vu) = vψ(u), for any vu ∈ |λ2(G)|; and
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• ϕ(eu,w) = eψ(u),ψ(w), for any eu,w ∈ |λ2(G)|.

It is straightforward to check that the map ϕ is a homomorphism.
Conversely, suppose that ϕ : λ2(G) → λ2(H) is a homomorphism. In

both λ2(G) and λ2(H), the elements 1 and 2 are the only elements x for
which f(f(x)) = x; so, in particular, ϕ(1) ∈ {1, 2}. If vu ∈ |λ2(G)| then
gλ2(G)(vu) = 1; and so ϕ(1) = ϕ(gλ2(G)(vu)) = gλ2(H)(ϕ(vu)) 6= 2, because 2
is not the image of any element of |λ2(H)| under g. Hence, ϕ(1) = 1; and
consequently ϕ(2) = 2, ϕ(3) = 3 and ϕ(4) = 4.

If vu ∈ |λ2(G)| then gλ2(G)(vu) = 1. Hence, gλ2(H)(ϕ(vu)) = 1, with
the result that ϕ(vu) = vu′ , for some u′ ∈ |H|. If eu,w ∈ |λ2(G)| then
fλ2(G)(eu,w) = vu and gλ2(G)(eu,w) = vw. Hence, fλ2(H)(ϕ(eu,w)) = ϕ(vu)
and gλ2(H)(ϕ(eu,w)) = ϕ(vw), with the result that ϕ(eu,w) = eu′,w′ , for some
u′, w′ ∈ |H|.

Define the map ψ : |G| → |H| by ψ(u) = u′, where ϕ(vu) = vu′ , for each
u ∈ |G|. Consider u,w ∈ |G| such that EG(u,w) holds. By above, ϕ(eu,w) =
eu′,w′ , for some eu′,w′ ∈ |λ2(H)|. By above, fλ2(H)(ϕ(eu,w)) = ϕ(vu) = vψ(u)

and gλ2(H)(ϕ(eu,w)) = ϕ(vw) = vψ(w). Hence, u′ = ψ(u) and w′ = ψ(w),

with EH(ψ(u), ψ(w)) holding. Consequently, ψ is a homomorphism.

Proposition 9 Let H be a σ2-structure. There is a polynomial-time Turing-

reduction from Hom-Alg2(λ2(H)) to CSP(H).

Proof Let F be a λ2-structure. Since λ2(H) is bipartite, there exists no
homomorphism from F to λ2(H) unless F is also bipartite; so let us assume
that F is bipartite (with some unique bipartition). We may also assume
that F is connected, as otherwise we deal with each connected component
in turn.

Colour the elements of |F| black or white according to the side of the
bipartition they lie on. If there exists a homomorphism ϕ from F to λ2(H)
then there are two possibilities: all the elements coloured black are mapped
to 2, 4 or an element corresponding to a vertex of H, and all the elements
coloured white are mapped to 1, 3 or an element corresponding to an edge
of H; or all the elements coloured black are mapped to 1, 3 or an element
corresponding to an edge of H, and all the elements coloured white are
mapped to 2, 4 or an element corresponding to a vertex of H. We start
with the first possibility (and subsequently handle the second possibility in
exactly the same way).

Let H1 be the digraph, i.e., σ2-structure, having a single vertex ν and
a single edge ǫ = (ν, ν). Since there is a homomorphism from H to H1, the
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proof of Lemma 8 yields that there is a homomorphism τ from λ2(H) to
λ2(H1), given by:

• τ(i) = i, for i ∈ {1, 2, 3, 4};

• τ(vu) = ν, for u ∈ |H|; and

• τ(eu,w) = ǫ, for eu,w ∈ {eu,w : u,w ∈ |H| and EH(u,w) holds}.

Suppose that ϕ is a homomorphism from F to λ2(H). The homomorphism
τϕ enables us to label every element of F , in the natural way, with an
element of {1, 2, 3, 4, ν, ǫ}.

Our strategy in developing our algorithm (to satisfy the statement of
the theorem) is essentially to initially label every element x of |F| with a
set of elements of {1, 2, 3, 4, ν, ǫ} so that each element might constitute a
legitimate value for τϕ(x), via any resulting homomorphism ϕ, and then to
reason so that we can reduce these label sets and:

• either obtain an element with an empty label set, in which case a
homomorphism ϕ cannot exist; or

• obtain a collection of digraphs whereby answers as to whether these
digraphs are in CSP(H) will enable us to ascertain whether there exists
a homomorphism ϕ.

Consider the f -digraph of F . This is of the form of a disjoint union of
directed cycles with pendant in-trees. For each element x in this f -digraph,
define δf (x) to be the length of the longest walk whose end-point is the
element x (note that we allow elements to be repeated on a walk). So, in
particular, if x is an element in a directed cycle then δf (x) = ∞. For each
element x of our f -digraph, consider the possible label set Λ(x) of x. There
are a number of possibilities.

(1) If δf (x) > 1 and x is coloured black then Λ(x) ⊆ {2}.

(2) If δf (x) = 1 and x is coloured black then Λ(x) ⊆ {2, ν}.

(3) If δf (x) = 0 and x is coloured black then Λ(x) ⊆ {2, 4, ν}.

(4) If δf (x) > 2 and x is coloured white then Λ(x) ⊆ {1}.

(5) If δf (x) ∈ {1, 2} and x is coloured white then Λ(x) ⊆ {1, 3}.

(6) If δf (x) = 0 and x is coloured white then Λ(x) ⊆ {1, 3, ǫ}.
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Suppose that we are in Case (3). There are two further cases: either
there exists some y such that gF (y) = x or there doesn’t. In the first case,
the value 2 cannot lie in Λ(x); and in the second case, we may as well remove
the value 4 from Λ(x), as we could amend any corresponding homomorphism
ϕ so that ϕ(x) = 2.

Suppose that we are in Case (6). There are two further cases: either
there exists some y such that gF (y) = x or there doesn’t. In the first case,
the value ǫ cannot lie in Λ(x); and in the second case, we may as well remove
the value 3 from Λ(x), as we could amend any corresponding homomorphism
ϕ so that ϕ(x) = 1.

So, the result is that every element x of |F| can be labelled with one of
the following sets:

{1}, {2}, {2, ν}, {4, ν}, {1, 3}, {1, ǫ}.

We can consider some connected g-digraph within F in exactly the same
way. Defining δg with respect to this connected g-digraph rather than a
connected f -digraph yields a number of possibilities.

(1) If δg(x) > 1 and v is coloured black then Λ(x) ⊆ {4}.

(2) If δg(x) = 1 and x is coloured black then Λ(x) ⊆ {4, ν}.

(3) If δg(x) = 0 and x is coloured black then Λ(x) ⊆ {2, 4, ν}.

(4) If δg(x) > 2 and x is coloured white then Λ(x) ⊆ {3}.

(5) If δg(x) ∈ {1, 2} and x is coloured white then Λ(x) ⊆ {1, 3}.

(6) If δg(x) = 0 and x is coloured white then Λ(x) ⊆ {1, 3, ǫ}.

Suppose that we are in Case (3). There are two further cases: either
there exists some y such that fF (y) = x or there doesn’t. In the first case,
the value 4 cannot lie in Λ(x); and in the second case, we may as well remove
the value 2 from Λ(x), as we could amend any corresponding homomorphism
ϕ so that ϕ(x) = 4.

Suppose that we are in Case (6). There are two further cases: either
there exists some y such that fF (y) = x or there doesn’t. In the first case,
the value ǫ cannot lie in Λ(x); and in the second case, we may as well remove
the value 3 from Λ(x), as we could amend any corresponding homomorphism
ϕ so that ϕ(x) = 1.
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So, the result is that every element x of |F| can be labelled with one of
the following sets:

{3}, {4}, {2, ν}, {4, ν}, {1, 3}, {1, ǫ}.

Note that evaluating the two analyses above might result in an element
labelled by the empty set. If this is so then there can exist no homomorphism
ϕ (from F to λ2(H) where all the elements coloured black are mapped to
2, 4 or an element corresponding to a vertex of H, and all the elements
coloured white are mapped to 1, 3 or an element corresponding to a edge of
H). Hence, we may assume that every element of F is labelled with one of
the following sets:

{1}, {2}, {3}, {4}, {ν}, {ǫ}, {2, ν}, {4, ν}, {1, 3}, {1, ǫ}

(note that our evaluation of the two analyses might enable us to deduce that
Λ(x) = {ν} or {ǫ}).

Recall our λ2-structure λ2(H1) (with domain {1, 2, 3, 4, ν, ǫ}). Abbre-
viate f and g in λ2(H1) by f1 and g1, respectively; and for any set S ⊆
{1, 2, 3, 4, ν, ǫ}, define f1(S) = {f1(i) : i ∈ S} and g1(S) = {g1(i) : i ∈ S}.

Suppose that x, y ∈ |F| (where possibly x = y) and fF (x) = y. Then
any label set of y must be contained in f1(Λ(x)). Hence, we can replace Λ(y)
with Λ(y) ∩ f1(Λ(x)). The same can be said if x, y ∈ |F| and gF (x) = y.
We now repeatedly perform the above modification until either we obtain
stability or an element with an empty label set. If we obtain an element
with an empty label set then there can be no homomorphism ϕ: otherwise,
there is still a chance that such a homomorphism ϕ exists.

We can now delete any element x of |F| that is labelled with the set {1}
(resp. {2}, {3}, {4}) as if the homomorphism ϕ exists then: the value of
ϕ at x is necessarily 1 (resp. 2, 3, 4); and this will be consistent with any
resulting value of ϕ at any neighbouring element in the digraph F . Hence,
let us assume: that every element of |F| is labelled with one of the sets
{ν}, {ǫ}, {2, ν}, {4, ν}, {1, 3} and {1, ǫ}; and that the resulting digraph F
is connected (as otherwise we deal with the connected components one-by-
one).

We shall now prove the following claim: if F is such that every element
is labelled either {ν} or {ǫ} then there is a homomorphism from F to λ2(H)
which takes every element of |F| to an appropriate (w.r.t. its label set) ele-
ment of |λ2(H)| if, and only if, there is a homomorphism from the following
digraph H′ to H:

• the vertex set of H′ is {x : x ∈ |F| is labelled {ν}}; and
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• for every x, y ∈ |H′|, there is an edge (x, y) if, and only if, there is an
element z ∈ |F| labelled {ǫ} such that fF (z) = x and gF (z) = y.

Suppose that ψ : F → λ2(H) (where the homomorphism respects the
label sets). Let x ∈ |H′|. So, x ∈ |F| and is labelled {ν}. Hence, ψ(x) = vu,
for some u ∈ |H|. Define ϕ : |H′| → |H| by ϕ(x) = u.

Suppose that (x, y) is an edge of the digraph H′. Hence, ψ(x) = vu and
ψ(y) = vw, for some u,w ∈ |H|. By definition, there is z ∈ |F| labelled {ǫ}
such that fF (z) = x and gF (z) = y. So, fλ2(H)(ψ(z)) = ψ(x) = vu and
gλ2(H)(ψ(z)) = ψ(y) = vw; and by the definition of λ2(H), (u,w) is an edge
of the digraph H. Hence, ϕ : H′ → H.

Conversely, suppose that ϕ : H′ → H. Let x ∈ |F| be labelled {ν}; so,
x ∈ |H′|. Define ψ(x) = vϕ(x) ∈ |λ2(H)|. Let z ∈ |F| be labelled {ǫ}; so,

fF (z) = x, for some x with x labelled {ν}, and gF (z) = y, for some y with
y labelled {ν}. Define ψ(z) = eϕ(x),ϕ(y) ∈ |λ2(H)|.

Suppose that fF (z) = x; and so z is labelled {ǫ} and x is labelled
{ν}. We have that fλ2(H)(ψ(z)) = fλ2(H)(eϕ(x),ϕ(y)), for some y ∈ |F|; and

so fλ2(H)(ψ(z)) = vϕ(x) = ψ(x). A similar argument for the case when

gF (z) = y yields that ψ : F → λ2(H), and so we have proved our claim.
Let us return to the situation prior to the statement of our claim. Sup-

pose that x ∈ |F| is labelled with either {ν} or {ǫ}. As F is connected,
this effectively fixes every label set to consist of at most one element, and
we can remove elements from |F| labelled {1}, {2}, {3} or {4} (as above).
The above claim yields the result (note that we did not require F to be
connected to prove our claim).

Alternatively, suppose that there does not exist an element x ∈ |F|
labelled with either {ν} or {ǫ}. Choose some element x ∈ |F| and remove
one element from Λ(x). This effectively forces every other label set to have
size at most one, and we can remove elements from |F| labelled {1}, {2},
{3} or {4} (as above). Removing the alternative element from Λ(x) results
in a similar scenario. Regardless, the above claim yields the result.

Hence, we obtain the main theorem of this section.

Theorem 10 For any σ2-structure H, the problem CSP(H) is polynomial-

time Turing-equivalent to the problem Hom-Alg2(λ2(H)). Thus, any non-

uniform constraint satisfaction problem where the template is a relational

structure is polynomial-time Turing-equivalent to a non-uniform constraint

satisfaction problem where the template is a λ2-structure of the form λ2(H),
for some σ2-structure H.

20



Proof The first part of the theorem follows immediately from Lemma 8
and Proposition 9. The second part follows from Theorem 10 of [10].

Essentially, Theorem 10 tells us that ∆(σ : relational) ≤ ∆(λ2) and
that ∆(σ2) ≤ ∆(λ2) ([10] tells us that ∆(σ : relational) ≤ ∆(σ2) and
∆(σ2) ≤ ∆(σ : relational), i.e., that ∆(σ2) ≡ ∆(σ : relational)).

We can obtain a yet more restricted version of Theorem 10, in terms of
the structure λ2(H).

A matching is a unary function h such that h(x) 6= x and h(h(x)) = x,
for all x. Let F be a λ2-structure. We shall define a λ2-structure µ(F)
that is bipartite and where the function g in µ(F) is a matching. The
domain of µ(F) consists of two disjoint copies of |F|; so, for every element
x ∈ |F|, there are two elements x1, x2 ∈ |µ(F)| (the former we call an
index-1 element, the latter an index-2 element). We define g(x1) = x2 and
g(x2) = x1 in µ(F). Also, if f(x) = y in F then we define f(x1) = y2 in
µ(F); and if g(x) = y in F then we define f(x2) = y1 in µ(F).

Suppose that we construct the structure µ(F) from the structure F .
We can undo the construction of µ(F) to get not only F but also the λ2-
structure Fs, by swapping the indices 1 and 2 on the corresponding pairs of
elements of µ(F). So, for example, if f(x1) = y2 in µ(F) then g(x) = y in
Fs; that is, Fs is F with f and g swapped.

Lemma 11 For any λ2-structures F and F ′:

• if F → F ′ then µ(F) → µ(F ′); and

• if F is connected and µ(F) → µ(F ′) then either F → F ′ or Fs → F ′.

Proof Suppose that ϕ : F → F ′. Define ψ : |µ(F)| → |µ(F ′)| by ψ(x1) =
ϕ(x)1 and ψ(x2) = ϕ(x)2. Let x1, y2 ∈ |µ(F)| be such that fµ(F)(x1) = y2;
and so fF (x) = y. Thus, fF

′
(ϕ(x)) = ϕ(y), and so fµ(F ′)(ϕ(x)1) = ϕ(y)2,

with fµ(F ′)(ψ(x1)) = ψ(y2). The other case for fµ(F) is handled similarly,
and the fact that ψ preserves gµ(F) is trivial. Hence, ψ : µ(F) → µ(F ′).

Suppose that F is connected and that ψ : µ(F) → µ(F ′). Define
ϕ : |F| → |F ′| by ϕ(x) = y′ if {ψ(x1), ψ(x2)} = {y′1, y

′
2} (note that ϕ is

well-defined). Suppose that fF (x) = y; and so fµ(F)(x1) = y2. Hence,
fµ(F ′)(ψ(x1)) = ψ(y2). There are two possibilities: every index-1 element of
µ(F) is mapped under ψ to an index-1 element of µ(F ′); or every index-1
element of µ(F) is mapped under ψ to an index-2 element of µ(F ′) (this
is because F is connected). Suppose that {ψ(x1), ψ(x2)} = {x′1, x

′
2} and
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{ψ(y1), ψ(y2)} = {y′1, y
′
2}. Thus, either fF

′
(x′) = y′ or gF

′
(x′) = y′. More-

over, whether fF
′
(x′) = y′ or gF

′
(x′) = y′ is independent of x and y. Sim-

ilarly, if gF (x) = y then either gF
′
(x′) = y′ or fF

′
(x′) = y′. Consequently,

either F → F ′ or Fs → F ′.

Corollary 12 For any σ2-structure H, the problem CSP(H) is polynomial-

time Turing-equivalent to the problem Hom-Alg2(µ(λ2(H))). Thus, any

non-uniform constraint satisfaction problem where the template is a rela-

tional structure is polynomial-time Turing-equivalent to a non-uniform con-

straint satisfaction problem where the template is a λ2-structure of the form

µ(λ2(H)), for some σ2-structure H.

Proof Let F be a λ2-structure. We shall transform F so that F is of the
form µ(F ′) and where F → µ(λ2(H)) if, and only if, either F ′ → λ2(H) or
F ′
s → λ2(H).

We may assume that F is connected (otherwise we work with each con-
nected component in turn) and bipartite (otherwise we define F ′ to be
any λ2-structure not in Hom-Alg2(µ(λ2(H)))). If there is a homomorphism
F → µ(λ2(H)) then, for any element x ∈ |F|, the elements x and gF (gF (x))
must map to the same element of |µ(λ2(H))|. Thus, we can identify the
elements x and gF (gF (x)) in F as a single element x. Of course, this may
result in fF or gF being multiple-valued at x, and if this is the case then
we identify the two values of fF or the two values of gF . Note that there is
a homomorphism from the amended F to µ(λ2(H)) if, and only if, there is
a homomorphism from the original F to µ(λ2(H)) (a homomorphism from
a multiple-valued F must respect all functional identities). We iterate this
process until we can go no further. Eventually, we obtain that F is connected
and bipartite, and that gF is a matching.

We may pair up elements x1 and x2 for which gF (x1) = x2 and gF (x2) =
x1 so that all elements indexed by 1 (resp. 2) are on the same side of the
bipartition of F . Hence, F = µ(F ′) where: F ′ has a single element x for
each pair (x1, x2); f

F ′
(x) = y if fF (x1) = y2; and gF

′
(x) = y if gF (x2) = y1.

By Lemma 11, F → µ(λ2(H)) if, and only if, either F ′ → λ2(H) or F ′
s →

λ2(H). So, by Proposition 9, there is a polynomial-time Turing-reduction
from Hom-Alg2(µ(λ2(H))) to CSP(H).

Conversely suppose that G is a σ2-structure. Let G∗ be the disjoint
union of G and H. We shall show that G → H if, and only if, µ(λ2(G

∗)) →
µ(λ2(H)).

Suppose that G → H. Then G∗ → H and λ2(G
∗) → λ2(H) by Lemma 8.

So, µ(λ2(G
∗)) → µ(λ2(H)) by Lemma 11.
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Conversely, suppose that µ(λ2(G
∗)) → µ(λ2(H)). As λ2(G

∗) is con-
nected, we can apply Lemma 11 to obtain that either λ2(G

∗) → λ2(H) or
λ2(G

∗)s → λ2(H). In the former case, we get that G∗ → H by Lemma 8. In
the latter case, we get that λ2(G

∗) → λ2(H)s. However, if we denote by Hs

the digraph H where all edges are reversed then it is straightforward to see
that λ2(H)s = λ2(Hs); and so by Lemma 8, G∗ → Hs and thus H → Hs.
If ψ : H → Hs then the same map ψ is a homomorphism from Hs to H.
Thus, composing homomorphisms gives us that G∗ → H. Hence, there is a
polynomial-time reduction from CSP(H) to Hom-Alg2(µ(λ2(H))), and the
result follows.

Essentially, Corollary 12 tells us that ∆(σ : relational) ≤ ∆(λ2 :
bipartite, g a matching). Thus, if we wish to establish dichotomy results for
non-uniform constraint satisfaction problems with template a λ2-structure,
but without resolving ∆(σ : σ relational), then we need to restrict the tem-
plates beyond being bipartite with one of the unary functions a matching.
We shall consider restricted structures later in this paper.

5 Constants, unary functions and relations

In this section we prove what amounts to the converse of Theorem 10. We
then go on to examine the complexity of problems of the form Hom-Alg2(T )
for certain elementary λ2-structures T .

Theorem 13 Let B be some σ-structure where σ consists of constant sym-

bols, unary function symbols and relation symbols. There exists a rela-

tional signature σ′ and a σ′-structure B′ such that CSP(B) and CSP(B′)
are polynomial-time equivalent.

Proof Let σ = 〈c1, . . . , ck, f1, . . . , fl, R1, . . . , Rm〉, where each ci (resp. fi,
Ri) is a constant (resp. unary function, relation) symbol; and let σ′ =
〈C1, . . . , Ck, F1, . . . , Fl, R1, . . . , Rm〉, where each Ci is a unary relation sym-
bol and each Fi is a binary relation symbol. Define the σ′-structure B′ as
follows:

• |B′| = |B|;

• for each i ∈ {1, 2, . . . , k}, CB′

i = {cBi };

• for each i ∈ {1, 2, . . . , l} and for any u,w ∈ |B′|, FB′

i (u,w) holds if,
and only if, fBi (u) = w; and
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• for each i ∈ {1, 2, . . . ,m}, RB′

i = RB
i .

Suppose that A′ is a σ′-structure. Suppose further than CA′

i = ∅, for
some i ∈ {1, 2, . . . , k}: so I = {i : CA′

i = ∅ where 1 ≤ i ≤ k} is non-
empty. For every i ∈ I, add a new element to the domain of A′ and set the
relation Ci of the amended structure to consist of the set containing only
the corresponding new element (keep all the other relations as they are).
Clearly, the amended structure A′ is in CSP(B′) if, and only if, the original
structure A′ is in CSP(B′). Hence, we assume that every relation CA′

i , for
i ∈ {1, 2, . . . , k}, is non-empty.

We shall now amend A′ so that in the amended structure, A′′, for every
i ∈ {1, 2, . . . , l} and for every u ∈ |A′′|, there is at least one w ∈ |A′′| such
that FA′′

i (u,w) holds. We begin by defining the σ′-structure B′
p as follows:

• |B′
p| = |B′|p, where |B′| contains p elements;

• for every i ∈ {1, 2, . . . , k}, C
B′

p

i = ∅;

• for every i ∈ {1, 2, . . . , l} and for any ū, v̄ ∈ |B′
p|, F

B′
p

i (ū, v̄) holds if,

and only if, vj = fB(uj), for every j ∈ {1, 2, . . . , p}; and

• for every i ∈ {1, 2, . . . ,m}, R
B′

p

i = ∅.

Let v̄ ∈ |B′
p| be such that all components of v̄ are distinct, and let w ∈ |B′|.

Then w appears as some coordinate in v̄: w.l.o.g. assume that w appears as
the first coordinate. Define the map ϕwv̄ : |B′

p| → |B′| as:

ϕwv̄ (ū) = u1.

It is straightforward to verify that ϕwv̄ is a homomorphism from B′
p to B′.

Observe that there exists a homomorphism from B′
p to B′ which maps any

chosen element of |B′
p| whose coordinates are all distinct to any chosen ele-

ment of |B′|.
We construct the σ′-structure A′′ as follows. First, fix some element

ū ∈ |B′
p| for which all the components are distinct. Define:

• |A′′| = |A′| × |B′
p|;

• for each i ∈ {1, 2, . . . , k}, CA′′

i ((w, v̄)) holds if, and only if, v̄ = ū and
CA′

i (w) holds;

• for each i ∈ {1, 2, . . . , l} and for any (w1, v̄
1), (w2, v̄

2) ∈ |B′′|,
FA′′

i ((w1, v̄
1), (w2, v̄

2)) holds if, and only if, either (v̄1 = v̄2 = ū and

FA′

i (w1, w2) holds) or (w1 = w2 and F
B′

p

i (v̄1, v̄2) holds); and
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• for every i ∈ {1, 2, . . . ,m} and for any (w1, v̄
1), (w2, v̄

2), . . . , (wa, v̄
a) ∈

|A′′|, RA′′

i ((w1, v̄
1), (w2, v̄

2), . . . , (wa, v̄
a)) holds if, and only if, v̄1 =

v̄2 = . . . = v̄a = ū and RA′

i (w1, w2, . . . , wa) holds (where a is the arity
of Ri).

The structure A′′ can be depicted in Fig. 3, where the relations Ci and Ri
are omitted and an arrow labelled i from one vertex to another denotes that
the associated pair of vertices is in the binary relation Fi. Note that the
substructure of A′′ induced by the set of elements |A′| × {ū} is isomorphic
to A′.

vertices of the

form (w, u)
_

i

i

i

i

j

j

pcopies of B'

j

Figure 3. The σ′-structure A′′.

Suppose that there is a homomorphism from A′ to B′. Then this homo-
morphism can be extended to a homomorphism of A′′ to B′ by utilizing the
observation at the end of the paragraph in which the construction of B′

p is
detailed. Conversely, if there is a homomorphism from A′′ to B′ then the re-
striction of this map to the set of elements |A′|×{ū} yields a homomorphism
from A′ to B′. So, A′ ∈ CSP(B′) if, and only if, A′′ ∈ CSP(B′).

Suppose that w1, w2 ∈ |A′′| are such that w1 6= w2 and both CA′′

i (w1) and
CA′′

i (w2) hold, for some i ∈ {1, 2, . . . , k}. The structure obtained from A′′

by identifying w1 and w2 is such that there is a homomorphism to B′ if, and
only if, there is homomorphism from A′′ to B′ (as B′ has been derived from
B by ‘converting’ the constants and functions into relations mirroring these
constants and functions). Suppose that w1, w2, w3 ∈ |A′′| are such that w2 6=
w3 and both FA′′

i (w1, w2) and FA′′

i (w1, w3) hold, for some i ∈ {1, 2, . . . , l}.
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The structure obtained from A′′ by identifying w2 and w3 is such that there
is a homomorphism to B′ if, and only if, there is homomorphism from A′′

to B′. By repeatedly identifying vertices (if necessary) as above, we may
assume that A′′ is such that: for every i ∈ {1, 2, . . . , k}, there is exactly
one element in CA′′

i ; and for every i ∈ {1, 2, . . . , l} and for every w1 ∈ |A′′|,
there is exactly one element w2 ∈ |A′′| such that FA′′

i (w1, w2) holds. Finally,
let A be the σ-structure obtained from A′′ in the natural way. Clearly,
A′′ ∈ CSP(B′) if, and only if, A ∈ CSP(B). Moreover, A can be constructed
from A′ in time polynomial in the size of A′.

Conversely, let A be a σ-structure. Let A′ be the σ′-structure obtained
from A in the natural way. Clearly, A ∈ CSP(B) if, and only if, A′ ∈
CSP(B′); and A′ can be constructed from A in time polynomial in the size
of A. The result follows.

A corollary of Theorems 10 and 13 is that ∆(σ : relational) ≡ ∆(λ2).
Now let us turn to non-uniform constraint satisfaction problems CSP(T )

where the λ2-structure T is bipartite and where the g-digraph is a single di-
rected cycle. For any such λ2-structure T , let us define a λ3-structure T̃ ,
where λ3 consists of the unary function symbols f , g1 and g2, with the prop-
erty that both g1 and g2 are matchings. Let T1 and T2 form the bipartition
of |T |. The domain of T̃ is |T |; if x1 ∈ T1 then gT̃1 (x1) = gT (x1), with

gT̃1 (gT (x1)) = x1; if x2 ∈ T2 then gT̃2 (x2) = gT (x2), with gT̃2 (gT (x2)) = x2;

and f T̃ is defined identically to fT . The problem Hom-Alg3(T̃ ) is CSP(T̃ ).

Theorem 14 Let T be a λ2-structure that is bipartite and whose g-digraph

is a directed cycle. The problem Hom-Alg2(T ) is polynomial-time Turing-

equivalent to the problem Hom-Alg3(T̃ ). In consequence, there exists such a

λ2-structure T with the property that Hom-Alg2(T ) is complete for NP via

polynomial-time Turing-reductions.

Proof Let S be a λ3-structure. We may clearly assume that S is bipartite
(as otherwise S 6∈ Hom-Alg3(T̃ )) and connected (as otherwise we take each
connected component in turn). Furthermore, just as we did in the proof
of Corollary 12, we may assume that gS1 and gS2 are matchings. Fix some
element u ∈ |S|. First, we shall ascertain (using an oracle for Hom-Alg2(T ))
whether there is a homomorphism from S to T̃ where u is mapped to an
element of T1 (as in the construction of T̃ above: we proceed similarly when
looking for a homomorphism mapping u to an element of T2).

We begin by constructing a λ2-structure Fu. Begin with the domain |S|
(we shall extend it presently). Assume that a homomorphism of S to T̃ (if it
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exists) takes u to an element of T1. As S is connected and bipartite, we can
now determine which side of the bipartition every element of |S| is mapped
to. If w ∈ |S| maps to T1 then we define gFu(w) = gS1 (w); otherwise we
define gFu(w) = gS2 (w). The function fFu is identical to fS . Trivially, ϕ is
a homomorphism from S to T̃ mapping u to an element of T1 if, and only if,
ϕ is a homomorphism from Fu to T mapping u to an element of T1 (recall
that gS1 and gS2 are matchings).

For every v ∈ T1, form the structure Fu + Tv by taking disjoint copies
of Fu and T and identifying the elements u ∈ |Fu| and v ∈ |T |. Note that
this yields a ‘structure’ where the functions f and g have multiple values;
and any homomorphism from Fu + Tv to T , say, must respect all functional
identities (as in the proof of Corollary 12).

Suppose that Fu → T where u is mapped to an element v ∈ T1. Then
Fu + Tv → T . Conversely, suppose that ψ : Fu + Tv → T , for some v ∈ T1.
Suppose further that the element u of Fu+Tv (that is, the element resulting
from the identification) is mapped under ψ to an element of T2. Thus, ψ
restricted to the copy of T in Fu + Tv is a homomorphism of T to T taking
every element of T1 to T2 and vice versa. Hence, by composing maps we get
that there is a homomorphism of Fu+Tv to T taking u to an element of T1;
and so Fu → T where u is mapped to an element of T1. Hence, Fu → T
where u is mapped to an element of T1 if, and only if, Fu + Tv → T , for
some v ∈ T1.

Just as we did in the proof of Corollary 12, we resolve the multiple
values of any Fu + Tv by repeatedly identifying any multiple values until
the functions f and g become single-valued. We denote the resulting λ2-
structure by Fu(Tv). Just as in Corollary 12, there is a homomorphism from
Fu + Tv to T if, and only if, there is a homomorphism from Fu(Tv) to T .
Hence, there is a polynomial-time Turing-reduction from Hom-Alg3(T̃ ) to
Hom-Alg2(T ).

Conversely, let F be a λ2-structure. Again, we can assume that F is
connected and bipartite. We proceed as we did above and fix some element
u ∈ |F|. We shall ascertain whether there is a homomorphism from F to
T where u is mapped to an element of T1. This time, we construct a λ3-
structure Su. If w ∈ |F| maps to an element of T1 in T then we define
gSu

1 (w) = gF (w); otherwise we define that gSu

2 (w) = gF (w). The function
fSu is identical to fF . This only partially defines the functions g1 and g2 of
Su. Nevertheless, it is straightforward to see that there is a homomorphism
F to T where u is mapped to an element of T1 if, and only if, there is a
homomorphism Su to T̃ where u is mapped to an element of T1. However,
by proceeding as we did in the proof of Theorem 13 (where we built the
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structure A′′ from A′ and B′), from Su and T̃ we can build a λ3-structure,
call it Su also, where the functions g1 and g2 are fully defined and where:
there is a homomorphism from the partially defined Su to T̃ where u is
mapped to an element of T1 if, and only if, there is a homomorphism from
the fully defined Su to T̃ where u is mapped to an element of T1.

Let v ∈ T1. Just as we did above, we can form the structure Su + T̃v by
identifying u ∈ |S| and v ∈ |T̃ |. Again, the functions g1 and g2 of Su + T̃v
may have multiple values and again we use our process of identification
to yield the structure Su(T̃v). Reasoning as above yields that there is a
polynomial-time Turing-reduction from Hom-Alg2(T ) to Hom-Alg3(T̃ ).

By Corollary 12, there exists a bipartite λ2-structure F ′ for which the
function g is a matching and for which Hom-Alg2(F

′) is complete for NP

via polynomial-time Turing reductions. Define the bipartite λ3-structure S
from F ′ by setting: |S| = |F ′|; fS = fF

′
; gS1 = gF

′
; and gS2 is a matching

such that the gS1 -graph and the gS2 -graph form a single cycle. By above,
there exists a λ2-structure F such that: the gF -digraph is a directed cycle;
S = F̃ ; and Hom-Alg2(F) and Hom-Alg3(S) are polynomial-time Turing-
equivalent.

An instance of the problem Hom-Alg2(F
′) is an instance of the prob-

lem Hom-Alg3(S) where the function g2 is not defined. As above, we can
modify this instance so that g2 is defined and there is a homomorphism
from this amended instance to S if, and only if, there is a homomorphism
from the original instance to S. Hence, Hom-Alg3(S) is complete for NP

via polynomial-time Turing-reductions; and so Hom-Alg2(F) is complete for
NP via polynomial-time Turing-reductions.

Theorem 14 is a general result that relates non-uniform constraint sat-
isfaction problems with templates λ2-structures in which one of the unary
functions is a cycle with non-uniform constraint satisfaction problems with
templates λ3-structures in which two of the unary functions are matchings.
It also tells us that even when we restrict our template T in the problem
Hom-Alg2(T ) so that it is bipartite and its g-digraph is a directed cycle,
the resulting problem can still be complete for NP via polynomial-time
Turing-reductions (note that we make no statement as regards the degree of
difficulty of the problem ∆(λ2 : bipartite, g-digraph a directed cycle)). In
fact, we can restrict the size of T to be as small as possible and, further,
obtain a complete problem for NP via polynomial-time reductions.

Corollary 15 There exist λ2-structures T and T̂ such that :
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• |T | = 3, the g-digraph is a directed cycle, the f-digraph is connected

and Hom-Alg2(T ) is NP-complete; and

• |T̂ | = 6, the g-digraph is a directed cycle, the f-digraph is connected,

T̂ is bipartite and Hom-Alg2(T̂ ) is NP-complete.

Proof Define the λ2-structure T to have: domain {0, 1, 2}; function fT

defined as fT (0) = 1, fT (1) = 0 and fT (2) = 0; and function gT defined as
gT (0) = 1, gT (1) = 2 and gT (2) = 0. Note that for any element x ∈ |T |, the
possible values for (fT (x), fT (gT (x)), fT (gT (gT (x)))) are (1, 0, 0), (0, 1, 0)
and (0, 0, 1), when x is 0, 2 and 1, respectively.

Consider the problem 1-in-3-SAT, defined over the signature σ3 = 〈R〉,
where R is a relation symbol of arity 3: an instance is a σ3-structure A,
which is viewed as a collection of clauses of 3 distinct boolean variables via
{Xi, Xj , Xk} is a clause if, and only if, RA(i, j, k) holds, where i 6= j 6= k 6=
i; and a yes-instance is an instance for which there is a truth assignment
making exactly one of the 3 boolean variables in each clause true. This
problem is NP-complete [21].

Suppose we are given an instance A of 1-in-3-SAT where the clauses are
C1, C2, . . . , Cm over the boolean variables X1, X2, . . . , Xn. Define functions
f and g over

{1, 2, . . . ,m} ∪ {1̇, 2̇, . . . , ṅ} ∪ S,

where S is as yet undefined, as follows. For each: i ∈ {1, 2, . . . ,m}:

if clause Ci = {Xa(i), Xb(i), Xc(i)} then define f and g such that

f(i) = ˙a(i); f(g(i)) = ˙b(i); and f(g(g(i))) = ˙c(i).

The set S is chosen so as to facilitate these conditions. In more detail,
S = {ri, si : i = 1, 2, . . . ,m} and for each i = 1, 2, . . . ,m:

• f(i) = ˙a(i);

• g(i) = ri; f(ri) = ˙b(i);

• g(ri) = si; f(si) = ˙c(i);

and f(u) = u and g(u) = u, for any as yet undefined u. Denote by F the
λ2-structure whose functions f and g are as defined above.

Suppose that ϕ : {X1, X2, . . . , Xn} → {0, 1} is a satisfying truth as-
signment for the instance A of 1-in-3-SAT. Define the function ψ from
{1, 2, . . . ,m} ∪ {1̇, 2̇, . . . , ṅ} ∪ S to {0, 1, 2} as follows.
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• For each i ∈ {1, 2, . . . ,m}:

– if (ϕ(Xa(i)), ϕ(Xb(i)), ϕ(Xc(i))) = (1, 0, 0) then ψ(i) = 0;

– if (ϕ(Xa(i)), ϕ(Xb(i)), ϕ(Xc(i))) = (0, 1, 0) then ψ(i) = 2;

– if (ϕ(Xa(i)), ϕ(Xb(i)), ϕ(Xc(i))) = (0, 0, 1) then ψ(i) = 1.

• For each i ∈ {1, 2, . . . ,m}:

– ψ(ri) = gT (ψ(i));

– ψ(si) = gT (gT (ψ(i))).

• For each j ∈ {1, 2, . . . , n}, ψ(j̇) = ϕ(Xj).

We claim that ψ is a homomorphism from F to T .
Suppose that the truth assignment ϕ is such that

(ϕ(Xa(i)), ϕ(Xb(i)), ϕ(Xc(i))) = (1, 0, 0).

Consider the identity fF (i) = ˙a(i). Then fT (ψ(i)) = fT (0) = 1; and
ψ( ˙a(i)) = ϕ(Xa(i)) = 1. Similarly, all other functional identities can be so
verified. A similar analysis follows should the truth assignment ϕ be such
that (ϕ(Xa(i)), ϕ(Xb(i)), ϕ(Xc(i))) is (0, 1, 0) or (0, 0, 1). Thus, ψ : F → T .

Conversely, suppose that ψ : F → T . Define the truth assignment
ϕ : {X1, X2, . . . , Xn} → {0, 1} by:

• ϕ(Xa(i)) = 1 if ψ(i) = 0, and 0 otherwise;

• ϕ(Xb(i)) = 1 if ψ(i) = 2, and 0 otherwise;

• ϕ(Xc(i)) = 1 if ψ(i) = 1, and 0 otherwise.

The map ϕ is clearly well-defined and a satisfying truth assignment for the
instance A. Hence, Hom-Alg2(T ) is NP-complete.

Let A be an arbitrary λ2-structure. Define the λ2-structure Â as follows:

• the domain |Â| = {x : x ∈ |A|} ∪ {x̂ : x ∈ |A|};

• if fA(x) = y then f Â(x) = x̂ and f Â(x̂) = y, for x ∈ |A|; and

• if gA(x) = y then gÂ(x) = x̂ and gÂ(x̂) = y, for x ∈ |A|.
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For any x ∈ |A|, ˆ̂x denotes the element x.
Suppose that ψ : A → T . Define the map ψ̂ : |Â| → |T̂ | by ψ̂(x) = ψ(x)

and ψ̂(x̂) = ˆψ(x), for x ∈ |A|. Let x, y ∈ |Â| be such that f Â(x) = y. Then
either x ∈ |A| and y = x̂; or x = û, for some u ∈ |A|, and fA(u) = y ∈

|A|. In the former case, as ψ̂(x) = ψ(x) ∈ |T |, we have that f T̂ (ψ̂(x)) =
ˆ

ψ̂(x) = ˆψ(x) = ψ̂(x̂) = ψ̂(y). In the latter case, fA(u) = y ∈ |A|; and so

fT (ψ(u)) = ψ(y). Thus, f T̂ ( ˆψ(u)) = ψ(y) and f T̂ (ψ̂(û)) = ψ̂(y); that is,

f T̂ (ψ̂(x)) = ψ̂(y). The case for when gÂ(x) = y is identical; and so we have
ψ̂ : Â → T̂ .

Conversely, suppose that ψ̂ : Â → T̂ . There are two cases: when ψ̂

maps elements of |A| to elements of |T |; and when ψ̂ maps elements of
{x̂ : x ∈ |A|} to elements of |T |. Let us consider the first case. Define
ψ : |A| → |T | by ψ(x) = ψ̂(x). Let x, y ∈ |A| be such that fA(x) = y. So,

f Â(x̂) = y and f T̂ (ψ̂(x̂)) = ψ̂(y). But f Â(x) = x̂ and so f T̂ (ψ̂(x)) = ψ̂(x̂).
Thus, fT (ψ(x)) = ψ(y). The situation when gA(x) = y is similar.

Alternatively, when ψ̂ maps elements of {x̂ : x ∈ |A|} to elements of

|T |, we define ψ(x) =
ˆ

ψ̂(x). Let x, y ∈ |A| be such that fA(x) = y. So,

f Â(x) = x̂ and f Â(x̂) = y, with f T̂ (ψ̂(x)) = ψ̂(x̂) and f T̂ (ψ̂(x̂)) = ψ̂(y).

But as ψ̂(x̂) ∈ |T |, f T̂ (ψ̂(x̂)) =
ˆ

ψ̂(x̂); and so
ˆ

ψ̂(x̂) = ψ̂(y) with ψ(y) =
ˆ

ψ̂(y) = ψ̂(x̂). Also, as ψ̂(x) 6∈ |T |, f T̂ (
ˆ

ψ̂(x)) = ψ̂(x); so fT (
ˆ

ψ̂(x)) = ψ̂(x̂)
with fT (ψ(x)) = ψ(y). The situation when gA(x) = y is similar. Hence,
ψ : A → T and consequently, Hom-Alg2(T̂ ) is NP-complete and the result
follows.

We stated prior to Corollary 15 that this corollary was optimal in terms
of the size of the structures T and T̂ . That this is true for T is obvious;
and we now show that this is true for T̂ also.

Lemma 16 Let T̂ be a bipartite λ2-structure of size 4 whose g-digraph is a

directed cycle. The problem Hom-Alg2(T̂ ) is solvable in polynomial-time.

Proof Let T̂ be a bipartite λ2-structure of size 4, with domain {0, 1, 2, 3},
and whose g-digraph is the directed cycle (0, 1, 2, 3). Let A be an arbitrary
λ2-structure. Without loss of generality, we may assume that A is connected
(otherwise we handle each connected component separately). Furthermore,
suppose that ϕ is a homomorphism from A to T̂ taking the element u ∈ |A|
to the element 0 ∈ |T̂ |: this effectively determines which side of the biparti-
tion of T every element of |A| must map to under ϕ (if we can determine, in
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polynomial-time, whether such a homomorphism exists then this will clearly
suffice to yield the result).

We shall build a set of clauses, C, corresponding to A, each clause con-
sisting of 2 Boolean literals. The underlying set of Boolean variables is
{Xv : v ∈ |A|}. For every instantiation gA(v, w), where v, w ∈ |A|, include
clauses in C as follows.

(a) If ϕ(v) ∈ {0, 2} then include the clauses {¬Xv, Xw} and {Xv,¬Xw}
in C.

(b) If ϕ(v) ∈ {1, 3} then include the clauses {¬Xv,¬Xw} and {Xv, Xw}
in C.

Suppose that ψ is a satisfying truth assignment for the resulting set of clauses
C. Suppose further that v is such that ϕ(v) ∈ {0, 2} (resp. ϕ(v) ∈ {1, 3}):
if ψ(Xv) is true then we interpret this as dictating that ϕ(v) = 0 (resp.
ϕ(v) = 1); and if ψ(Xv) is false then we interpret this as dictating that
ϕ(v) = 2 (resp. ϕ(v) = 3). If gA(v, w) holds then the fact that ψ is a satis-

fying truth assignment ensures that gT̂ (ϕ(v), ϕ(w)) holds. Extending C by
similarly including clauses for every instantiation of the form fA(v, w) yields
that if the resulting set of clauses C is satisfiable then there is homomor-
phism from A to T̂ . Conversely, if there is a homomorphism from A to T̂
then this homomorphism can be translated, using our interpretation above,
into a satisfying truth assignment for C. Thus, the problem Hom-Alg2(T̂ )
can be reduced, in polynomial-time, to the problem of whether a collec-
tion of clauses of size 2 is satisfiable, which is well-known to be solvable in
polynomial-time (see, for example, [18]). The result follows.

6 Reversing problems

We have seen so far that even restrictions of the problem ∆(λ2) can be as
hard to resolve as the (very general) problem ∆(σ : σ relational). In this
section, we prove a dichotomy result for the class of non-uniform constraint
satisfaction problems with template a pair of unary functions one of which
is the reverse of the other.

Recall that the digraph of a unary function, f , say, is such that each
component consists of a directed cycle with pendant in-trees. Suppose that
the unary function g is such that its digraph is obtained from that of f by
reversing the directions of the edges of the directed cycle and leaving all
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other edges as they are. Then we say that g is the reverse of f . If T is a λ2-
structure for which fT is the reverse of gT then the problem Hom-Alg2(T )
is called a reversing problem.

When the unary functions f and g are the reverse of one another, for any
element u on the directed cycle in the digraph of f (or g), define the height

of u to be the length of the longest path ending at u but so that no element
on this path apart from u lies on the directed cycle (there are similarities
between the height of u and the values δf (u) and δg(u) from the proof of
Proposition 9).

Theorem 17 The problem CSP(T ) can be solved in polynomial-time when

T is a structure over a signature containing only constant symbols and unary

function symbols, so long as:

(a) every unary function of T has a digraph that is a disjoint union of

directed cycles;

(b) there is one unary function symbol in the signature; or

(c) there are two unary function symbols, f and g, in the signature, and

the functions fT and gT are the reverse of one another such that

the corresponding directed cycles, (t0, t1, t2, t3) and (t3, t2, t1, t0), have

length 4 and either :

– the height of each ti is at most 1; or

– t0 and t2 have height at most 2 and t1 and t3 have height 0.

Proof (a) Let T be over the signature σ consisting of a number of unary
function symbols and constant symbols, where every unary function has a
digraph that is a disjoint union of directed cycles. Let A be a σ-structure
and fix some element u ∈ |A|. Suppose that there is a homomorphism
ϕ : A → T taking u to t, for some t ∈ |T |. This fixes the value (under ϕ)
of each element in the connected component of the digraph A containing
u; and it is straightforward to check whether the resulting map is indeed
a homomorphism (of this connected component of the digraph A: how we
consider A as a digraph, and the notion of connected component, should be
clear given the definitions prior to Lemma 8). We do this for each element
t ∈ |T | and for each connected component of A to obtain our polynomial-
time algorithm.

(b) Let T and A be over the signature σ consisting of one function
symbol and a number of constant symbols. The σ-structures A and T are
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both disjoint unions of directed cycles with pendant in-trees (with possibly
additional constants). We take each directed cycle with pendant in-trees
in A in turn. Fix some element u ∈ |A| which lies on the directed cycle
of some directed cycle with pendant in-trees B. Suppose that there is a
homomorphism ϕ : B → T taking u to t, for some t ∈ |T | (and so t must lie
on the cycle of some directed cycle with pendant in-trees in T ). This fixes
the value of each element in the directed cycle of B. Let us assume that
such a partial homomorphism exists. If there are no constants lying on the
pendant in-trees in B then it is trivial to determine whether ϕ can extended
to a homomorphism of B to T (see the proof of Proposition 2).

Suppose that cB is a constant lying on some pendant in-tree in B such
that in the path from the constant to the root of the in-tree (that is, the
element on both the in-tree and the directed cycle) there are no other con-
stants. The map ϕ must take cB to cT and whether this is possible can easily
be verified. Moreover, if this is possible then the image of every element of
|B| on the path in B from cB to the root of the pendant in-tree is fixed. If
there are no other constants lying on some pendant in-tree in B then the
map ϕ can trivially be extended to a homomorphism of B to T .

Let us suppose that dB is some other constant lying on some pendant
in-tree in B such that in the path p from dB to an element of |B| for which
the value under ϕ has already been set, there are no other constants. The
map ϕ must take dB to dT and whether this is possible can easily be verified.
Moreover, if this is possible then the image of every element of |B| on the
path p in B is fixed. We continue similarly with other constants in B until
either we obtain a homomorphism of B to T or we show that one cannot
exist. We repeat the above for each element t ∈ |T | and for each directed
cycle with pendant in-trees of A to obtain our polynomial-time algorithm.

(c) Let T be over the signature σ consisting of the unary function sym-
bols f and g and a number of constant symbols. Suppose further that fT

and gT are the reverse of one another where the corresponding directed cy-
cles are (t0, t1, t2, t3) and (t3, t2, t1, t0), respectively, and the height of each
ti is at most 1. Let A be some σ-structure and let B be the connected com-
ponent of the digraph A containing some fixed element u ∈ |A| which lies
on a cycle in the digraph A (B may also have some constants but we shall
ignore them for the moment, until we specifically return to them later).

Suppose that there is a homomorphism ϕ : B → T taking u to ti, for some
fixed i ∈ {0, 1, 2, 3} (recall, for the moment we are ignoring any constants).
The values under ϕ of the elements of |B| of non-zero in-degree are fixed in
the following sense: for every element v ∈ |B| of non-zero in-degree, we can
immediately ascertain whether ϕ(v) ∈ {t0, t2} or whether ϕ(v) ∈ {t1, t3}

34



(note that the digraph T is bipartite). We say that some v ∈ |B| of non-zero
in-degree has parity {0, 2} if ϕ(v) is necessarily in {t0, t2}; and parity {1, 3}
if ϕ(v) is necessarily in {t1, t3}.

Suppose that v and w are elements of |B| of non-zero in-degree. If
fB(v) = w then include the ordered pair (v, w)f in the collection of or-
dered pairs P ; and if gB(v) = w then include the ordered pair (v, w)g in the
collection P .

Suppose that v is an element of |B| of in-degree 0, with fB(v) = w and
gB(v) = z, and where w and z have parity {0, 2}. If t0 has height 0 then
include the ordered pair (w, z)0 in P ; and if t2 has height 0 then include the
ordered pair (w, z)2 in P .

Suppose that v is an element of |B| of in-degree 0, with fB(v) = w and
gB(v) = z, and where w and z have parity {1, 3}. If t1 has height 0 then
include the ordered pair (w, z)1 in P ; and if t3 has height 0 then include the
ordered pair (w, z)3 in P .

From the collection P of ordered pairs, build the set π of clauses of size
2 over the set of Boolean variables {Xv : v ∈ |B|} as follows.

• If (v, w)f ∈ P and v has parity {0, 2} then we include the clauses
{Xv,¬Xw} and {¬Xv, Xw} in π.

• If (v, w)f ∈ P and v has parity {1, 3} then we include the clauses
{Xv, Xw} and {¬Xv,¬Xw} in π.

• If (v, w)g ∈ P and v has parity {0, 2} then we include the clauses
{Xv, Xw} and {¬Xv,¬Xw} in π.

• If (v, w)g ∈ P and v has parity {1, 3} then we include the clauses
{Xv,¬Xw} and {¬Xv, Xw} in π.

• If (v, w)0 ∈ P then we include the clause {¬Xv,¬Xw} in π.

• If (v, w)1 ∈ P then we include the clause {¬Xv,¬Xw} in π.

• If (v, w)2 ∈ P then we include the clause {Xv, Xw} in π.

• If (v, w)3 ∈ P then we include the clause {Xv, Xw} in π.

Suppose that there is a truth assignment τ satisfying π. Let us use τ to
derive a mapping ϕ : |B| → |T |.

• If v has non-zero in-degree in B then:

– if v has parity {0, 2} and τ(Xv) = true then set ϕ(v) = t0;
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– if v has parity {0, 2} and τ(Xv) = false then set ϕ(v) = t2;

– if v has parity {1, 3} and τ(Xv) = true then set ϕ(v) = t1;

– if v has parity {1, 3} and τ(Xv) = false then set ϕ(v) = t3.

• If v has zero in-degree in B then ϕ(v) is as dictated by ϕ(fB(v)) and
ϕ(gB(v)) (note that as yet it is not clear that ϕ(v) is well-defined).

Suppose that v ∈ |B| is such that ϕ(v) is not well-defined. For this
to be the case, we must have that ϕ(fB(v)) = ϕ(gB(v)) ∈ {t0, t1, t2, t3}
and that ϕ(fB(v)) has height 0. If ϕ(fB(v)) = t0 then, by construction,
(fB(v), gB(v))0 ∈ P and the clause {¬XfB(v),¬XgB(v)} is in π. Thus, either

τ(XfB(v)) or τ(XgB(v)) is false; that is, either ϕ(fB(v)) or ϕ(gB(v)) is t2,

which yields a contradiction. The cases when ϕ(fB(v)) = t1, t2 and t3 are
similar. Consequently, ϕ is well-defined.

Suppose that v, w ∈ |B| are such that fB(v) = w and that v has non-zero
in-degree. Suppose further that the parity of v is {0, 2}. Thus, (v, w)f is
in P and the clauses {Xv,¬Xw} and {¬Xv, Xw} are in π. Hence, τ(Xv) =
τ(Xw) and by the construction of ϕ, either (ϕ(v) = t0 and ϕ(w) = t1)
or (ϕ(v) = t2 and ϕ(w) = t3). In both cases, fT (ϕ(v)) = ϕ(w). Similar
reasoning can be applied should the parity of v be {1, 3}. Hence, ϕ respects
the function fB; and identical reasoning shows that ϕ respects the function
gB too. The arguments above showing that ϕ is well-defined imply that ϕ
is a homomorphism from B to T .

Conversely, if there exists a homomorphism ϕ : B → T then reversing
the above procedure and arguments yields a satisfying truth assignment for
the clauses of π.

It only remains to deal with any constants which might appear in B.
The appearance of constants further constrains the possible homomorphisms
from B to T , and this can be reflected by including suitable clauses in π. For
example, suppose that: CB = v; v has non-zero in-degree and parity {0, 2};
and CT = t0. In this case we include a clause {Xv} (which forces τ(Xv)
to be true in any satisfying truth assignment on the clauses of π; and so
ϕ(v) to be t0, according to our construction). Alternatively, suppose that:
CB = v; v has zero in-degree; and CT = t1. In this case we include clauses
{¬XfB(v)} and {XgB(v)}.

Thus, the problem of deciding whether there is a homomorphism from
B to T taking u to some fixed ti, where i ∈ {0, 1, 2, 3}, can be reduced
to the satisfiability problem for clauses of size at most 2, which is solvable
in polynomial-time (see, for example, [18]). Hence, the problem of deciding
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whether there is a homomorphism from A to T can be solved in polynomial-
time.

Now suppose that fT and gT are the reverse of one another where the
corresponding directed cycles are (t0, t1, t2, t3) and (t3, t2, t1, t0), respectively,
and where t0 and t2 have height at most 2 and t1 and t3 have height 0. Let A
be some σ-structure and let B be the connected component of the digraph A
containing some fixed element u ∈ |A| which lies on a cycle in the digraph A
(B may also have some constants). Suppose that there is a homomorphism
ϕ : A → T taking u to ti, for some fixed i ∈ {0, 1, 2, 3}. Either such a
ϕ can easily be verified not to exist or the values under ϕ of many of the
elements of |B| are effectively fixed at some value from {t0, t1, t2, t3}(using
simple reasoning, like if ϕ(v) = t1 and fB(w) = v then ϕ(w) = t0). Let us
assume that such a partial homomorphism exists.

Let F ⊆ |B| be the set of elements whose values under ϕ are fixed. Note
that given v, v′, v′′ ∈ |B| \ F , it cannot be the case that v, v′ and v′′ are all
distinct and (v, v′) and (v′, v′′) are edges in the digraph B (as this would
mean that the value ϕ(v′′) is effectively fixed). So, partition |B| \F into the
disjoint sets: L1, consisting of those elements v for which either fB(v) or
gB(v) is in F ; and L2, consisting of those elements v for which neither fB(v)
nor gB(v) is in F .

Suppose that v ∈ L1. Note that either fB(v) 6∈ F or gB(v) 6∈ F (as
otherwise the value of ϕ(v) would effectively be fixed). Suppose, for example,
that fB(v) ∈ F . Then it must be the case that ϕ(fB(v)) ∈ {t0, t2}. If
ϕ(fB(v)) = t0 then ϕ(v) must either be t3 or in the pendant in-tree with root
t0 (where there is an edge (ϕ(v), t0) in the digraph T ); and if ϕ(fB(v)) = t2
then ϕ(v) must either be t1 or in the pendant in-tree with root t2 (where
there is an edge (ϕ(v), t2) in the digraph T ). In the former case, label v with
the set {t3, p0}; and in the latter case, with the set {t1, p2}. Do likewise for
every element of L1: the label sets are drawn from {t3, p0}, {t1, p2}, {t3, p2}
and {t1, p0}. Note that this process might even enable us to deduce that
the partial homomorphism ϕ cannot be extended to a full homomorphism
(assume in the following that this is not the case).

As B must necessarily be bipartite if there is a homomorphism to T , we
may assume that there are no functional relationships between the elements
of L1. Hence, we may assume that in the digraph B, there is an edge from
every element of L1 to an element of L2. In the same vein, we may assume
that there are no functional relationships between elements of L2; and so
both fB(v) and gB(v) are in L1, for every element v ∈ L2.

We shall now construct a conjunction π of clauses of at most 2 literals
(over a set of boolean variables) in such a way that π is satisfiable if, and only
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if, the partial homomorphism ϕ can be extended to a full homomorphism
from B to T . Suppose that the element v ∈ L1 is labelled with the set
{t3, p0}, for example. Then the clauses

{tv3, p
v
0} and {¬tv3,¬p

v
0}

are clauses in the conjunction; and we add clauses likewise for every labelling
of every element of L1. Note that any truth assignment satisfying both
{tv3, p

v
0} and {¬tv3,¬p

v
0} makes exactly one of tv3 and pv0 true; which we will

interpret as meaning that element v is mapped to t3 or an element in the
pendant in-tree with root t0 (where there is an edge (ϕ(v), t0)).

Let v ∈ L1 be such that, for example, v is labelled with the set {t3, p0}
and gB(v) = w, where w ∈ L2. Include in π the clauses

{¬tv3, t
w
2 }, {¬p

v
0, t

w
0 }, {t

w
2 , t

w
0 } and {¬tw2 ,¬t

w
0 }

to reflect the facts that: if v maps to t3 then w must map to t2; if v maps
to an element in the pendant in-tree with root t0 (where there is an edge
(ϕ(v), t0)) then w must map to t0; and w must map to either t0 or t2. Do
likewise for every edge in the digraph B from an element of L1 to an element
of L2.

Let v ∈ L2 be such that, for example, gB(v) = w, where w ∈ L1 and w

is labelled with the set {t3, p0}. Include in π the clauses

{¬tw3 , t
v
0}, {¬p

w
0 , q

v
0}, {t

v
0, q

v
0} and {¬tv0,¬q

v
0}

to reflect the facts that: if w maps to t3 then v must map to t0; if w maps
to an element in the pendant in-tree with root t0 (where there is an edge
(ϕ(v), t0)) then v must map to an element in the pendant in-tree with root
t0 (where there is a path of length 2 to the root t0); and v must map to
either t0 or an element in the pendant in-tree with root t0 (where there is a
path of length 2 to the root t0). Do likewise for every edge in the digraph
B from an element of L2 to an element of L1.

Finally, if the pendant in-tree in T with root t0 (resp. t2) has height
0 then assign every boolean variable of the form pv0 and qv0 (resp. pv2 and
qv2) the value false; and if the pendant in-tree in T with root t0 (resp.
t2) has height 1 then assign every boolean variable of the form qv0 (resp.
qv2) the value false (this restricts the maps allowed). Denote the resulting
conjunction by π.

Let s0 be an element in T in the pendant in-tree with root t0 for which
(s0, t0) is an edge in the digraph T (if such an element exists); and let r0
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be an element in T in the pendant in-tree with root t0 for which (r0, s0) is
an edge in the digraph T (if such an element exists). Nodes s2 and r2 are
defined likewise.

Suppose that there is a satisfying truth assignment of π. Interpreting
this truth assignment as described above, except that if pv0 (pv2, q

v
0 , qv2) is

set at true under this assignment then map the element v to the element s0
(resp. s2, r0, r2), yields an extension of our partial homomorphism ϕ which
obeys all functional dependencies in B, i.e., a homomorphism from B to T .
Conversely, suppose that there is an extension of our partial homomorphism
ϕ to a homomorphism from B to T . Then there exists an extension of our
partial homomorphism ϕ to a homomorphism ϕ′ from B to T so that all
elements of |B| \ F that are mapped to an element of |T | \ {t0, t1, t2, t3} are
mapped to one of the elements of {s0, s2, r0, r2} (this is because the constants
in B and T have no real role to play as to whether an extension of ϕ exists or
not). Consequently, such a homomorphism ϕ′ immediately translates into
a satisfying truth assignment of π. As the satisfiability problem for clauses
of size at most 2 is solvable in polynomial-time (see, for example, [18]), as
to whether there is a homomorphism from B to T , taking u to ti, can be
decided in polynomial-time. We repeat the above for each element ti, for
i = 0, 1, 2, 3 (with u fixed), and for each connected component of A (with
suitably chosen fixed element) to obtain our polynomial-time algorithm.

It turns out that the reversing problems not covered by Theorem 17 are
NP-complete (via polynomial-time reductions).

Theorem 18 The problem Hom-Alg2(T ), where fT and gT are the reverse

of one another, is NP-complete if one of the following conditions holds:

(a) the directed cycles (t0, t1, . . . , tl−1) and (tl−1, tl−2, . . . , t0) correspond-

ing to fT and gT , respectively, are such that t0 has height 1 and either

l = 3 or l ≥ 5;

(b) the directed cycles (t0, t1, t2, t3) and (t3, t2, t1, t0) corresponding to fT

and gT , respectively, are such that t0 has height 3; or

(c) the directed cycles (t0, t1, t2, t3) and (t3, t2, t1, t0) corresponding to fT

and gT , respectively, are such that t0 has height 2 and t1 has height at

least 1.

Proof (a) Consider the retract problem for an undirected cycle of length
l, RETCYC(l) for short, where: an instance is an undirected graph G and a
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subgraph H, a cycle of length l; and a yes-instance is an instance for which
there is a homomorphism ϕ from G to H such that ϕ(u) = u, for every vertex
of the cycle H. This problem is known to be NP-complete when l = 3 or
when l ≥ 5 (the case for cycles of odd length is a special case of the proof
of the main result in [13]; and the case for cycles of even length at least 6
can be found in [6, 4]). We shall describe a polynomial-time reduction from
RETCYC(l) to Hom-Alg2(T ).

Let (G,H) be an instance of RETCYC(l). We shall construct a λ2-
structure F corresponding to (G,H). Actually, our structure F will be only
partially defined; but by proceeding as we did in the proof of Theorem 13, we
can obtain a fully defined λ2-structure for which there is a homomorphism
to T if, and only if, there is a homomorphism from the partially defined
structure to T . Take a set S of elements isomorphic to the vertex set of G.
For every element of s ∈ S, introduce l additional elements us0, u

s
1, . . . , u

s
l−1

and define f(usi ) = us(i+1)mod l, for each i ∈ {0, 1, . . . , l − 1}. Furthermore,

define f(s) = us0 (all elements so introduced are distinct). Note that this
has the effect that in any homomorphism from the eventual structure F to
T , every element so far introduced must map to ti or to some element t for
which fT (t) = gT (t) = ti, for some i ∈ {0, 1, . . . , l − 1}.

Let u and v be distinct elements of S. We now detail three constructions
to be subsequently used in order to obtain our eventual structure F . Note
that in each of these constructions, we introduce additional elements into the
domain of F . Using the above construction, we may clearly assume that in
any homomorphism from the eventual structure F to T , every such element
introduced must map to ti or to some element t for which fT (t) = gT (t) = ti,
for some i ∈ {0, 1, . . . , l − 1}.

Construction 1 By add the α-edge (u, v) we mean introduce additional el-
ements u′ and v′ to |F| and define that gF (u′) = u, gF (v′) = v and
fF (u′) = v′. This ensures that in any homomorphism from the eventual
structure F to T , u and v must map to some ti and tj , respectively, where:
if ti has height 0 then j = (i + 1) mod l is the only possibility; and if ti
has non-zero height then both j = (i − 1) mod l and j = (i + 1) mod l
are possibilities. Furthermore, any i and j are viable (subject to the above
constraints).

Construction 2 Consider the directed cycle (t0, t1, . . . , tl−1) in T (corre-
sponding to fT ). Suppose that there is a path of length r in this cycle
from ti such that some element tj on this path has height 1. If this is the
case then we say that ti can r-see an element of height 1. Let r be the
smallest non-negative integer with the property that every ti can r-see an

40



element of height 1 but, if r 6= 0, there is some element tj which cannot
(r − 1)-see an element of height 1. If r > 0 then fix j0 as some index for
which tj0 cannot (r − 1)-see an element of height 1.

By add the β-edge (u, v) we mean introduce additional elements so that
there is a path of (r+ 1) α-edges from u to some (new) element w, followed
by a path of r g-edges from w to v (a g-edge is just a pair of elements u′ and
v′ for which gF (u′) = v′, and similarly for an f -edge: if r = 0 then u = w).
This ensures that in any homomorphism from the eventual structure F to
T , it is possible for u to map to any ti and for v to map to t(i−1)mod l and
t(i+1)mod l: furthermore, these are the only two possibilities if i = j0. Note
that any i and j are viable (subject to the above constraints).

Construction 3 By add the γ-edge (u, v) we mean introduce additional sets
of elements Γp so that for every p ∈ {0, 1, . . . , l − 1}: there is an f -edge
from a new element up0 to u; there is a path of p f -edges from u to some
(new) element wp; followed by a β-edge (wp, xp), where xp is a new element;
followed by a path of p g-edges from xp to v; and there is an f -edge from
a new element vp0 to v (the different sets Γp of new elements introduced are
disjoint). It is certainly the case that there is a homomorphism from any
γ-edge to T ; and our construction ensures that in any homomorphism from
the eventual structure F to T , u and v must map to some elements ti and
tj . However, we can say more.

Suppose that u and v map to elements ti and tj , respectively, in some
eventual homomorphism ϕ from the eventual structure F to T . Consider
the distinguished element tj0 . There exists a value p so that the element
wp ∈ Γp must map to tj0 via ϕ; and consequently, from above, xp must map
to either t(j0−1)mod l or t(j0+1)mod l, with both these values possible. Thus, v
must map to either t(i−1)mod l or t(i+1)mod l, with both these values possible.
That is, either j = (i − 1) mod l or j = (i + 1) mod l; and any i and j are
viable (subject to the above constraints).

We now extend F using these constructions (recall that F ’s current state
is as it was prior to the descriptions of our constructions). For every pair
of elements u, v ∈ S for which (u, v) is an undirected edge of G \ H, add
the γ-edge (u, v) to F (to be more specific, add either the γ-edge (u, v) or
the γ-edge (v, u)). The fact that there is a homomorphism of G to H fixing
each vertex of H if, and only if, there is a homomorphism from F to T , is
immediate from our constructions; and this, allied with the fact that F can
be constructed from (G,H) in polynomial-time, yields the result.

(b) Consider some instance A of the problem 1-in-3-SAT; that is, a col-
lection C1, C2, . . . , Cm of subsets of {X1, X2, . . . , Xn} of size 3. We shall
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describe an instance F of Hom-Alg2(T ), where T is as in the statement of
the theorem.

There are elements c0, c1, c2 and c3 in |F| for which:

fF (c0) = c1; f
F (c1) = c2; f

F (c2) = c3; and fF (c3) = c0.

There are elements d0, d1 and d2 for which:

fF (d0) = d1; f
F (d1) = d2; and fF (d2) = gF (d2) = c0.

In particular, we may assume that any eventual homomorphism from F to
T must map c0 to t0.

For every i ∈ {1, 2, . . . ,m}, there is an element Ci in |F| as well as other
elements so that fFgFfF (Ci) = c0 (all nodes so introduced are distinct).
This has the effect that in any eventual homomorphism from F to T , the
element Ci must be mapped to:

(1) an element not in the directed cycle in T but for which in the digraph
T there is a path of length 3 to t0 where no element on this path is in
the directed cycle apart from t0;

(2) an element not in the directed cycle in T but for which in the digraph
T there is an edge to t0; or

(3) the element t3.

For every j ∈ {1, 2, . . . , n}, introduce an elementXj to |F|. Fix an order-
ing on the Boolean variables in each clause in A. If clause Ci = {X1

i , X
2
i , X

3
i }

then introduce additional elements so that:

fFfFgF (Ci) = X1
i ; f

FfFfFfFfF (Ci) = X2
i ; and gFfFgFfFgF (Ci) = X3

i

(again, all nodes so introduced are distinct). Note that the resulting λ2-
structure F is partially defined. This does not create any difficulties as,
again, by proceeding as we did in the proof of Theorem 13, we can obtain a
fully defined λ2-structure for which there is a homomorphism to T if, and
only if, there is a homomorphism from the partially defined structure to T .

Let ϕ be a homomorphism from F to T ; and let Ci = {X1
i , X

2
i , X

3
i }

be a clause of A, for some i ∈ {1, 2, . . . ,m}. From above, there are three
different possibilities for ϕ(Ci) (here, Ci refers to the element Ci of |F| and
not the clause Ci of A). In case (1), (ϕ(X1

i ), ϕ(X2
i ), ϕ(X3

i )) = (t0, t2, t0);
in case (2), (ϕ(X1

i ), ϕ(X2
i ), ϕ(X3

i )) = (t2, t0, t0); and in case (3), (ϕ(X1
i ),
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ϕ(X2
i ), ϕ(X3

i )) = (t0, t0, t2). Interpreting t0 as true and t2 as false yields a
satisfying truth assignment for A.

Conversely, if there is a satisfying truth assignment for A then applying
reasoning similar to that above yields a homomorphism from F to T . As F
can be constructed in polynomial-time, the result follows.

(c) Consider some instance A of the problem 1-in-3-SAT; that is, a col-
lection C1, C2, . . . , Cm of subsets of {X1, X2, . . . , Xn} of size 3. We shall
describe an instance F of Hom-Alg2(T ), where T is as in the statement of
the theorem.

There are elements c0, c1, c2 and c3 for which

fF (c0) = c1; f
F (c1) = c2; f

F (c2) = c3; and fF (c3) = c0.

There are elements d0, d1 and d2 for which

fF (d0) = d1; f
F (d1) = gF (d1) = c0; and fF (d2) = gF (d2) = c1.

In particular, we may assume that any eventual homomorphism from F to
T must map c0 to t0.

For every i ∈ {1, 2, . . . ,m}, there is an element Ci in |F| as well as other
elements so that gFfF (Ci) = c0 (all nodes so introduced are distinct). This
has the effect that in any eventual homomorphism from F to T , the element
Ci must be mapped to:

(1) an element not in the directed cycle in T but for which in the digraph
T there is a path of length 2 to t0 where no element on this path is in
the directed cycle apart from t0;

(2) an element not in the directed cycle in T but for which in the digraph
T there is an edge to t1; or

(3) the element t0.

For every j ∈ {1, 2, . . . , n}, introduce an element Xj into |F|. Fix an
ordering on the Boolean variables in each clause in A. If clause Ci =
{X1

i , X
2
i , X

3
i } then introduce additional elements so that:

gFgF (Ci) = X1
i ; f

FfFfFfF (Ci) = X2
i ; and fFgF (Ci) = X3

i

(again, all nodes so introduced are distinct). Note that the resulting λ2-
structure F is partially defined. This does not create any difficulties as,
again, by proceeding as we did in the proof of Theorem 13, we can obtain a
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fully defined λ2-structure for which there is a homomorphism to T if, and
only if, there is a homomorphism from the partially defined structure to T .

Let ϕ be a homomorphism from F to T ; and let Ci = {X1
i , X

2
i , X

3
i } be a

clause of A, for some i ∈ {1, 2, . . . ,m}. From above, there are three different
possibilities for ϕ(Ci). In case (1), (ϕ(X1

i ), ϕ(X2
i ), ϕ(X3

i )) = (t0, t2, t0);
in case (2), (ϕ(X1

i ), ϕ(X2
i ), ϕ(X3

i )) = (t0, t0, t2); and in case (3), (ϕ(X1
i ),

ϕ(X2
i ), ϕ(X3

i )) = (t2, t0, t0). Interpreting t0 as true and t2 as false yields a
satisfying truth assignment for A.

Conversely, if there is a satisfying truth assignment for A then applying
reasoning similar to that above yields a homomorphism from F to T . As F
can be constructed in polynomial-time, the result follows.

An immediate corollary from Theorems 17 and 18 is the following di-
chotomy result.

Corollary 19 Every reversing problem is either solvable in polynomial-time

or NP-complete.

Proof Consider some reversing problem Hom-Alg2(T ). Let l denote the
length of the directed cycles corresponding to the unary functions fT and
gT .

If l = 1 or l = 2 then fT and gT are identical; and part (b) of Theorem 17
yields that our reversing problem is solvable in polynomial-time.

If l = 3 or l ≥ 5 and, further, every element on the directed cycles
corresponding to fT and gT has height 0 then part (a) of Theorem 17
yields that our reversing problem is solvable in polynomial-time.

If l = 3 or l ≥ 5 and, further, some element on the directed cycles
corresponding to fT and gT has height greater than 0 then part (a) of
Theorem 18 yields that our reversing problem is NP-complete.

If l = 4 then part (c) of Theorem 17 and parts (b) and (c) of Theorem 18
cover all other cases.

7 Adding lists

Consider some structure T . A list in T is a unary relation over |T | (de-
scribing a set of elements of |T |). In this section we consider the addition
of a list or lists to templates. We shall show that some of our results can be
extended when the templates are augmented with lists.

We begin with some definitions. Let H be some digraph. A choice

majority function χ is a ternary function on |H| with the property that if
χ(x, y, z) = w and χ(x′, y′, z′) = w′ then:
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(i) if (x, x′), (y, y′) and (z, z′) are edges of H then (w,w′) is too;

(ii) w ∈ {x, y, z}; and

(iii) if two out of x, y and z are equal to the same value v then w = v.

We can define a choice majority function for structures over arbitrary re-
lational signatures in a similar way (we only remark that every one of the
structures relations must satisfy condition (i) of the definition). A crucial
result in what follows will be Theorem 25 of [10] where it is proven that if
T is a relational structure which admits a choice majority function then the
problem CSP(T ) is uniformly polynomial-time solvable.

Let H be a digraph. We say that H is levelled if we can assign a non-
negative integer lev(v) to each vertex v so that for every edge (u, v) of H,
lev(u) = lev(v) + 1. We call lev(v) the level of v. We say that a levelled
digraph is orderly levelled if every vertex v can be assigned an integer ord(v),
the order , so that: if u and v are distinct vertices then ord(u) 6= ord(v); and
if (u, v) and (u′, v′) are edges of H with lev(u) = lev(u′) and ord(u) < ord(u′)
then ord(v) ≤ ord(v′). We say that a digraph H is almost orderly levelled

if there exists an orderly levelled digraph H′ such that H is obtained from
H′ by identifying two vertices u and v in H′, where: u is the unique vertex
of H′ with lev(u) = 0; and if lev(v) = m, with m > 0, then v has the
smallest order from all vertices of level m. (The above properties are similar
to properties defined in [12].)

We begin by considering the problem CSP(T ), where T is over the sig-
nature consisting of one unary function symbol and an arbitrary number
of unary relation symbols; that is, an extension of the scenario studied in
Section 3 (recall that in the absence of any unary relation symbols, CSP(T )
is in L). Actually, the consideration of such a problem CSP(T ) is really an
extension of the scenario in part (b) of Theorem 17, as a constant can be
modelled as a unary relation containing exactly one element.

Referring to the proof of Theorem 17, one can easily verify that the
proofs of parts (a) and (c) of that theorem hold when the signature con-
tains, in addition, an arbitrary number of unary relation symbols (in brief,
the proofs of (a) and (c) are based around a systematic construction of
a homomorphism, where the homomorphism is incrementally constructed
according to ‘deterministic’ reasoning, and the presence of lists just rules
out some potential homomorphisms). However, the proof of part (b) of
Theorem 17 does not hold when there are unary relation symbols present.
Nevertheless, it turns out that there is an alternative proof of the analogue
to part (b) of Theorem 17 when there are unary relation symbols present.
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Theorem 20 Let H be a digraph.

(a) If H is almost orderly levelled then H admits a choice majority func-

tion.

(b) If H is the digraph of a unary function f then each connected compo-

nent of H is almost orderly levelled.

Consequently, if T is a σ-structure where σ consists of a unary function

and an arbitrary number of unary relations then the problem CSP(T ) can

be solved uniformly in polynomial-time.

Proof (a) Let H′ be an orderly levelled digraph such that H is obtained
from H′ by identifying the vertices u and v of H′, where u is the unique
vertex of level 0, and where lev(v) = m > 0 and v has the smallest order
from all vertices of level m. Let us order the set of pairs {(lev(v), ord(v)) :
v is a vertex of H′} lexicographically. Furthermore, we refer to the sets of
vertices whose levels differ by a multiple of m as layers.

Define the function χ(x, y, z) as follows.

(1) If x, y and z are in three different layers then χ(x, y, z) = x.

(2) If exactly two of x, y and z are in different layers then χ(x, y, z) is the
value from this pair of values occurring first in the list x, y, z.

(3) If x, y and z are in the same layer then χ(x, y, z) is the value w out
of {x, y, z} for which (lev(w), ord(w)) is neither the minimum nor the
maximum out of {(lev(x), ord(x)), (lev(y), ord(y)), (lev(z), ord(z))}.

For any triple of vertices (x, y, z) of H′, define the type of (x, y, z) as (1), (2)
or (3), according to the definition of χ.

We shall now verify that χ is a choice majority function (clearly, it
suffices to verify condition (i) of the definition). Let (x, x′), (y, y′) and
(z, z′) be edges of H′. First, note that the type of (x, y, z) is identical to
the type of (x′, y′, z′); and that if (x, y, z) and (x′, y′, z′) have type (1) or (2)
then trivially (ϕ(x, y, z), ϕ(x′, y′, z′)) is an edge of H′. Suppose that both
(x, y, z) and (x′, y′, z′) have type (3). Consider, for example, (x, x′) and
(y, y′). Suppose that (lev(x), ord(x)) ≤ (lev(y), ord(y)). If lev(x) < lev(y)
then trivially lev(x′) < lev(y′), with (lev(x′), ord(x′)) < (lev(y′), ord(y′)). If
lev(x) = lev(y) and ord(x) < ord(y) then, by definition, ord(x′) ≤ ord(y′),
with (lev(x′), ord(x′)) ≤ (lev(y′), ord(y′)). Consequently, (lev(x), ord(x)) ≤
(lev(y), ord(y)) implies that (lev(x′), ord(x′)) ≤ (lev(y′), ord(y′)), and so
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(χ(x, y, z), χ(x′, y′, z′)) is an edge of H′. Thus, χ is a choice majority function
for H′.

Consider the digraph H obtained from H ′. Every vertex of H inherits
its layer from that in H ′ (recall, H is formed from H ′ by identifying u and
v, and u and v are in the same layer). Within any layer, the vertices of H
inherit their relative order from that in H ′ (within their layer in H ′, u is the
first vertex in the order with v the second). Referring to the above proof,
the definition of the function χ for H is identical to that of the definition
of χ for H ′. Moreover, the proof above applies to the function χ for H and
thus χ is a choice majority function for H.

(b) Assume that H is connected. Let x be any vertex of H belonging
to the unique cycle in the digraph H, which has length m ≥ 1, say, and let
y = f(x) (note that y may be identical to x). Define the digraph H′ by
including a new vertex x′, removing the edge (x, y) and including the edge
(x′, y). So, x′ has in-degree 0 and x has out-degree 0 in H′; and H′ is an
in-tree with root x. Define lev(z) to be the depth of any vertex z in the
in-tree H′ (rooted at x); and define ord(z) to be the order z is visited in a
breadth-first search of H′ starting at the root x, taking care to ensure that
x′ has the least order of all vertices whose level is m, where m is the length
of the unique cycle. Thus, H′ is orderly levelled and H is almost orderly
levelled.

Now, consider some instance F of the problem CSP(T ), where T is a
σ-structure and σ consists of a unary function f and an arbitrary number
of unary relations. Suppose, for the moment, that the digraphs F and T
are both connected (that is, the digraphs described by fF and fT are both
connected). Let F1 and T1 be the restrictions of F and T to the signature
λ1 = 〈f〉, respectively. By (a) and (b), T1 is almost orderly levelled and T1

admits a choice majority function. By Theorem 25 of [10], if any digraph
H admits a choice majority function then the problem CSP(H′), where H′

is H augmented with an arbitrary number of lists, can be solved in time
polynomial in the size of an instance of the problem and also the size of
H. Hence, as to whether there is a homomorphism from F1 to T1 can be
determined in time polynomial in |F1| and |T1|.

There is a homomorphism from F to T if, and only if, there is a homo-
morphism from every connected component of F to some connected com-
ponent of T . Thus, we obtain that the problem CSP(T ) can be solved in
time polynomial in both the size of the instance and the size of T .

Note that even though we have shown, in Section 3, that Hom-Alg1(T ) is
in L, we do not know whether the analogous problem where lists are present
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is in L: all we have been able to show is that it is in P.
The fact that the proof of part (c) of Theorem 17 holds in the presence

of lists, and the trivial observation that the proof of Theorem 18 holds in
the presence of lists, yield the following corollary.

Corollary 21 Let T be a structure over the signature consisting of two

unary function symbols and an arbitrary number of unary relation symbols,

where the two functions of T are the reverse of one another. The problem

CSP(T ) is either solvable in polynomial-time or NP-complete. That is,

every reversing problem with lists is either solvable in polynomial-time or

NP-complete.

Note that Theorem 20 can be applied to other classes of digraphs. An
unbalanced oriented cycle is a cycle with each edge oriented in some direction
but which is not a levelled digraph. It was shown in [6] that unbalanced
oriented cycles are almost orderly levelled digraphs. Thus, Theorem 20 and
the result from [10] cited in the proof of Theorem 20 yield the following
corollary.

Corollary 22 Let T be a structure over the signature consisting of a binary

relation symbol and an arbitrary number of unary relation symbols, where

the digraph described by the binary relation is an unbalanced oriented cycle.

The problem CSP(T ) can be solved uniformly in polynomial-time.

We end this section by considering constraint satisfaction problems with
a template T , over some signature σ, but where any instance of the problem
is a σ-structure A augmented with a list Uu of elements of |T |, for every
element of u ∈ |A|. Such an instance is a yes-instance if there exists a homo-
morphism ϕ : A → T for which ϕ(u) ∈ Uu, for every u ∈ |A|. Essentially,
the lists attached to A restrict the set of potential homomorphisms. We
denote the above problem by CSP(T + all lists).

A digraph H is N -free if it does not have vertices x, x′, y and y′, with
x 6= x′ and y 6= y′, such that (x, y), (x, y′) and (x′, y′) are edges of H.

Theorem 23 Let T be over a structure σ which consists of the binary re-

lation symbols H1, H2, . . . , Hr, where r ≥ 1.

(a) If T admits a choice majority function then the problem CSP(T +
all lists) can be solved in polynomial-time.

(b) If the digraph described by HT
i is N -free, for all i ∈ {1, 2, . . . , r},

and T does not admit a choice majority function then the problem

CSP(T + all lists) is NP-complete.
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Furthermore, every digraph associated with a unary function is N -free. Con-

sequently, if T ′ is a structure over the signature consisting of the unary

function symbols f1, f2, . . . , fr then the problem CSP(T ′ + all lists) is either

solvable in polynomial-time or NP-complete.

Proof (a) This follows immediately from Theorem 25 of [10].
(b) Suppose that for each i ∈ {1, 2, . . . , r}, the digraph described by HT

i

is N -free. We shall now define a particular σ-structure F with attached lists
(henceforth, when we refer to F we shall mean F with these attached lists).
The domain of F consists of {(u, v, w) : u, v, w ∈ |T |}.

• If u, v, w ∈ |T | are all distinct then the list associated with the element
(u, v, w) of |F|, that is, U(u,v,w), is defined as {u, v, w}.

• If u, v, w ∈ |T | are such that at least two of {u, v, w} are identical, with
this value being x, then the list associated with the element (u, v, w)
of |F|, that is, U(u,v,w), is defined as {x}.

• For each i ∈ {1, 2, . . . , r}, if u, v, w, u′, v′, w′ ∈ |T | then ((u, v, w),
(u′, v′, w′)) ∈ HF

i if, and only if, (u, u′), (v, v′), (w,w′) ∈ HT
i (note

that if ((u, v, w), (u′, v′, w′)) ∈ HF
i then, since HT

i is N -free, the only
pairs in HT

i where the first component is in {u, v, w} and the second
component is in {u′, v′, w′} are (u, u′), (v, v′) and (w,w′)).

The construction of F is such that there is a correspondence between the
set of homomorphisms from F to T and the set of choice majority functions
admitted by T . To see this, note that the list associated with any element
(u, v, w) ∈ |F| contains the potential images of the element (u, v, w) under
some choice majority function (see conditions (ii) and (iii) of the definition
of a choice majority function); and the relations HF

1 , H
F
2 , . . . , H

F
r ensure

that condition (i) of the definition of a choice majority function is adhered
to.

There is a straightforward algorithm to determine whether there is a
homomorphism from F to T ; and consequently whether T admits a choice
majority function. We think of HF

1 , H
F
2 , . . . , H

F
r as describing digraphs

super-imposed on the same set of vertices: so, let us denote the resulting
underlying undirected graph by G. Our algorithm can be described as a
repeated application of the procedure below (until it can no longer be ap-
plied).

Take some (u, v, w) ∈ |F|, where u, v and w are all distinct. If there is a
path of (undirected) edges in G from (u, v, w) to some vertex (v′, v′, u′)
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(resp. (v′, u′, v′), (u′, v′, v′)), where u′ 6= v′ and where each vertex on
the path apart from the last is such that all components are distinct,
then remove the element w (resp. v, u) from U(u,v,w).

The algorithm is such that if some list U(u,v,w) becomes empty, through
repeated applications of the above procedure, then the algorithm outputs
that no homomorphism exists; otherwise the output is that a homomorphism
does exist.

If our algorithm responds that no homomorphism exists then we must
verify whether this is truly the case. There is clearly a sub-tree of G
(not necessarily induced) consisting of three paths from a vertex (u, v, w),
where u, v and w are all distinct, to vertices (v0, v0, u0), (v1, u1, v1) and
(u2, v2, v2), where ui 6= vi, for i = 0, 1, 2, and where these paths may have
vertices in common. Any homomorphism ϕ from F to T must be such that
ϕ((v0, v0, u0)) = v0; and so if (u′, v′, w′) is the penultimate vertex on the
path from (u, v, w) to (v0, v0, u0) (hence, u′, v′ and w′ are all distinct) then
it cannot be the case that ϕ((u′, v′, w′)) = w′, as this would imply that either
(v′, v0), (w′, u0) and (w′, v0) are in HF

i , for some i ∈ {1, 2, . . . , r}, or (v0, v
′),

(u0, w
′) and (v0, w

′) are in HF
i , for some i ∈ {1, 2, . . . , r} (and so contradict

the fact that the digraph described by each HF
i is N -free). Reasoning sim-

ilarly back up the path to vertex (u, v, w) yields that it cannot be the case
that ϕ((u, v, w)) = w. Analogous arguments for the paths from (u, v, w) to
(v1, u1, v1) and (u2, v2, v2) yield that the algorithm’s response is correct.

Conversely, suppose that our algorithm responds that a homomorphism
exists. Then, on termination of our algorithm, the list associated with every
vertex is non-empty. Let (u, v, w), (u′, v′, w′) ∈ |F| be such that u, v and w
are all distinct and u′, v′ and w′ are all distinct. Clearly: u 6∈ U(u,v,w) if,
and only if, u′ 6∈ U(u′,v′,w′); v 6∈ U(u,v,w) if, and only if, v′ 6∈ U(u′,v′,w′); and
w 6∈ U(u,v,w) if, and only if, w′ 6∈ U(u′,v′,w′). Thus, define the function ϕ from
|F| to T as follows. If (u, v, w) ∈ |F| then define ϕ((u, v, w)) as the first
element (with respect to the order u, v, w) from U(u,v,w) on termination.
This function ϕ is well-defined and, by construction of F , a homomorphism
from F to T . Hence, our algorithm correctly determines whether there
exists a homomorphism from F to T .

Now suppose that T does not admit a choice majority function. From
above, there is a σ-structure H corresponding to the undirected tree in G,
alluded to above, which consists of three paths from a vertex (w0, w1, w2),
where w0, w1 and w2 are all distinct (and were formerly called u, v and w),
to vertices x0 = (v0, v0, u0), x1 = (v1, u1, v1) and x2 = (u2, v2, v2), where
ui 6= vi, for i = 0, 1, 2. Amend H so that the list associated with element x0

50



(resp. x1, x2) is {u0, v0} (resp. {u1, v1}, {u2, v2}).

Lemma 24 (a) If ϕ : H → T then:

– ϕ(x0) = u0, ϕ(x1) = v1 and ϕ(x2) = v2;

– ϕ(x0) = v0, ϕ(x1) = u1 and ϕ(x2) = v2; or

– ϕ(x0) = v0, ϕ(x1) = v1 or ϕ(x2) = u2.

(b) There exist homomorphisms ϕ : H → T extending the partial maps:

– ϕ(x0) = u0, ϕ(x1) = v1 and ϕ(x2) = v2;

– ϕ(x0) = v0, ϕ(x1) = u1 and ϕ(x2) = v2; and

– ϕ(x0) = v0, ϕ(x1) = v1 or ϕ(x2) = u2.

Proof (a) Suppose that ϕ : H → T . If ϕ(xi) = vi, for some i ∈ {0, 1, 2},
then by arguing as we did above when we proved our algorithm correct,
ϕ((w0, w1, w2)) 6= wi. Without loss of generality, suppose that ϕ(x0) = u0.
Let (u′, v′, w′) be the penultimate vertex on the path in G from (w0, w1, w2)
to (v0, v0, u0). As ϕ is a homomorphism and the digraph described by each
HF
i is N -free (see also the parenthetical remark made in the definition of

F , above), we must have that ϕ((u′, v′, w′)) = w′. Reasoning similarly back
up the path to (w0, w1, w2) yields that ϕ((w0, w1, w2)) = w2. Hence, again
by reasoning as we did when we proved our algorithm correct, we must have
that ϕ(x1) = v1 and ϕ(x2) = v2.

(b) Without loss of generality, suppose that ϕ is a partial map from |H|
to |T | such that ϕ(x0) = u0, ϕ(x1) = v1 and ϕ(x2) = v2. For any element
(u′, v′, w′) of |H|, define ϕ((u′, v′, w′)) = w′. By arguing as we have done
previously, this yields a homomorphism ϕ : H → T .

Now, consider the following σ-structure K1
0. Take the distinct set of

elements {pi, qi, zi : i = 0, 1, 2} and disjoint copies of H as follows.

• For each i ∈ {0, 1, 2}, include a copy of H by identifying the elements:
pi and x0; qi and x1; and zi and x2.

• For each i ∈ {0, 1, 2}, include a copy of H by identifying the elements:
pi and x0; qi−1 and x1; and zi−2 and x2, where subtraction is modulo
3.

• The list associated with element z0 is {u2}, with all other lists being
as in H (and so, for example: the list associated with p0, p1 and p2 is
{u0, v0}; the list associated with q0, q1 and q2 is {u1, v1}; and the list
associated with z1 and z2 is {u2, v2}).
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Rename the element p1 with the name y0 and the element q2 with the name
y1. The construction of K1

0 can be visualized as in Fig. 4.

Lemma 25 (a) If ϕ : K1
0 → T then:

– ϕ(y0) = u0 and ϕ(y1) = u1; or

– ϕ(y0) = v0 and ϕ(y1) = v1.

(b) There exist homomorphisms ϕ : K1
0 → T extending the partial maps:

– ϕ(y0) = u0 and ϕ(y1) = u1; and

– ϕ(y0) = v0 and ϕ(y1) = v1.

Proof Throughout we reason as we did earlier and in Lemma 24 but with
respect to the different copies of H, which are composed to form K1

0, and
using Lemma 24.
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Figure 4. The σ-structure K1
0.

(a) Suppose that ϕ : K1
0 → T . As ϕ(z0) = u2, we must have that

ϕ(q1) = v1 and ϕ(p2) = v0 (by considering the copy of H corresponding to
p2, q1 and z0). Also, ϕ(q0) = v1 and ϕ(p0) = v0 (by considering the copy of
H corresponding to p0, q0 and z0).

Suppose that ϕ(y0) = u0. Thus, ϕ(z1) = v2 and ϕ(z2) = v2. Hence,
ϕ(y1) = u1.

Suppose that ϕ(y0) = v0. Thus, ϕ(z1) = u2 and ϕ(y1) = v1 (and
ϕ(z2) = u2).
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(b) Follows by extending the partial maps of part (a) to homomorphisms
of K1

0 to T using Lemma 24.

There is an analogous result to Lemma 25 except where: the σ-structure
is K2

1; the elements of T are {u1, v1, u2, v2}; and the distinguished elements
are denoted y1 and y2 (instead of y0 and y1), respectively (so, K1

0 has dis-
tinguished vertices denoted y0 and y1, and K2

1 has distinguished vertices
denoted y1 and y2; with the y1 of K1

0 different from the y1 of K2
1).

Let A be an instance of 1-in-3-SAT; that is, a collection of clauses
C1, C2, . . . , Cm of 3 Boolean variables over the set {X1, X2, . . . , Xn}. Con-
struct the σ-structure B (where every element has an associated list) as
follows.

• For every i ∈ {1, 2, . . . , n}, there are elements X0
i , X

1
i and X2

i .

• For every i ∈ {1, 2, . . . , n}, introduce a copy of K1
0 (resp. K2

1) by
identifying X0

i with y0 and X1
i with y1 (resp. X1

i with y1 and X2
i with

y2).

• For every j ∈ {1, 2, . . . ,m}, if Cj = {Xj0 , Xj1 , Xj2} then introduce a
copy of H by identifying X0

j0
with x0, X

1
j1

with x1 and X2
j2

with x2.

All elements and copies so introduced are distinct (apart from where they
are identified) and the lists at each element are inherited from the par-
ticular copies of H, K1

0 and K2
1. The σ-structure B can be visualized

as in Fig. 5 where we show the portion of B corresponding to a clause
{Xj0 , Xj1 , Xj2}.

copy of H

... .........

Xj0
0

Xj0
1

Xj0
2

Xj1
0

Xj1
1

Xj1
2 Xj2

0
Xj2

1
Xj2

2

copy of K
0
1 copy of K

1
2

Figure 5. The σ-structure B.

Suppose that A is a yes-instance of 1-in-3-SAT; and so there is a satisfy-
ing truth assignment ψ, making exactly one variable in every clause true. If,
for some i ∈ {1, 2, . . . , n}: ψ(Xi) = true then set ϕ(X0

i ) = u0, ϕ(X1
i ) = u1

53



and ϕ(X2
i ) = u2; otherwise set ϕ(X0

i ) = v0, ϕ(X1
i ) = v1 and ϕ(X2

i ) = v2.
Lemmas 24 and 25 yield that the partial map ϕ can be extended to a homo-
morphism from B to T . Conversely, suppose that there is a homomorphism
ϕ from B to T . If, for some i ∈ {1, 2, . . . , n}: ϕ(X0

i ) = u0, ϕ(X1
i ) = u1 and

ϕ(X2
i ) = u2 then define ψ(Xi) = true; and if ϕ(X0

i ) = v0, ϕ(X1
i ) = v1 and

ϕ(X2
i ) = v2 then define ψ(Xi) = false (by Lemma 25, this truth assign-

ment ψ is well defined). By Lemma 24, ψ is a satisfying truth assignment.
Consequently part (b) of the theorem follows.

Every vertex in the digraph of a unary function has out-degree 1; and
so such a digraph is N -free. The result follows.

Note that, from Theorem 23, whether the problem CSP(T ′ + all lists) is
solvable in polynomial-time or NP-complete is solely determined by whether
T has a choice majority function or not.
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