

The attached material is posted on regulation2point0.org with permission.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6665279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

J O I N T C E N T E R
AEI-BROOKINGS JOINT CENTER FOR REGULATORY STUDIES

A Developers Bill of Rights:
What Open Source Developers Want in a Software License

Alan MacCormack*

Related Publication 07-12
May 2007

* This work draws in part from a study funded by the Microsoft Corporation. I am grateful to Lester Chen and
David Hering who assisted with data collection and analysis and provided many valuable suggestions for the
discussion. Working papers are in draft form. This working paper is distributed for purposes of comment and
discussion only. It may not be reproduced without permission of the copyright holder. Copies of working papers are
available from the author. Copyright © 2007 by Alan MacCormack.

Executive Summary

In this paper, we study open source developers’ perspectives on the nature and structure

of software licenses as well as the processes through which these licenses are designed. Recent
history has shown that software licensing approaches are critical to the dynamics of the software
industry and the open source ecosystem, and thus of interest to the many policy makers and
practitioners that follow this part of the global economy. The study is timely, since it informs the
debate on the revision of the GPL license, one of the most popular licenses in use. This revision
has the potential to shape the software industry for many years to come; hence it is important that
the governance process for this revision reflect the needs of the broader software community.

Our study employed structured interviews to capture data on open source developers’

opinions about software licenses. We focused on how license choices impact the relationship
that exists between open source and proprietary software. Our findings reveal that developers
are primarily interested in flexibility and choice when considering a licensing approach. Most
developers we interviewed used open source licenses to tap into the open source development
approach. They chose this option for flexibility in developing a great product, without
necessarily espousing any particular philosophy about how the software should be distributed.
Developers also generally valued flexibility in the choice of business model for distributing
software. The actions of the Free Software Foundation, which is revising the GPL, appear not to
reflect the opinions of the broader community, but the agenda of a small minority that may
represent as little as 10% of the open source developer community.

Sharing data on the needs and perceived rights of developers, both open source and

proprietary, will help the software community, industry experts and policymakers to champion a
more flexible and responsive approach to sharing and developing software. Policy makers
should work to preserve what has made the software ecosystem successful: innovation,
community input and involvement, and developer freedom of choice.

1

A Developers Bill of Rights: What Open Source Developers Want in a Software License

Alan MacCormack

Overview

Coverage of the debate on the new version of the GNU Public License (GPLv3) has

focused on the differing opinions among three groups: Project leaders like Linus Torvalds and

other top Linux kernel developers; Foundations like the Free Software Foundation (FSF) led by

Richard Stallman; and Large Technology Companies such as Sun, HP, IBM, and Novell. While

these three groups are certainly all affected by revisions to the GPL, open source developers are

also affected, but have been significantly under-represented in the discussion. In this paper, our

objective was to give developers a voice and bring their opinions into the debate. What does this

fourth constituency think about open source licenses, the upcoming release of the GPLv3, and

the philosophies surrounding open source software? To answer this question, our research

explored developers’ opinions through interviews. The interviews targeted influential

developers who are working on or had worked on a variety of open source projects including

JBoss, Apache, Linux Kernel and related tools, MySQL, Apache Geronimo, Snort, Zmanada,

XenSource, PostgreSQL and others.

At the center of the license discussion is the FSF, which drives the drafting process for

GPLv3. The FSF’s leader, Richard Stallman, describes his motivations as wanting “to encourage

free software to spread, replacing proprietary software that forbids cooperation, and thus make

our society better1.” He views each developer as responsible for protecting the rights of the

downstream users:

“Someone who uses your code in a non-free program is trying to deny freedom to others,

and if you let him do it, you're failing to defend their freedom.2”

Our findings found developers to be interested in flexibility, choice, and their own freedom

(“FCF”) and less dogmatic in their views. This desire for “FCF” stands out in our six key

findings.

1 Stallman, Richard. “Copyleft: Pragmatic Idealism,” http://www.fsf.org/licensing/essays/pragmatic.html
2 Stallman, Richard. “Why Copyleft?” http://gnu.mirror.fr/philosophy/why-copyleft.html

2

1. Most interviewees use open source licenses to tap into the open source development

approach for their project; their focus is on developing a great product rather than a moral

imperative to ensure that all software is “free”

2. Most interviewees value the ability to build on the works of others, and believe license

incompatibility makes it harder to incorporate other people’s code into their own

3. Developers want the flexibility to vary the license they use for their own code based on

need (e.g. so it can be incorporated into other open source or non-open source products);

they often choose licenses to increase adoption without concern over ensuring the code is

never used for commercial gain or proprietary purposes

4. Many interviewees have worked on both open source and non-open source software, and

value interaction between the two

5. Developers often exercise this flexibility to solve practical problems for customers

6. The majority of developers do not support any organization imposing their views upon

other developers or abridging other developers’ rights. Most developers are more aligned

with the Open Source Initiative’s open source definition, which focuses on allowing users

to extend open source creations, but avoids mandating users strictly adhere to the

philosophies of upstream developers

Tying to previous research that clustered the open source developer community allowed

us to hypothesize how this broader community would feel about the key themes that surfaced

and check that the developers we interviewed were a good sample of the broader community.

This research found 19% of the community falls into a cluster that believes software should be

free.3 Only half of this group espoused opinions opposite to our six key findings. Thus our

results suggest the actions of the FSF may only be favored by approximately 10% of the broader

community.

Each open source project represents the aggregate work of all developers who have

contributed to it. No individual or group of individuals can prevent the desires of the broader

community to take a project in a given direction. The process of revising the GPL license

represents a paradox to the open source development method as it has been driven by a relatively

small number of people who have a disproportionate impact on the developer community, but

3 Lakhani, K.R., and Wolf, R.G. “Why hackers Do What They Do: Understanding Motivation and Effort in
Free/Open Source Software Projects,” in Perspectives on Free and Open Source Software, J. Feller, B. Fitzgerald, S.
Hissam, and K. Lakhani (eds.), MIT Press, Cambridge, MA, 2005, pp. 3-21

3

potentially limited alignment with the community members’ goals and objectives. This raises

two questions:

1. Does the community need a formal committee like the Linux Foundation to

address license revisions?

2. Why isn’t the governance system that is used for open source project development

used for license revisions?

Introduction

 The four main constituencies of the open source community are 1) Development Project

Leaders 2) Foundations like the FSF, 3) Large technology companies like Sun, HP, IBM and

Novell, and 4) Developers. Significant coverage of the upcoming release of the revised GNU

Public License (GPL) has centered on the strong public opinions of the first three constituencies,

most notably Richard Stallman, head of the Free Software Foundation (FSF) and Linus Torvalds,

the creator for which Linux was named. Large technology companies that use and interact with

open source software have also entered the public debate. By contrast, developers, who have no

less of a stake, have been under represented. Our objectives were to give developers a stronger

voice in the debate on the relationship that should exist between open source and proprietary

software and to provide information back to the community to assist them in examining future

licenses and revisions.

 Given the complexity of this topic, we wanted to gather the opinions of “informed

consumers” of open source software licenses – developers who had thought about license choice

instead of simply utilizing a “default” option and had considered how licenses affect not just

themselves but the broader community. To find these “informed consumers” we targeted

developers who had made significant contributions to or were responsible for specific modules

of the most widely adopted open source projects. Compared to an occasional contributor, this

segment of developers would be more impacted and thus have more incentive to learn about

software license issues. Furthermore, as module owners who interacted with many contributors,

they were likely to be information hubs who could see the weight of aggregate opinions.

 When we interviewed these module owners, we also assessed their motivations for

contributing to open source software so we could tie our findings to previous research that

4

clustered developers based on their motivation for contributing to open source. We did this for

two reasons. First, we could use the clustering to check to see if our developer sample was a

reasonable match for the broader community. Second, we wanted to test for congruence between

the key themes that surfaced and the motivational clusters in order to hypothesize how segments

of the broader community would feel about these key themes.

This paper is organized as follows. First, we briefly review key open source licenses,

constituents and timelines. We then describe the approach for targeting and selecting interview

candidates. Next we report on key findings from the research. Last, we discuss implications for

the broader community.

Background

In our interviews, developers often used comparisons to illustrate their opinions. When

discussing philosophical differences, they contrasted the Open Source Initiative (OSI) and the

Free Software Foundation (FSF). When discussing license terms, they compared a variety of

open source licenses. We felt properly understanding their comments required the context of the

history and mission statements of the OSI and the FSF and a description of the differences

between open source licenses. We also include a history of the GNU Public License (GPL) since

the debate about its revision was one catalyst for this research.

Histories

Free Software Foundation

The Free Software Foundation (FSF) was founded in 1985 by Richard M. Stallman who provides

the following free software definition: “Free software is a matter of liberty, not price. To

understand the concept, you should think of free as in free speech, not as in free beer. Free

software is a matter of the users' freedom to run, copy, distribute, study, change and improve the

software. More precisely, it refers to four kinds of freedom, for the users of the software:

• The freedom to run the program, for any purpose (freedom 0).

• The freedom to study how the program works, and adapt it to your needs (freedom 1). Access

to the source code is a precondition for this.

• The freedom to redistribute copies so you can help your neighbor (freedom 2).

5

• The freedom to improve the program, and release your improvements to the public, so that

the whole community benefits (freedom 3). Access to the source code is a precondition for

this4.”

The FSF supports free software development and use, particularly of the GNU operating

system, a Unix-like operating system of which the most well-known variant is Linux. The

FSF was also responsible for the most widely used open-source and free software license, the

General Public License (GPL). Three other main projects of the FSF included:

• The GPL Compliance Lab –investigates potential GPL violations

• The Free Software Directory –lists over 4,000 free software programs

• Savannah –provides development services at no cost to free software developers

GNU Public License

In 1989, Richard Stallman and the FSF released the first version of the GNU Public License

(GPL). However, in 1991, two years after the initial release, Stallman took the advice of legal

council and the developer community and revised the license, creating version two (GPLv2).

The current version of the GPL (the common name for the GPLv2)5, has remained unchanged for

16 years. The FSF initiated the revision of the license as they believed that many provisions of

the GPL could benefit from modification to fit today's more diverse and complex needs and to

reflect lessons learned from the use of version two.

Open Source Initiative

The Open Source Initiative (OSI) was founded by Eric Raymond and Bruce Perens in 1998.

This group believed that the philosophical motivations of the Free Software Foundation were

confusing and created an anti-business message. By contrast the OSI sought to actively woo the

corporate world, in an attempt to “teach business about the superiority of an open development

process.6” The OSI is a not-for-profit organization that promotes the benefits of open-source

and facilitates cooperation between different members of the open-source community. One of its

primary activities is maintaining the Open-source Definition (OSD), which outlines the

4 Stallman, Richard. “The Free Software Definition,” http://www.gnu.org/philosophy/free-sw.html
5 In this paper, we will follow the common usage of referring to the “GPLv2” and “GPL” interchangeably.
However, we will explicitly note when we are referring to the third version, GPLv3
6 MacCormack, Alan. “Red Hat and the Linux Revolution,” Harvard Business School Case, 3/21/2002

6

distribution terms of open-source. The OSI also approves all open-source licenses and grants an

OSI Certified Open-Source Software certification mark to those licenses that uphold the OSD.

Open Source Licenses

The open source licenses most commonly referenced in our interviews were BSD, Apache, GPL,

and LGPL. The developers often referred to them to point out what they considered more or less

restrictive in a license. The BSD and Apache licenses were considered less restrictive because

they did not require derivative works to use the original license, were considered simpler and less

complex, and had fewer clauses or restrictions. The GPL and its variant, LGPL, were often used

as an example of more restrictive licenses because they were “opposite” to the less restrictive

licenses. Table 1 outlines the key characteristics of these licenses.

Table 1 – Open Source License Characteristics

License Group Characteristics
BSD, Apache • Allows code to be used in proprietary

software
• Does not require that open source

versions of the code be distributed
• Derivative works may go “closed

[source]” or be licensed under a
different license

GPL, LGPL • Impose substantial requirements on
those who create and distribute
derivative works, which must be
licensed under the same license

Adapted from: St. Laurent, Andrew M., Understanding Open Source and Free
Software Licensing, Sebastopol: O’Reilly, 2004

Methodology

Targeted Developers

We targeted developers for our research based on two criteria: the projects to which they

had contributed, and their role on those projects7. The most well known and broadly adopted

open source projects are in the LAMP and JLAMP software stacks, which are commonly used to

7 Appendix: Table B shows the exact project mix of the developers we interviewed

7

run servers. JLAMP consists of an application server (JBoss), an operating system (Linux), a

web server (Apache), a database (MySQL), and a scripting language (PHP). The LAMP/JLAMP

stacks are often used in the data center, so we targeted developers who had contributed to the

various layers including: operating systems, databases, web servers, application servers, scripting

languages, virtualization, content management, and security applications. For each application,

we used web searches to identify the most relevant projects and our final list included: JBoss,

Apache, Linux (Kernel and Tool Chain), MySQL, Apache, PHP, Perl, XenSource, PostgreSQL,

Apache Geronimo, Snort, Mondrian, Eclipse, and Zmanda8. Given the size of the open source

community, we acknowledge this is not an exhaustive list of projects, but felt targeting

developers contributing to these projects captures a segment with deep open source experience

and informed opinions about the role of licenses.

 With regards to the role developers played in an open source project, we targeted

developers that were neither the public faces of these projects nor casual contributors. We felt

developers in the middle – the “project managers” and “key contributors” – would provide the

most helpful insight to the community because the most well known developers (e.g. Linus

Torvalds, Andrew Morton) had already published their opinions on licensing and the relationship

between open source and non-open source software, and the casual contributor was less likely to

have had to think through these issues. This group had also likely interacted with many of the

casual contributors and would be able to act as “information hubs.” To find these “project

managers” and “key contributors,” we began by identifying contributors for each project from

the project web sites, where we found published change logs and acknowledgement or credit

pages. We then quantified the contributions of each developer. We counted the number of

modules they had worked on and the number of other developers’ modules on which they had

signed-off. Additionally, we weighted the importance of the modules based on the prominence

they were given on the project’s web site. We ranked developers by quantity and importance of

contributions and then recruited those who were in the top half. Finally, during the course of the

interviews, we verified their status by confirming they had could check-in and sign off on source

code for the project for which we had identified them as a “project manager” or “key

contributor.”

8 Appendix: Table C shows the open source license used by each of these projects

8

We sent out 354 emails between February 28th and April 4th. Of the 354 emails, 332

reached their destination and 22 emails bounced. From the 332 emails that reached their

destination we received 34 responses for a response rate of 11%. Based on the selection criteria

for the developers, and the semi-structured approach we felt that the 34 interviews was more than

sufficient to conduct exploratory research to identify the predominant developer opinions on the

most critical issues.

Research Methodology

Given the complexity of licensing implications, we felt the topic was not well suited for a

structured / quantitative survey. Instead, we used a semi-structured document to facilitate

discussion and conduct exploratory research to identify developers’ opinions on open source and

proprietary software licensing issues. To ensure consistency, we used a common discussion

guide for all interviews. Each interview lasted between 45 and 60 minutes. To ensure the

responses were a true measure of developers’ opinions, we did not use a monetary participation

incentive. We conducted the interviews over the telephone between February 28, 2007 and April

4, 2007.

Cluster Identification

 Previous research grouped open source developers into clusters based on their

motivations. Lakhani utilized a structured quantitative study of 684 developers from 287 distinct

projects. He placed developers into four clusters to “provide the best balance of cluster size,

motivational aggregation, stability and consistency9.”

9 Lakhani, K.R., and Wolf, R.G. “Why hackers Do What They Do: Understanding Motivation and Effort in
Free/Open Source Software Projects,” in Perspectives on Free and Open Source Software, J. Feller, B. Fitzgerald, S.
Hissam, and K. Lakhani (eds.), MIT Press, Cambridge, MA, 2005, pp. 3-21

9

Source: Lakhani, K.R., and Wolf, R.G. “Why hackers Do What They Do: Understanding
Motivation and Effort in Free/Open Source Software Projects,” in Perspectives on Free and
Open Source Software, J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani (eds.), MIT Press,
Cambridge, MA, 2005, pp. 3-21

In the first cluster, developers were most commonly motivated to contribute to open

source because of a work need or because they were paid to contribute. All developers in the

second cluster were motivated by non-work needs. Developers in the third cluster were most

commonly motivated by intellectual stimulation or a desire to improve their skills. Finally,

developers in the fourth cluster were most commonly motivated by a belief that they were

obligated to give back in return for having used open source code or a belief that code should be

free. In this research, we combined clusters two and three because they have the same set of top

motivations that are distinct from clusters one and four, and they both have intellectual

stimulation as the second highest motivation. We labeled the first group “pragmatists” because

of their most common motivation to meet a work need. We labeled the second group (i.e.

clusters two and three) “intellectuals” because of the importance of intellectual stimulation as a

motivation. Finally, we labeled the third group “philosophers” because their main motivations

10

were belief-based: a belief that that code should be free and a belief that they have an obligation

to contribute due to prior use of open source code.

 To identify each interviewed developer’s motivations, we first asked them an open-

ended, unaided question about the reasons they contributed to open source and to rank those

reasons. If they had trouble answering, we then provided them with a list of common

motivations from Lakhani’s research and asked them to pick the most important one(s). We

randomly rotated the order we listed the motivations to remove any bias.

 We assigned developers to one of three groups based on their response:

• Group 1 (“pragmatists”) – primary motivation was work need or payment for

contribution

• Group 2 (“intellectuals”) – primary motivation was intellectual stimulation or skill

improvement in a non-work context

• Group 3 (“philosophers”) – primary motivation was beliefs about code being free or

their obligation to contribute based on past use of open source code10

Analytical Method

 In our semi-structured approach, we gathered data on developers’ opinions by using a

discussion guide. The discussion guide contained predominantly open-ended questions to

facilitate a rich discussion. A common discussion guide was used across interviews for

consistency.

From the responses, we used an inductive approach to synthesize the developers’

responses into key themes. After defining these themes, we looked across responses to identify

indicative phrases and responses of a pro or con position on each theme11. We then compared

each developer’s statements against these indicators to classify each developer as either pro or

con on that theme. If a developer provided statements that were mixed (i.e. matched both pro

and con indicators for a theme), we examined their responses to related questions. We used the

broader context to assign them as pro or con on the theme. For each theme, we found less than

three developers who provided mixed responses. The relatively small number of mixed

10 Appendix: Table B shows the exact breakdown of the assigned groups from our sample
11 Appendix: Table A shows the indicators used to assign developers to positions on each theme

11

responses gave us confidence our indicators were cleanly telling us whether developers were pro

or con on each theme.

We asked both aided and unaided questions to ascertain developers’ primary motivations

for working on open source projects. Based on their primary motivations, we assigned them to a

given Group as described in the Cluster Identification section. For each theme, we cataloged the

opinions of developers by Group to identify any congruence between Motivation Group and

positions on a theme and to understand what proportion of the broader community would likely

hold similar positions.

Our sample size and semi-structured approach were best suited for exploring and

unearthing themes and issues. A subsequent study using a quantitative, structured approach

would be needed for statistical analyses.

Findings

Through the semi-structured, inductive approach we surfaced a group of key findings about

developers’ beliefs of licenses and open source software:

1. Most interviewees use open source licenses to tap into the open source development

approach for their project; their focus is on developing a great product rather than a moral

imperative to ensure that all software is “free”

2. Most interviewees value the ability to build on the works of others, and believe license

incompatibility makes it harder to incorporate other people’s code into their own

3. Developers want the flexibility to vary the license they use for their own code based on need;

they often choose licenses to increase adoption without concern over ensuring the code is

never used for commercial gain or proprietary purposes

4. Many interviewees have worked on both open source and non-open source software, and

value interaction between the two

5. Developers often exercise this flexibility to solve practical problems for customers

6. The majority of developers do not support any organization imposing their views upon other

developers or abridging other developers’ rights. Most developers are more aligned with the

Open Source Initiative’s open source definition, which focuses on allowing users to extend

12

open source creations, but avoids mandating users strictly adhere to the philosophies of

upstream developers

Finding One – Developers Value Open Source as a Development Model

 Not surprisingly, the developers we interviewed universally expressed their appreciation

for the open source development model which relies on a large number of “individual

volunteers” to contribute source code, patches, bug fixes and more to open source projects.

They noted how the large number of contributors leads to “thousands of eyes” that see each line

of code. They applied the label of “faster, cheaper, better” to describe the resulting software.

From our findings, all of Groups One and Two and half of Group Three believed the

open source model was only one method for developing software, and other models also had

their place. When presented with the FSF’s head Richard Stallman’s perspective that developers

should “encourage free software to spread, replacing proprietary software that forbids

cooperation, and thus make our society better12,” developers from Groups One and Two

presented alternative rationale for utilizing the open source software approach. Their rationale

centered around four areas: facilitating the creation of technically superior products, realizing the

benefits of community involvement, gaining access to wider distribution channels for broader

adoption and increasing innovation. The other half of Group Three believed all software should

be “free”, open source was always superior, and there was no reason to ever use a closed source

model. This minority group stated a moral or philosophical reason for their desire that all code

remain free.

In summary, all of Groups One and Two stated their primary motivation for contributing

to open source development to be developing a better product that achieves wide adoption rather

than philosophical arguments. To them, “The development model matters more than the

license”, and “Open source software ensures I don’t have to maintain all the code I write. The

broader community can provide support which is invaluable.” These developers also saw the

need for other non-open source methods, “Often there are areas where not enough people are

interested in it so proprietary software is needed to fill the need.”

12 Stallman, Richard. “Copyleft: Pragmatic Idealism,” http://www.fsf.org/licensing/essays/pragmatic.html

13

Finding Two – Developers Value Building on Others’ Work

 One of the key benefits described by nearly all interviewees for open source software

development was the ability to reuse code, methods, ideas, and design principles. In fact, many

developers from all three groups mentioned that creating code from scratch would have made it

impossible for them to reach the scale of their projects because of resource constraints. Certain

types of code were also listed as more critical for re-use. “Embedding occurs most in

infrastructure code which is technically challenging to build yourself.” Duplicating components

was seen as taking away resources to not only create but also, and perhaps more significantly,

maintain the duplicate code - “Time isn’t in writing code, it’s in testing and maintaining it.”

Outside of a few developers who stated, “re-using code is usually more efficient, but not

always” the rest of the developers not only saw code re-use as important but also cited the

incompatibility of open source licenses as inhibiting code re-use. The most common

incompatibility cited was between GPL and non-GPL licenses. Groups One and Two

predominately expressed their perception of GPL’s incompatibility through statements like,

“Licenses like the GPL are not easily compatible,” “GPL and other open source licenses have

trouble working together,” and “GPL is poison because it is totally incompatible and I avoid it

like the plague.” These developers described the heart of the incompatibility to be the GPL’s

viral nature, which forces any code distributed along side GPL code to become governed by the

GPL license. They described this incompatibility as creating a variety of inefficiencies that

detract from the stated benefits of the open source method. “At least twice I have taken code

from incompatible licenses. We maintained them separately and kept them at arms length,”

“When used in commercial products, I’ve had to create work-arounds for functionality to avoid

license restrictions,” and “We maintain two code bases. We don’t put GPL code into our house

code13 base to avoid future restrictions,” all show the impact of license incompatibilities. This

incompatibility in effect leads to decreased interoperability through duplication of software

development because certain components have to be rewritten for distribution under compatible

licenses.

13 House code is a term to describe the code a company keeps in an internal repository and is not submitted to the
community

14

Finding Three – Developers want Choice in Licensing

All but one developer agreed that an open source project’s license impacts the project’s

objectives. Developers stated that “License choice is very important,” “License is crucial,” and

“License choice is a huge, huge factor.” All but one developer from Groups One and Two, the

“pragmatists” and “intellectuals”, believed that flexibility in choosing licenses to match

objectives was fundamental to a project’s success. Developers whose goals included broad scale

adoption or use in other projects believed less restrictive licenses like BSD and Apache were

critical. “BSD or Apache are best because they provide the freedom to do what you want with

the code.” Using these types of licenses allowed downstream developers flexibility in how they

use the code, even including the option to incorporate the code into a proprietary closed-source

product. When asked if they feared someone hijacking their code, developers in these groups

responded, “If someone wants to alter my code and use it that is fine as long as you give me

credit, I’m not concerned about someone ‘hijacking’ my code,” “I don’t care about downstream

use of my code, if they use my stuff fine... if they don’t contribute good luck w/ bug fixes,” and

“I’m not worried about someone taking my code.”

Groups One and Two did not worry about someone taking their code, and even encouraged

others to use it in any way they saw fit. These developers believed licenses got in the way of

adoption and often cited the market, not licenses as a reason code stayed open. “In practice it is

incredibly difficult to close open code... without the developer’s support. It is difficult for a

company to support the code.” “The community provides invaluable resources to support and

maintain the code that most companies don’t want to take on internally.”

 Contrarily, exactly half of Group Three, the “philosophers”, believed using the GPL

license exclusively was best. Stated reasons included, “GPL license protects my downstream

interests and ensures my code stays open,” and “I like GPL over BSD because it encourages

other vendors to play nice and not lock up code and not contribute.” The majority of this group

preferred a license to ensure downstream protection and did not want to include a alternative

licensing options despite acknowledging potentially lower adoption as a consequence.

Finding Four – Developers Like Interactions between Open and Closed Source

 The desired flexibility in license choice expressed by Groups One and Two extended into

a desire to accommodate closed source software companies into a broader open and non-open

15

source software ecosystem. All but two developers in these two groups believed co-mingling

and improved interfaces between open and closed source software was important. Many of them

mentioned the desire for approved standards which would govern both open and closed source

software to improve the pace at which developers could create compatible solutions. “I’m a big

supporter of open standards to help open and closed source work together. Compatibility to

standards is key to improved interoperability which allows for solutions, and people don’t buy

software they buy solutions.” They felt companies contributing and supporting the open source

community was a good thing as it benefited the entire ecosystem. “Having proprietary solutions

doesn’t make a company unfriendly to open source,” “Companies like to own a piece of code

and make a business around it, which is fine,” “This option to keep some stuff closed is

important to companies and makes sense.” These comments reflect it does not bother these

developers that companies in the ecosystem also protected aspects of their intellectual property

through proprietary software development. As long as these companies both take and contribute

to the community, open source developers felt companies do not need to open up their entire

source code. These two groups felt the interaction between open and closed source software

increased the adoption of open source projects by not forcing an “either-or” choice. “I don’t

think Linux would be where it is today without allowing non-GPL code to run on top of it.”

These groups also felt contributions came in multiple forms and weren’t solely defined as source

code. Providing technologies, “Companies subsidizing developers and providing technology is

great for the community,” and expanding the reach of the software, “I want as many people to

use it as possible” were both cited as valuable contributions that didn’t conform to the narrow

definition of contribution.

Group Three, the “philosophers,” were split on this issue. Half strongly felt the need for

a “brighter line” between open and closed software. They felt companies playing in both open

and closed source software were living up neither to the philosophies of the open source

community nor the fundamental requirement to publish all of their source code. These

developers shared Stallman’s views and wanted a clear line drawn that forced companies to

either fully embrace the free software ideals and make all of their source code available or leave

the community. The other half of Group Three acknowledged that while ideally companies

would adhere to their philosophies, practically it made sense to accommodate them. This half

believed all contributions were good and felt forcing companies to decide would result in some

16

leaving the ecosystem. To them this was an unacceptable cost because they valued not only the

direct contributions of code but also indirect contributions of extending open-source software’s

functionality or reach.

Finding Five – Developers want Flexibility

 The open source developers we interviewed valued flexibility. As described in the

previous three sections, they wanted the option to reuse code and ideas from a variety of sources,

including closed source software, the option to co-mingle open and closed source software, and

the option to incorporate their open source code into closed source software. These desired

options share a common theme: greater interoperability between open and closed source

software. One way to accomplish interoperability is to dual license their software in situations

where their software is useful for another data center application. Another example is allowing

downstream developers to incorporate and co-distribute the original open-source software

without requiring downstream works to adhere to the same license. This case is illustrated by

Apache, which gained greater adoption and reach by being incorporated into Websphere.

 The same options developers want to exercise for their work, also solve practical

problems for enterprise customers. Research firm Gartner predicts that by 2010, Global 2000 IT

organizations will see open source as a viable option for 80 percent of their infrastructure

software investments.14 As this shift occurs, the need for open and closed software to

interoperate effectively is essential. Through corporate development projects and the

implementation of solutions that combine open and closed source software, customers share the

same desires for software as developers: flexibility in licensing to reuse code and ideas from a

variety of sources, the option to co-mingle open and closed source software, and the option to

incorporate open source code into corporate development projects.

The developers we interviewed recognized the value of interoperability between open

and closed source software to customers. When asked whether it is important to accommodate

enterprise customers’ need to utilize both open and closed source software, one developer

replied, “Absolutely” and another stated, “I don’t want to cut-off people or commercial entities

because of licenses”

14 Kock, Christopher. “Free Code For Sale: The New Business of Open Source,” CIO, April 5, 2006

17

Not only do developers value flexibility to perform actions that are aligned with customers’

needs, but they also recognize the options they want are important for solving practical customer

issues.

Theme Six – Developers want Choice, not Mandates

 Aspects of freedoms, restrictions, and imposition of will through licenses generated

strong responses from developers. With the exception of two people, all of Groups One and Two

and half of Group Three voiced distaste with anyone imposing their views and abridging other

developers’ rights. Most developers were more aligned with the Open Source Initiative’s open

source definition, which focuses on allowing users to extend open source creations, and avoids

mandating users strictly adhere to the philosophies of upstream developers15. This group of

developers strongly articulated the need for choice and the need to “let the market decide.”

While many developers cited displeasure with the patent element of the Novell-Microsoft deal,

the use of Digital Rights Management (DRM) to restrict the use of modified open source

software, or the enforcement of software patents, (all publicly by Stallman as drivers for the

revision of the GPL16) they did not believe it was the place of the GPLv3 or other licenses to

prevent such deals or resolve such issues— “Restrictive licenses are not good for the community.

I don’t want anybody telling me what I can do with my code.” They see the GPL as promoting

one viewpoint about users’ rights at the expense of their own - “GPL is about freedom of code

not freedom of choice... developer is forced to make it free.” They repeatedly expressed concern

regarding whose freedoms were most important, users or developers, and whether “political

views” were entering the license revision process. The GPLv3 was seen as extending restrictions

on how people used software code to promote the agenda of the FSF – “I don’t want to take

freedoms from my customers... new clauses in GPLv3 remove freedoms of how you can use the

software. I don’t agree with that.” “Software licenses shouldn’t put restrictions on hardware

vendors.”

Two people from Groups One and Two and half of Group Three felt free software

development was a moral obligation and supported the upcoming GPL revision. Half of Group

Three was aligned with Stallman’s belief that both Tivoisation and the patent elements of the

15 See Exhibit 1 in Appendix for full Open Source Initiative Definition
16 Stallman, Richard. Transcripts from fifth international GPLv3 conference, Tokyo, Japan, November 21, 2006

18

Microsoft / Novell deal endanger the four freedoms17. Two members of Groups One and Two

did not feel aligned with the FSF’s philosophies, but did feel the GPLv3 clauses regarding

patents and DRM were necessary and beneficial.

Summary

 The developers we interviewed clearly articulated their desire for “flexibility,” “choice,”

and “freedom” for developers and their code. This is different from user freedoms, which are the

freedoms the FSF seeks to protect. Developers see open source as an effective way to develop

software, because it gives them access to code or concepts, accelerating development. In

general, developers believe license incompatibilities “get in the way” of this key benefit by

creating an encumbrance to innovation through their incompatibility. Developers cited a need

for license flexibility to achieve project objectives and increase project adoption. Developers

believed accommodating closed source code and improving the interoperability between open

and closed source code benefited both customers and the broader IT ecosystem. Developers did

not want others to force them to use code in a specific way, nor did they want political beliefs to

enter their licenses.

Comparing each group’s majority viewpoints on these issues, we found Group One, the

“pragmatists”, and Group Two, the “intellectuals”, shared very similar beliefs in a desire for

flexibility and freedom from a license dictating their actions. They saw the FSF’s actions on the

GPLv3 directly and indirectly impacting their flexibility and freedom. They believed GPLv3

reduced developers’ freedoms and forced a belief system on developers by reducing

interoperability and drawing a “brighter line” between open and closed source software. Only

half of Group Three, the “philosophers”, disagreed with Groups One and Two. Based on

Lakhani’s research, Group Three represents 19% of the community. Thus our results suggest the

actions of the FSF may only be favored by approximately 10% of the broader community and

leads us to ask, should a committee be created with a charter to create and revise open source

17 Stallman, Richard. Transcripts from fifth international GPLv3 conference, Tokyo, Japan, November 21, 2006:
Tivoisation: “The requirement is that users must be able to get whatever is necessary so that they can authorize their
modified versions to function in the same machine such that they can succeed in operating on the same data, and
talking to the same networks.”
MS and Novell: “We were already concerned… that a distributor might receive a patent license which did not
explicitly impose limits on downstream recipients but simply failed to protect them… [GPL v3 will] block such
deals.” – FSF President Richard Stallman

19

licenses using a governance model similar to that of the open source development model? Is it

contrary to the spirit of the open source community, which relies on the wisdom and view of the

masses, to have the governance of licenses controlled by a few individuals whose views run

contrary to the objectives of potentially 90% of the people affected by their actions, especially

when the community members are the very creators and developers of the software under

discussion?

20

 Appendix

Table A – Developer Position Indicators

Key Finding Indicators developer supported
the viewpoint of the finding

Indicators developer did not
support the viewpoint of the
finding

Most interviewees use open source
licenses to tap into the open source
development approach for their
project; their focus is on
developing a great product rather
than a moral imperative to ensure
that all software is “free”

• Described open source as a
development or innovation
model

• Did not mention needing
protection from proprietary
companies

• Mentioned the benefits of both
open and closed source methods

• Stated belief that all code should
be open or free

• Described open source as a
philosophical or moral choice

Most interviewees value the ability
to build on the works of others,
and believe license incompatibility
makes it harder to incorporate
other people’s code into their own.

• Had, wanted, or would re-use
other people’s code and saw
value in doing so

• Talked about license
incompatibility as a barrier to
incorporating other people’s
code

• Had not re-used other people’s
code or saw little value in doing
so

• Was unconcerned about impact
of licensing incompatibility on
code re-use

Developers want the flexibility to
vary the license they use for their
own code based on need; they
often choose licenses to increase
adoption without concern over
ensuring the code is never used for
commercial gain or proprietary
purposes. (e.g. to increase
adoption)

• Chose license to further a
project goal

• Had adopted a dual licensing
scheme for their project

• Chose licenses that allowed
maximum flexibility

• Chose more restrictive licenses to
ensure their code was never used
for commercial gain, or chose
more restrictive licenses for
philosophical reasons

Many interviewees have worked
on both open source and non-open
source software, and value
interaction between the two

• Had made an effort or thought it
was important for their code to
work well with non-open source
software

• Valued non-open source
companies’ contributions to
open source software

• Wanted open source software to
stand on its own

• Supported a divide between open
source and non-open source
software

Developers often exercise this
flexibility to solve practical
problems for customers.

• Made development or licensing
decisions that increased
interoperability

• Made no effort to increase
interoperability between open
source and non-open source
software

The majority of developers do not
support any organization imposing
their views upon other developers
or abridging other developers’
rights. Most developers are more
aligned with the Open Source
Initiative’s open source definition,
which focuses on allowing users to
extend open source creations, but
avoids mandating users strictly
adhere to the philosophies of
upstream developers.

• Felt the FSF’s philosophy was
not aligned with their own

• Felt the FSF’s actions was
looking out for the FSF’s
interests, not developers

• Supported flexibility for
developers

• Felt the FSF’s philosophy was
aligned with their own

• Felt the FSF’s actions helped
developers

• Supported mandates to protect
users

21

Table B – Developer Demographics

Project Developers
Interviewed

Group Developers
Interviewed

Amanda 2
One – “Pragmatists” 19

Apache 4
Two – “Intellectuals” 8

Apache

Geronimo

3

Three – “Philosophers” 7
Eclipse 1

GCC

Toolchain

4

Jboss 3

Linux

Kernel

7

MySQL 1

Perl 2

PHP 2

PostgreSQ

L

2

Snort 2

XenSource 1

22

Table C–Projects by License

Project License
Linux, MySQL, ZenSource, Snort,
Zmanda

GPLv2

JBoss, Zmanda LGPL
Apache, PHP*, Apache Geronimo,
Zmanda

Apache

Perl Artistic
PostgreSQL BSD
Eclipse Eclipse
MySQL GPLv2 + Commercial

* Self-described as an “Apache-style license”

Source: http://jboss.com/opensource/lgpl/faq; www.linux.org;
http://www.apache.org/licenses/;
http://www.mysql.com/company/legal/licensing/; http://www.php.net/license/;
http://www.perl.com/pub/a/language/misc/Artistic.html;
http://www.xensource.com/company/legal.html#d;
http://www.postgresql.org/about/licence; http://www.apache.org/licenses/;
http://www.snort.org/about_snort/licenses/;
http://sourceforge.net/projects/mondrian;
http://www.eclipse.org/org/documents/epl-v10.php;
http://www.zmanda.com/amanda-license.html

http://jboss.com/opensource/lgpl/faq
http://www.linux.org/
http://www.apache.org/licenses/
http://www.mysql.com/company/legal/licensing/
http://www.php.net/license/
http://www.perl.com/pub/a/language/misc/Artistic.html
http://www.postgresql.org/about/licence
http://www.apache.org/licenses/
http://www.snort.org/about_snort/licenses/
http://sourceforge.net/projects/mondrian
http://www.eclipse.org/org/documents/epl-v10.php
http://www.zmanda.com/amanda-license.html

23

EXHIBIT 1: The Open Source Definition

Source: http://www.opensource.org/docs/osd

Introduction

Open source doesn't just mean access to the source code. The distribution terms of open-source

software must comply with the following criteria:

1. Free Redistribution

The license shall not restrict any party from selling or giving away the software as a component

of an aggregate software distribution containing programs from several different sources. The

license shall not require a royalty or other fee for such sale.

2. Source Code

The program must include source code, and must allow distribution in source code as well as

compiled form. Where some form of a product is not distributed with source code, there must be

a well-publicized means of obtaining the source code for no more than a reasonable reproduction

cost preferably, downloading via the Internet without charge. The source code must be the

preferred form in which a programmer would modify the program. Deliberately obfuscated

source code is not allowed. Intermediate forms such as the output of a preprocessor or translator

are not allowed.

3. Derived Works

The license must allow modifications and derived works, and must allow them to be distributed

under the same terms as the license of the original software.

4. Integrity of The Author's Source Code

The license may restrict source-code from being distributed in modified form only if the license

allows the distribution of "patch files" with the source code for the purpose of modifying the

program at build time. The license must explicitly permit distribution of software built from

modified source code. The license may require derived works to carry a different name or

version number from the original software.

http://www.opensource.org/docs/osd

24

5. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a specific field of

endeavor. For example, it may not restrict the program from being used in a business, or from

being used for genetic research.

7. Distribution of License

The rights attached to the program must apply to all to whom the program is redistributed

without the need for execution of an additional license by those parties.

8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program's being part of a particular

software distribution. If the program is extracted from that distribution and used or distributed

within the terms of the program's license, all parties to whom the program is redistributed should

have the same rights as those that are granted in conjunction with the original software

distribution.

9. License Must Not Restrict Other Software

The license must not place restrictions on other software that is distributed along with the

licensed software. For example, the license must not insist that all other programs distributed on

the same medium must be open-source software.

*10. License Must Be Technology-Neutral

No provision of the license may be predicated on any individual technology or style of interface.

25

EXHIBIT 2: Aggregate Developer Quotes

Theme One - Open Source Development Model
Pro Con
The development model matters more than
a license

I don't like proprietary companies taking
code and not letting community see it

Open source is simply a practical means
for developing software

Always more smart people outside a
company than in

Open Source fundamentally promotes
innovation

Ideally all software would be open source

Ok for MS, Novell or others to take code I agree w/ philosophical point of view
about code being open. Mac OS and
Windows gave me heartache

Makes economic sense to use open source,
not about morals

Easy to use and try

Fast adoption and testing

Leverage component reuse
Some software should stay closed

Open source development can make for a
better product because people don’t work
on stuff they don’t care about.

I'm more effective working on open source
software, but I've also contributed to
proprietary companies

I'm not a zealot or a purist

I support BSD style licenses for
networking applications and allowing
companies to keep certain items
proprietary

Impossible to do at this scale w/o open
source

Open source doesn't fit every software
model, lots of areas where this model

26

doesn't work because can't get money back

Open source is not just having source code
it is having community involvement

I’m very pragmatic Open source has its
strengths but other options exist

Effective way to communicate w/ other
people, there are downsides to OS

Theme Two - Innovate on others’ work
Pro Con
I want access to proprietary drivers and
believe it would help projects like Linux

Re-using code is usually more efficient but
not always

I see GPL as stopping me from using other
code

People are told not to read patents, it is
better to say you didn't know

It is a drag to re-engineer because of
license compatibility

The projects I have worked on haven't had
to access protected work much

I would like access to IP or other
innovations

Avoid looking at anything not under open
source licenses

At least twice [I] have taken code from
incompatible licenses. We maintained
them separately and kept them at arms
length

Ideally you are calling someone else's code
not embedding it, GPL and other OS
licenses have trouble working together

Code re-use is important benefit to Open
Source community

License challenges could be a good thing
as they enable good things to happen

Java code that is GPL'd is challenging...it
is cumbersome and requires work-arounds

I don’t think it is important to take a piece
of code from another project. Copying
code slows you down because it’s never
perfect

Code reuse leads to faster time to market

Plug-able libraries are important

All the time have to re-engineer

Licenses get in the way of component re-
use

Re-usability of code is important

27

If functionality already exists, I’ll use it. If
I need to borrow, then I’ll call vs. copy. If
I don’t have access, then I’ll copy it. If I
can’t find it, then I’ll write. Someone
else’s code probably has been bug tested.
If I write it, then there’s more code and the
software gets bloated.

License incompatibility reduces code re-
use to some extent

Things that make good sense for software
are avoided for legal issues

More liberal licenses are easier to deal
with

I want access to proprietary drivers and
believe it would help projects like Linux

Yes, I would pay for access to proprietary
technology if it helped me fix my code

Embedding is very important.. many
people are better at specific things, don’t
want to re-invent if I know it works well.

...licenses get in the way of modifying
existing code base lowering innovation

I would like access to IP or other
innovations

I see GPL as stopping me from using other
code

GPL code is compatibility issue

Copyrights limit work more than patent

License compatibility is limiting

Where licenses permit, I’ve pulled in code

I often have to change other’s code for my
enabling code to work

28

Theme Three - Vary license choice
Pro Con
We need an open source license that pays
attention to the needs of companies

Licenses have some affect on re-usability
but not on interoperability... May just
require additional code

Choice of a license helps for objectives

As an academic I have become convinced
to release code w/ no license to avoid
academic propriety issues

I have run many projects and have never
chosen a GPL style license as I think they
are too limiting

Current version of GPL meets my needs

Apache license is freedom for people to
share or not, it is about choice

GPL allows software to live and is also a
great license for commercialization of
technology

Dual licenses provide flexibility for
commercial and non-commercial use

Licenses have some affect on re-usability
but not on interoperability... May just
require additional code

Dual license gives choice. Customers who
want to integrate use the non-gpl'd version

Would always use GPL2

License choice helps a project objective.
GPL helped Linux and BSD would have
hurt it

One generic license for OS would help
standardize the landscape, license choice is
critical to adoption

Jboss was smart to use LGPL as it allows
for embedding

I would prefer everything to be GPL to
keep code open but GPL was not the key
to Linux success

BSD / MIT [licenses] are easiest for a
developer

I don't care about downstream use of my
code so I choose least restrictive license

As a programmer I want to write code and
have others use it... licenses like Apache
are easy

I have been in the position of asking others
to re-license their code so I could use it

29

Choice of a license helps for objectives

Jboss was smart to use LGPL as it allows
for embedding

I want a license that attracts enough
developers but also want companies to use
the code

I want as many people to use it as possible

Each license has its proper place and
business model they support

Lack of restrictions is important to me so I
chose BSD

Everybody has their own needs. Choosing
a license that works for you is fine

Theme Four - Interaction between open source and non-open source
Pro Con
A more bright line that makes people
choose between open and close source isn't
good

License barriers can be good because
duplicate works creates new solutions

I want access to proprietary drivers and
believe it would help projects like Linux /
Co-mingling is good and the customer
benefits

Community only works if people
contribute to it.. .from a pragmatic point of
view it is nice to have companies
contributing, but if they don't go along w/
the community I wouldn't miss them

We were ok w/ MS and Netscape taking
Apache code, we wanted adoption

No, open and closed source code working
together is not important to overall success
of Open Source

The choice between Proprietary and Open
software isn't black and white, both are ok

Companies need to choose between open
and closed source. This is a revolutionary
change not an evolutionary one

I believe co-mingling is good and licenses
impact the degree of co-mingling

Agree w/ FSF ethos

The two worlds (open / closed) co-exist
and that is good

I have a general preference not to work
with closed source. I doubt access to

30

 proprietary IP would be worth paying for

There is no reason to exclude ourselves
from working w/ closed source software

I would prefer a cleaner distinction
between open and closed source,
Technologies are open source, but soln's
are business side

Open source doesn't fit every software
model hence the need for closed source

Mixed source is ok, but companies that
haven't embraced OS yet have to make a
clear choice

Co-mingling is important for Linux
Adoption (Oracle working on Linux is a
good thing)

I think being part of Websphere helps
Apache.

Having [closed source] specs would assist
greatly

I very much believe in the hybrid model

Open standards are important

Big supporter of open standards to help
open and closed work together

Definitely support mixed source
interaction

Theme Six - OSI vs. FSF
OSI FSF
FSF isn't interested in clarifying terms in
the GPL so they continue to exert power

Appropriate for FSF to look at the new
technology changes going on in the world
and revise the GPL

FSF should listen more to other
stakeholders

Clarification of patent claims is an
important reason to move to GPLv3

I don't want to make those types of deals
(MS / NOVELL) difficult, because the
future is unknown

The FSF's philosophies completely align
with my own

31

FSF is like early Ford... You can have any
car you want as long as it is black e.g. any
freedom as long as it is Stallman's freedom
/ FSF is not the sole moral compass for the
community

I personally like a GPL license better as it
insures the code grows in the community

My main customer is other developers and
their needs are very important to me
GPLv3 confirms what people outside of
the community think of us.. That we are
trying to destroy IP and force software
socialism. I don't like that

If you contribute to BSD, your code can be
made closed source. You’ve lost control
over it. By contrast, the GPL gives you
back as much freedom as you gave.

FSF thinks they represent the work of the
whole community and they don't

I see conflict from TIVO and how they
aren't abiding by the spirit of the GPL

I don't like the MS - Novell deal but I don't
think terminating someone's right to
distribute GPL is ok

Hardware vendors definitely should have
the ability to protect it

I don’t think there is a licensing solution to
IP issues

Already concerned about whether GPL2 is
good for the community

Don't want to start a war over IP

GPL (FSF) are incredible hypocrites
because they espouse the needs for
freedoms but tell you how to use your own
code

FSF are completely insane

If my motivation is to get my source code
used, I believe I am better off using a less
restrictive license like the BSD. If my
motivation is some sort of activism ... then
I would choose a license like GPL that
forces other people to share my vision. ...
[but] I don’t want to have to subscribe to
someone else’s vision of utopia. / I like

32

their [FSF's] promotion of open source [as
a concept] but not their vision of how open
source should work

I don't like the anti-business efforts

FSF should listen more to other
stakeholders

Don’t want a library that contributes 5% of
the code to dictate the project’s license

Not happy how my previous GPL projects
will be affected. Downstream could
change them to GPLv3 w/o my permission

FSF has done a good job promoting open
software but they are too religious

FSF isn't interested in clarifying terms in
the GPL so they continue to exert power

GPL is too strict for my needs

GPLv3 generally speaking is becoming
more restrictive which I don't like

Personally I don’t want to control how
people use my stuff

I’m not too interested in GPL2 or GPLv3,
people in GPL are very religious about
free software and I’m not

Companies shouldn’t be forced to open up
all their source code

GPL forces you to open everything which
discourages companies w/ IP

I went to Open Source because I was
forced out by proprietary companies, I like
having flexibility on what I can choose and
not choose to do. I don’t want to force
someone else to my point of view

	JOINT CENTER
	Alan MacCormack
	Related Publication 07-12
	RP07-12_body.pdf
	EXHIBIT 1: The Open Source Definition
	Source: http://www.opensource.org/docs/osd
	1. Free Redistribution
	2. Source Code
	3. Derived Works
	4. Integrity of The Author's Source Code
	5. No Discrimination Against Persons or Groups
	6. No Discrimination Against Fields of Endeavor
	7. Distribution of License
	8. License Must Not Be Specific to a Product
	9. License Must Not Restrict Other Software
	*10. License Must Be Technology-Neutral

