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Executive Summary 
 
 The link between cell phone use while driving and crash risk has in recent years 
become an area of active research. The most notable of the over 125 studies has 
concluded that cell phones produce a four-fold increase in relative crash risk—
comparable to that produced by illicit levels of alcohol. In response, policy makers in 
fourteen states have either partially or fully restricted driver cell phone use. We 
investigate the causal link between cellular usage and crash rates by exploiting a natural 
experiment induced by a popular feature of cell phone plans in recent years—the 
discontinuity in marginal pricing at 9 pm on weekdays when plans transition from “peak” 
to “off-peak” pricing. We first document a jump in call volume of about 20-30% at 
“peak” to “off-peak” switching times for two large samples of callers from 2000-2001 
and 2005. Using a double difference estimator which uses the era prior to price switching 
as a control (as well as weekends as a second control), we find no evidence for a rise in 
crashes after 9 pm on weekdays from 2002-2005. The 95% CI of the estimates rules out 
any increase in all crashes larger than .9% and any increase larger than 2.4% for fatal 
crashes. These estimates are at odds with the crash risks implied by the existing research. 
We confirm our results with three additional empirical approaches—we compare trends 
in cell phone ownership and crashes across areas of contiguous economic activity over 
time, investigate whether differences in urban versus rural crash rates mirror identified 
gaps in urban-rural cellular ownership, and finally estimate the impact of legislation 
banning driver cell phone use on crash rates. None of the additional analyses produces 
evidence for a positive link between cellular use and vehicle crashes. 
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Abstract

The link between cell phone use while driving and crash risk has in recent years

become an area of active research. The most notable of the over 125 studies has con-

cluded that cell phones produce a four-fold increase in relative crash risk�comparable

to that produced by illicit levels of alcohol. In response, policy makers in fourteen

states have either partially or fully restricted driver cell phone use. We investigate the

causal link between cellular usage and crash rates by exploiting a natural experiment

induced by a popular feature of cell phone plans in recent years�the discontinuity in

marginal pricing at 9 pm on weekdays when plans transition from "peak" to "o¤-peak"

pricing. We �rst document a jump in call volume of about 20-30% at "peak" to "o¤-

peak" switching times for two large samples of callers from 2000-2001 and 2005. Using

a double di¤erence estimator which uses the era prior to price switching as a control (as

well as weekends as a second control), we �nd no evidence for a rise in crashes after 9

pm on weekdays from 2002-2005. The 95% CI of the estimates rules out any increase in

all crashes larger than .9% and any increase larger than 2.4% for fatal crashes. These

estimates are at odds with the crash risks implied by the existing research. We con-

�rm our results with three additional empirical approaches�we compare trends in cell

phone ownership and crashes across areas of contiguous economic activity over time,

investigate whether di¤erences in urban versus rural crash rates mirror identi�ed gaps

in urban-rural cellular ownership, and �nally estimate the impact of legislation banning

driver cell phone use on crash rates. None of the additional analyses produces evidence

for a positive link between cellular use and vehicle crashes.

�PRELIMINARY VERSION. We would like to thank David Card, Stefano Della Vigna, Robert Hahn,
Michael Greenstone, Botond Koszegi, Prasad Krishnamurthy, Ritu Mahajan, Enrico Moretti, James Prieger,
Matthew Rabin, Aman Vora, Glenn Woroch and participants of the IGERT workshop at the Goldman School
of Public Policy for their thoughtful comments. Gregory Duncan, Nathan Eagle, Je¤ May, and Econ One
Research made important data contributions. We would also like to thank the IBER for providing funding
for this project.
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1 Introduction

Does talking on a cell phone while driving increase your risk of a crash? The popular

belief is that it does �a recent Gallup poll found that 70% of Americans believe that cell

phone use by drivers causes crashes (Gallup 2003). This sentiment is echoed by recent

research. Over the last few years, more than 125 published studies have examined the

impact of driver cell phone use on vehicular crashes.1 The most widely cited of these have

identi�ed clear links between cellular usage and crash risk.

Experimental and epidemiological studies have even equated the relative crash risk

of phone use while driving to that produced by illicit levels of alcohol (Redelmeier and

Tibshirani 1997; Strayer and Drews and Crouch 2006). If alcohol, however, is responsible

for 40% of fatal and 7% of all crashes each year, as reported by the National Highway

Tra¢ c Safety Administration (NHTSA), then Figure 1 illustrates a puzzle (2006). Cell

phone ownership has grown sharply since 1990, average use per subscriber has risen from

140 to 740 minutes a month since 1993, and surveys indicate that as many as 40% of drivers

have at some point used their phones while driving (CTIA 2006)�yet aggregate crash rates

have fallen substantially over this period.2
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1As counted by McCartt et. al. 2006.
2The �gure plots fatal and all crashes nationwide from 1988 to 2005 per billion highway miles traveled.

Fatal crashes were from collected from the Fatality Analysis Reporting System (FARS) database, while all
crash data was estimated from the General Estimates System (GES). Penetration data was collected from
CTIA wireless surveys. Volume data is from the Federal Highway Administration.

1



In this paper, we exploit a natural experiment in order to cleanly identify the impact

of cell phone use on both fatal and non-fatal crashes. Our most credible research design

suggests that current cell phone use does not result in a measurable increase in vehicular

crashes. We are able to reject, with a 95% con�dence interval, any rise in fatal crashes larger

than 2.4% and any rise for all crashes of .9%. It should be noted, however, that our result

is not inconsistent with the claim that cell phones are a source of attentional distraction.

One possible explanation is that drivers compensate for the dangers of cell phone use by

driving more carefully. This argument is similar to one articulated by Peltzman in his

consideration of the e¤ects of seat belt use (1975). We explore other rationale for the

absence of a link between current cellular use and crashes in the discussion below.

Past attempts to link cell phone use and driver safety have relied on a variety of method-

ologies. These range from cross-sectional surveys of large groups of drivers, simulations

in the lab, inspection of crash reports, observational analyses using in-car cameras or con-

federate observers, longitudinal studies of small samples of drivers, as well as correlative

analyses of aggregate cell ownership and crash records. This research has located the per-

centage of crashes attributable to cell phone use anywhere from 0 to 33% of the 6 million

crashes and 45,000 fatal crashes which occur each year which is equivalent to as many as 4

crashes a minute for each minute of the day.3 However, despite the value of these studies,

because of the di¢ culties associated with causal inferences in this setting, much of the

existing research is open to scrutiny due to either questionable econometric identi�cation

or doubtful external validity.

The need to accurately gauge the detrimental in�uence of cell phones resonates far

beyond academic discourse. Every state has considered some form of legislation to restrict

the usage of cell phones �or requiring the usage of hands-free devices �while driving for

some or all groups of drivers. According to the American Automotive Association, fourteen

states already have such legislation on the books (AAA 2007).4

If the media coverage is to be believed, much of the political dialogue produced by

legislative initiatives has centered around, and often even been prompted by, one or many

of the published estimates. In a 1997 issue of the New England Journal of Medicine,

Redelmeier and Tibshirani (hereafter "RT") published perhaps the most frequently cited

estimate of the increase in crash risk due to cell phone use (Redelmeier and Tibshirani 1997;

Hahn and Prieger 2006). Using an epidemiological design, they concluded that cell phones

produced a 4.3 fold increase in the relative likelihood of a crash. This implies an 20%

3We discuss how we arrived at this characterization of the literature below.
4Three states have complete bans on hand-held cell phone use by drivers, while an additional 11 states

have partial bans primarily targeting younger drivers. Several other states ban cell phone use by those
driving school busses.
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increase in annual crashes.5 Given the strength of our research design, we believe that our

paper may meaningfully add to the discourse regarding the e¢ cacy of policies restricting

driver cell phone usage.

We identify and size driver sensitivity to changes in cell phone use through a series of

distinct estimation strategies. Our favored empirical approach combines a regression dis-

continuity design with a double di¤erence estimator in order to assess the relative increase

in crashes around the time of the day�9pm on weekdays�when cell phone providers sys-

tematically transition from �peak�to �o¤-peak�pricing. Based on the assumption that a

discontinuous rise in prices drives sharp increases in call volume �an assumption for which

we provide evidence�we exploit the presence of pricing thresholds across weekdays and not

weekends, as well as the recency of plans with the 9pm pricing threshold to assess the rela-

tive impact of additional call volume on crash rates. Figure 2 illustrates the distribution of

cellular call volume across weekdays and weekends for a sample of callers in 2005. The plot

depicts an approximately 24% relative rise in phone calls at the weekday 9pm threshold.6

Figure 3 conveys our basic result for fatal crashes from all states in 2005.7 Crash

rates do not appear to change across the 9pm threshold on weekdays relative to weekends

during this period. Given the RT estimates of relative crash risk, the size of the observed

discontinuity in call volume, and a conservative assumption of driver cell phone use, we

would expect to see an 2 to 6% rise in crashes in the hour following the threshold.8

5We discuss the assumptions underlying this calculation later in the paper.
6We recognize that call volume is a function of both calls made as well as call duration. Later, we

demonstrate that the call duration remains unchanged across the threshold implying that call volume rises
in proportion to calls made. Additionally, while the 24% rise cited here is derived from 2005 data, we have
a second dataset from 2000-2001 which indicates an even larger rise in calls made at the threshold. We
discuss both pieces of evidence in greater detail below.

7Data for non-fatal crashes is not available for 2005.
8This estimated range assumes a 4 to 7% driver usage rate, and relies on estimates from the two samples

of call volume data. A sensitivity analysis of the �ndings is presented in the discussion.
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As a second, and arguably more reliable control, Figure 4 compares the rate of all

crashes from weekday evenings during the "post" period characterized by high cellular plan

conformity around the 9pm threshold (2002-2004) with a period preceding the introduc-
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tion of tiered pricing plans (1990 - 1998) across the six states for which crash records are

available.9 Again, the plot o¤ers no noticeable evidence for a rise in relative crash rates at

9pm during the post period.

Figure 4, All Crashes from 7pm – 11pm
in 1990-1998 & 2002-2004 (20 mn bins)
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Figure 4, All Crashes from 7pm – 11pm
in 1990-1998 & 2002-2004 (20 mn bins)
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As robustness checks, we present three additional empirical analyses. A �rst approach

involves comparing yearly variation in regional cellular ownership against yearly changes

in crash rates. Our unit of analysis is an "economic area" (EA). De�ned by the Bureau

of Economic Analysis to denote regions of contiguous economic activity, EAs represent the

most disaggregated geographic units for which ownership data is available. We exploit the

non-linear, and heterogeneous pickup of cellular technology across these EAs in order to

estimate any resulting increase in the crash rate. To our knowledge, this is the �rst paper

to present region-year regressions of driver cell phone risk at the level of the EA.

Due to the absence of data on cell phone ownership more highly disaggregated than an

EA, a second estimation exploits the additional variation provided by historical di¤erences

in the rate of cell phone ownership across rural and urban areas over time. We �rst

document a lag in the rate of growth of cell phone coverage in rural as compared to urban

areas. We then assess the change in crashes in largely urban areas over time from those of

more rural controls. Finally, recognizing that some states have recently enacted complete

bans on hand-held cellular usage we analyze the impact of this legislation on crash rates.

9The �gure displays aggregated crash rates for CA, IL, MD, MO, NM, PA for 20 minute bins from 7pm
to 11pm. However, given the exclusion of particular states in particular years due to data availability, the
�gure does not represent a balanced panel across state-years.
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None of these strategies suggests a signi�cantly positive relationship between cell phone use

and vehicular crash rates.

This paper relies on an extensive dataset of fatal and non-fatal crashes, as well as data

on provider pricing plans, cell phone subscriptions at the EA level (since 2001) and national

level (since 1985), the quality of cell phone reception across time and across regions, and

perhaps most novel, data on the actual distribution of calls from two samples of callers from

2000-2001 and 2005. The crash data includes a census of all crash records for California,

Florida, Illinois, Maryland, Missouri, New Mexico and Pennsylvania, for most of the years

from 1990 - 2004, as well as the census of fatalities from all states from 1987 �2005. We

investigate both fatal and all crashes due to the suspicion that these crash types may be

di¤erentially sensitive to use of cellular phones, as well as the increased statistical power

provided by the far higher frequency of non-fatal crashes.

Beyond contributing to the literature on the danger of cellular use, our paper is very

much in the spirit of studies which use natural experiments to assess the e¤ect of driver

behavior on crash risk (Levitt & Porter 2001a; Levitt & Porter 2001b). This study can

also be linked to the literature examing the theory of compensating behavior with respect

to driving risk factors (Cohen and Einav 2003; Peltzman 1975).

Though our paper represents a departure from past studies, it is not without its limi-

tations. Our strongest estimation strategy�that of the pricing regression discontinuity�is

handicapped by considerable heaping in the time at which crashes are reported. Addition-

ally, the analysis yields only a local treatment e¤ect of cell phone use by drivers at the 9pm

pricing threshold. This complicates e¤orts to translate estimates to an aggregate welfare

e¤ect. While the panel analysis across region-years is not a local estimation, it does su¤er

from the absence of ownership data for the critical period of pickup, as well as possible

bias through omitted confounds. Further, the comparison between urban and rural areas

involves imputed rather than computed di¤erences in ownership. Finally, the analysis of

legislative bans is impaired by a lack of power due to the few regions which have enacted

bans, as well as to the recency of such bans. We address each of these issues in the course

of our discussions below.

The remainder of this paper proceeds as follows. Section II describes the background

of research on the link between cell phones and crashes. Section III describes the main and

alternative empirical approaches and presents the results of the analysis. In Section IV,

we translate our estimates into annual crash rates and discuss our results in the context

of existing research. Finally, Section V o¤ers conclusions, and discusses drawbacks of the

study as well as possible directions for future research.
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2 Background

The sharp rise in cell phone ownership over the last several years has been paced by an

equally rapid rise in research examining the e¤ect of such ownership on vehicular crashes.

Ignoring the substantial literature on the cognitive and neural underpinnings of limited

attention and multi-tasking, explicit analyses of crash risk due to cellular use generally

fall into one of �ve major methodological categories: (1) Experimental studies that focus

on subject behavior in simulated, or highly controlled, driving conditions, (2) naturalistic

studies of drivers on the actual road, (3) studies which inspect police annotations of crash

records, (4) correlative analyses of aggregate crash records and cell phone ownership, and (5)

longitudinal analyses of individual level phone and crash records. Beyond estimating the

impact of phone use on crashes, other researchers have attempted to accurately measure the

extent to which driver cell phone use occurs. Several excellent surveys of these literatures

exist (Hahn and Prieger 2006; McCartt et. al. 2006; Hahn and Dudley 2002; Lissy et. al.

2000; Hahn and Tetlock and Burnett 2000).

In the standard experimental paradigm, a researcher assesses subject driving perfor-

mance in a simulator across a variety of metrics (e.g. crash frequency, driving speed,

reaction time for braking, following distance, obedience of tra¢ c signals, time to crash

etc.) under varying forms of distraction. These studies generally conclude that subjects

instructed to use cell phones while driving are 3-4 times more "impaired" than their unen-

cumbered counterparts (Strayer and Drews and Johnston 2003). Authors of this research

have even compared the e¤ects of cellular use to moderate levels of intoxication (Strayer

and Drews and Crouch 2006). Many of these studies have found heterogeneous treatment

e¤ects, with, for instance, older drivers being more susceptible to impairment than middle-

aged drivers, and mixed evidence for the e¤ect for younger drivers (McCartt et. al. 2006).

Importantly, these studies �nd no di¤erences between hand-held and hands-free devices.10

A bene�t of simulations is that they are able to assess relative levels of impairment

across various forms of distractions, as well as to illuminate the speci�c capacities that are

likely to be impaired. Indeed, given the sophistication of simulation environments, as well

as the precision of the measurements, studies in the lab may be best positioned to precisely

size the levels of impairment attributable to any form of distraction including cellular use.

A shortcoming of such studies, however, is the questionable external validity� i.e. it is

unclear whether cell phone use in simulations is analogous to use in environments where

driver well-being, or, even survival, is at stake. It is plausible, for instance, that drivers

10Not all of the experimental evidence points to increased crash risk. Some experimental studies have
documented compensatory responses to cell phone use such as drivers slowing down or allowing more distance
between vehicles. Subjects in other studies have been shown to adapt to distractions through repeated
trials.
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in the �eld compensate for cellular use with more cautious driving. Finally, experimental

studies tend to produce estimates of relative, but not absolute, crash risk.

A second set of naturalistic studies employ visual and audio recording devices to monitor

driver behavior in ecological conditions. In an example of one such study, "The 100-Car

Naturalistic Study," researchers equipped 100 vehicles with �ve cameras and a series of

sensors distributed throughout the vehicle and tracked 241 primary and secondary drivers

for over 1 year (NHTSA 2006). Having collected nearly 43,000 hours of driving data, the

authors found that 78% of the 69 crashes and 65% of the 761 "near-crashes" committed by

drivers in their sample were due to some form of driver inattention. They calculated that

dialing a cell phone increased the approximate risk of a crash by a factor of 3, while listening

or speaking with a cellular device caused drivers to be 1.3 times more likely to have a crash.

The majority of near-crashes were associated with cellular use. Much like the experimental

studies, naturalistic approaches highlight the speci�c causes of driver impairment as well as

their relative dangers. It is unclear, however, given the nature of the monitoring involved,

whether such studies improve upon the external validity of studies conducted in the lab.

Further, because of the high costs of these studies, the sample sizes are often too small,

and unrepresentative, to meaningfully infer crash risk (Lissy et. al. 2000).

A number of studies exploit the existence of police annotations of crash reports to esti-

mate the e¤ect of cell phone use on crashes.11 Studies examining police reports attribute

approximately one percent of crashes to phone use (Lissy et. al. 2000). However, at-

tempts to infer the causal e¤ects of cell phone use from crash reports su¤er from drawbacks

including source unreliability (NHTSA 1997), and the increasing salience of cell phones

as a reported determinant over time (McCartt 2006). Most importantly, one cannot infer

causality from correlations between police reports and crashes since the growth in cell phone

ownership amongst drivers should mechanically increase the observed fraction of police re-

ports mentioning such use during a crash. For example, a rise in cell phone ownership

from 50% to 75% would produce an increase in the proportion of crash reports citing cell

phone use due both to an increase in impaired driving, as well as an increase in innocuous

phone use. Disentangling these e¤ects is not possible.

One strategy through which to generate absolute estimates of crash risk is by comparing

aggregate trends in cell phone ownership with trends in crash rates. Researchers have

examined correlations between crashes and phone ownership at the state, national and local

levels (Lissy et. al. 2000). Studies in this class generally �nd no statistically signi�cant

link between cellular use and crashes (Lissy et. al. 2000). Given the strong secular

trends in overall crashes, trend analyses which aspire to identify the possibly modest e¤ect

11Three states �Oklahoma, Minnesota and Tennessee�explicitly include distraction via use of cell phones
as a standardized query on police reports (Lissy 2000). In other states or localities, case-reports or police
narratives may o¤er explanations of crash causes (Goodman 1999; others, see McCartt 2006).
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of cellular use are not considered persuasive (Min and Redelmeier 1998). An additional

complication the aggregate approach is that often there is not very much variation in rates

of cell phone ownership to exploit, and appropriately disaggregated data on ownership is

di¢ cult to obtain.

A �nal class of studies tracks both phone use and driving behavior for a small number

of drivers over a particular period (Dreyer and Loughlin and Rothman 1999; Violanti 1998;

Redelmeier and Tibshirani 1997; Violanti and Marshall 1996). The most widely cited of

these is the analysis by Redelmeier and Tibshirani (RT) (1997). In the paper, the authors

inspect the crash records and detailed phone bills for 699 Toronto drivers recently involved

in a minor car crash. To control for heterogeneity in driver quality, the paper relies on

a technique commonly employed in epidemiological research to study the health e¤ects of

transient exposure to a risk factor. For each driver, the authors compare exposure to cell

phone use immediately prior to the crash, with such exposure during a crash free control

period one day before the crash occurred. By examining the relative use of cell phones

during the two periods, the authors are able to control for driver speci�c variation in crash

likelihood. They then used a conditional logit regression to infer the relative risk of a

crash due to cell phone use. The paper concludes that the use of cell phones increased the

relative likelihood of a crash by a factor of 4.3 (with a 95 percent con�dence interval of 3.0

to 6.0). The study fails to �nd signi�cant di¤erences in increased crash risk across age or

gender.

While the paper is considered perhaps the most convincing example of this, or any

class, of studies, Hahn and Prieger point out that a major drawback with the RT result is

that the study relies on a very unrepresentative sample (2006). Any simple correlation of

crashes and phone use for only those drivers recently involved in a crash is confounded by

selection. If drivers with greater risk of crashing while using cell phones are overrepresented

in the RT sample, the relative risk estimate would then be an upper bound for the broader

population of drivers. An additional concern with the RT study is that while the case

crossover method does control for �xed driver characteristics, it does not control for time

varying unobservables. For instance, bored or stressed drivers may be likely, to both, use cell

phones and drive poorly due to mental distraction. In this case, the observed relative risk

could simply re�ect correlation of cell phone usage and crashes which are both derived from

underlying boredom or anxiety. Finally, much like naturalistic or experimental studies, the

analysis produces estimates of relative risk which are not easy to translate into aggregate

estimates of crash impact.

A more recent paper used a nearly identical methodology to investigate the e¤ects of

cell phone exposure for drivers in Perth, Western Australia (McEvoy et. al. 2005). The

authors �nd that hand-held devices increased crash risk by a factor of 4.9 (with a 95 percent

9



con�dence interval of 1.6 to 15.5). Consistent with experimental �ndings, the researchers

also found no signi�cant di¤erence between handheld and hands-free devices.12

In summary, researchers have adopted a number of methodological approaches to esti-

mate the in�uence of cellular phones on crashes. Table 1 summarizes the range of e¤ect

sizes estimated for analyses from each methodological class. In order to meaningfully com-

pare estimates of increased relative risk with those of increased absolute risk, it is necessary

to translate the former �gures into predicted changes in aggregate crash counts. Such a

translation critically relies on the accuracy of assumptions regarding the frequency with

which drivers use their cell phones.

Table 1

EFFECT OF CELLULAR USE ON CRASH RISK: COMPARISON BY METHODOLOGY

EXTRAPOLATED
RELATIVE RISK ABSOLUTE RISK

X 0 to 1.4% increase in crashes

3 to 4 times impairment 20 to 30% increase in all crashes
(Strayer 2003; Strayer 2006)

1.3 times collision risk 3% increase in all crashes
(NHTSA 2006)

Police Annotations X 1% increase in all crashes
(Lissy et. al. 2000)

X 0% increase in all crashes
(Min and Redelmeier, 1998)

4.3 times collision risk 33% increase in all crashes
(Redelmeier and Tibshirani 1997)

9pm Price Discontinuity

Experimental Studies

Naturalistic Studies

Individual Crash Records

Aggregate Crash Trends

A number of studies attempt to estimate the frequency of such use. These include

surveys which query drivers regarding patterns of usage, as well as observational studies

where experimenters stationed at an intersection, for example, record behavior of ongoing

tra¢ c.13 An example of the latter, the 2006 National Occupant Protection Use Survey

(NOPUS) observes some 126,000 vehicles at 1,878 probabilistically sampled roadways and

�nds that 6% of drivers were using handheld cell phones at any point during the day

and that an additional 4% were on hands-free phones (NHTSA 2006b). Earlier surveys

indicate that the rate of handheld use has been increasing over the last several years from

5% in 2004, 4% in 2002, and 3% in 2000 (Glassbrenner 2005). The NOPUS survey also

12Analagous studies have not been conducted in the United States due to the absence of billing records
from domestic cell phone providers.
13See McCartt et al. 2006 for a thorough review of the literature.
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hints at considerable heterogeneity in cellular use across driver age and location�but not

gender �with handheld cell phone use of drivers from 16-24 years approaching as high as

ten percent (Glassbrenner 2005). The only study of which we are aware that explicitly

considers di¤erential usage across the day involves an assessment of driver behavior in

40,000 photographs taken of vehicles on the high-speed NJ Turnpike in 2001 (Johnson et.

al. 2004). The authors �nd no signi�cant di¤erence between driver cellular usage during

the late evening (i.e. from 8pm to 12am) from the afternoon (i.e. from 12pm to 4pm).

Given these estimates of driver cell phone use, Table 1 presents extrapolations of the

increased absolute crash risk implied by studies of relative crash risk. Our extrapolations

assume (1) the 10% NOPUS rate of (handheld and hands-free) cell phone usage and (2)

randomization in usage across driver type. Assuming for example, that cell phone use

occurs during 10% of total driving time, then, abstracted from selection e¤ects, a 4.3 fold

increase in the relative likelihood of a crash translates to an expected 33% increase in total

crashes. Accordingly, estimates of the e¤ect of cell phone use on the change in total crashes

range from 0 to 33%.14

3 Empirical Analysis

This section describes the data, the experimental design for each estimation strategy, and

presents the empirical �ndings. Four sets of empirical results are provided. First, we

provide evidence for the sensitivity of call volumes to discontinuities in marginal cellular

call prices, and then measure how drivers respond to the time thresholds which mark

such sharp price changes. Speci�cally, we document that, since 2002, most cellular users

subscribe to plans with a 9 pm weekday pricing threshold after which time usage carries a

near zero marginal cost. We then provide evidence for a jump in weekday, but not weekend,

call volume immediately after 9 pm. Finally, we check for a rise in crashes corresponding

to this documented rise in weekday call volume. We compare the di¤erence in the crash

rate after and before 9pm on weekdays since 2002, to the same period during the era prior

to the introduction of pre-paid plans (prior to 1998).

As additional evidence, we present results of yearly regressions of both fatal and all

crashes on cell phone ownership across EAs over the period from 1987 to 2005. We

then argue that rural areas within an EA lag urban areas in cellular ownership, and we

investigate whether urban-rural di¤erentials in crash rates mirror the urban-rural gap in

cellular ownership. Finally, we attempt to estimate the e¤ect of recent legislative bans on

14These calculations do not take into account possible heterogeneity of cell phone use across drivers. If
only very risky drivers use cell phones, for example, and the use of cell phones is merely a substitute of
one form of distraction from another, then our extrapolations may represent upper bounds of the predicted
e¤ect ranges.
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handheld phones.

3.1 Summary of Data

Several data sources were used in this analysis (they are summarized in Table A1 in the

Appendix). Each of the empirical approaches in this paper relies on crash count data, as

well as data on changes in cell phone ownership. Data for the entire universe of fatal crash

records from 1987 to 2005 for each of the 50 states was attained from the Fatality Analysis

Reporting System (FARS). Any vehicular crash which results in the death of a motorist or

non-motorist within 30 days of the crash is captured in the FARS database. Data for the

universe of total crashes for varying periods from 1990 to 2005 was acquired for California,

Florida, Illinois, Maryland, Missouri, New Mexico, and Pennsylvania through the State

Data System (SDS). SDS and FARS are administered by the NHTSA which collects crash

records from participating state agencies. A total of eighteen states participate in the SDS,

but only seven states release data which is both recent and covers the universe of crashes.

Figure 1 depicts the rate of fatal and all crashes, indexed to highway tra¢ c volume, for

each year from 1988 to 2005. Data on all crashes in this �gure is based on nationwide sample

conducted by the General Estimates Survey (GES) of the NHTSA. The plot indicates a

decrease in fatal and all crashes over the last �fteen years, with a slight rise in the mid

1990s. The increasing prevalence and usage of safety devices as well as the decline in driver

alcohol use is likely to have contributed to the drop in fatal and non-fatal crashes over this

period (NHTSA 2005). The mild rise in the mid 1990s can be at least partially attributed

to relaxation in nationwide speeding regulations. In recent years, there have been about

40,000 fatal crashes a year, and approximately 6 million total crashes each year nationwide.

An important unit of analysis in this paper is at the level of the Economic Area. 172

EAs were originally de�ned by the Bureau of Economic Analysis (BEA), and are currently

used by the Federal Communications Commission (FCC) to denote regions of contiguous

economic activity. Each EA consists of one or more economic nodes - a metropolitan

or micropolitan statistical area that serves as a regional economic center. Examples of

EAs include "Minneapolis-St.Paul", "Washington-Baltimore", as well as the largest "New

York- Northern New Jersey - Long Island." In 2000, the BEA uniquely mapped counties

to an Economic Area. We use these mappings in order to construct EA level crash and

population data. Table A2 in the Appendix provides EA level summary statistics on cell

phone ownership, population, and crash rates.

Data on cell phone subscribers for each EA from 2001 to 2005 was collected from

the FCC (2006). Historical population data was downloaded from the Bureau of Labor

Statistics website. Figure A1 in the Appendix depicts trends in cell phone ownership

nationwide as well as the growth in the average usage of each phone per user (FCC 2006).
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Overall, both ownership and usage increased exponentially over this period. By 2005, 2

of every 3 residents in a typical state owned a cell phone despite only 1 of 3 owning a cell

phone just six years earlier.

Data on annual highway tra¢ c volume for all states from 1989 to 2005 was obtained

from the Federal Highway Tra¢ c Administration. Tra¢ c volume data was collected from

counting stations positioned on roadways across the country. Total tra¢ c volume on U.S.

highways grew from 162 billion miles in January of 1990 to 222 billion miles in January

2005.

The central empirical strategy in this paper is based on the presumption that disconti-

nuities in cell phone pricing prompt sharp increases in cell phone call volume. To illustrate

this �rst stage relationship between call volume and call pricing, complete logs of cell phone

activity for approximately 65 students and faculty over the course of 2005 were obtained

from the Reality Mining Project (RMP) at the MIT Media Lab (Eagle 2006). As part of a

broader project examining the evolution of social networks and the transmission of informa-

tion, the RMP embedded surveillance technology in the cellular phones of each subject in

the sample. Approximately 80,000 outgoing calls were logged over the course of the surveil-

lance period. The bene�t of electronic logs is that call timings were accurately documented

to the second. However, because data comprised entirely of MIT students and faculty is

unrepresentative, we appeal to a second dataset of phone calls of over 560,000 calls made

by 9,406 cell phone users from U.S. households in 2000 and 2001 (TNS 2001).15 The latter

data was harvested from cellular phone bills voluntarily submitted from households that had

been randomly selected to participate in an earlier, broader survey of telecommunications

behavior and attitudes. The broader survey was administered by TNS Telecom, a �rm

which specializes in Telecom data collection. While this data is likely to be representative,

it is hourly data, and is from a period characterized by non-uniform plan thresholds ranging

from 6 to 10pm, or no threshold at all. However, the data usefully provides "peak" and

"o¤-peak" designations for each call, and allows for the analysis of individual call patterns.

Data on historical cellular pricing plans was obtained through surveys of cell phone

provider websites conducted monthly from 2002 to 2005 by Econ One Research.16 The

surveys detail the availability of pricing plans by provider, the schedule of marginal prices

per call, as well as the time threshold at which tiered pricing plans switch from peak to

o¤-peak pricing. While the survey targeted New York City, we assume that the pricing

details of national calling plans available to New York subscribers were similar to those

available to other users nationwide. Market shares for each provider were collected from

15While TNS Telecom continued to harvest cellular phone bills after 2001, we were unable to acquire this
data for a more recent period.
16Data gathered from the Econ One Wireless Survey. Survey is available at www.econone.com.
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S&P Industry Analysis Reports (S&P 2001-2006).

An alternative empirical approach in this paper exploits the di¤erential cellular cover-

age in rural as compared to urban regions. Classi�cations of the urban/rural character of

counties was collected from the U.S. Department of Agriculture. Finally, for the analysis

of legislative bans, descriptions of state legislation was gathered from the American Au-

tomative Association as well as the National Conference of State Legislatures (AAA 2007;

NCSL 2005).

3.2 Vehicle Crashes & Price Discontinuities

In our �rst empirical approach, we rely on a regression discontinuity (RD), as well as a series

of counterfactuals to identify the change in crashes after a sharp and exogenous increase

in the usage of cell phones. If cell phone use does cause crashes, then an exogenous rise

in such use should be associated with a corresponding rise in crash rates. Discontinuities

in the marginal price of a cell phone call represent one source of exogenous variation in

usage. Accordingly, we �rst outline our estimation strategy and identifying assumptions.

Next we document the existence of a systematic, and transparent discontinuity in marginal

call prices during weekday evenings at 9pm. We then provide evidence that this price

discontinuity produces a discontinuous rise in cell phone usage. Finally, we estimate the

e¤ect that increased usage has on the frequency of fatal and non-fatal crashes.

3.2.1 Estimation Strategy and Identifying Assumptions

Let Crashr;p;wk;h;w refer to the number of reported crashes in region r, hour h;minute

window w either on weekdays or weekends as signalled by wk, in either the "post" period,

p, characterized by high cell phone ownership and high plan conformity around a threshold,

or a "pre" period prior to the era of two-tiered monthly pricing plans. In this framework,

reported crashes are jointly determined by the tra¢ c level denoted by Trafficr;p;wk;h;w,

bias in the reporting of crashes denoted by Re pBiasr;p;wk;h;w, and the covariate of interest,

cell phone use, which is denoted by Cellr;p;wk;h;w. We also include a vector of additional

covariates, Xr;p;wk;h, which we believe may in�uence the rate of vehicular crashes. These

factors include speeding regulations, weather conditions, and the availability and adoption

of safety technology:

(1) Crashr;p;wk;h;w = �+ �1Trafficr;p;wk;h;w + �2RepBiasr;p;wk;h;w

+ �3Xr;p;wk;h + �Cellr;p;wk;h;w + "r;p;wk;h;w
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Unbiased estimation of �, the causal e¤ect of cell phone use on vehicular crashes, is

problematic since cell phone use is not randomized across drivers. Speci�cally, it is possible

that drivers who use cell phones have a greater a¢ nity for risk, and that the risk a¢ nity

of drivers on the road (R) produces a higher likelihood of entering into a crash: E(" j R)
6= 0. Since Cellr;p;wk;h;w may also be a function of the risk a¢ nity of drivers, attempts to
estimate � through OLS will be biased. One strategy through which to circumvent this

bias is if we assume that the distribution of unobserved driver risk is the same immediately

before the 9pm pricing threshold as it is immediately after the pricing threshold:

(2) lim
�!0+

E("jR9pm+�) = lim
�!0+

E("jR9pm��)

If we de�ne a control function g(R) = E("r;p;wk;h;w j R) which is continuous through
the 9pm threshold, we are able to rewrite the above equation (2) as:

(3) Crashr;p;wk;h;w = �+ �1Trafficr;p;wk;h;w + �2Re pBiasr;p;wk;h;w

+ �3Xr;p;wk;h + �Cellr;p;wk;h;w + g(R) + vr;p;wk;h;w

where the error term v = " � E("jR) is now independent of Cellr;p;wk;h;w. Given our

assumption of a continuous risk function at the pricing threshold, any break that we see at

that point in crashes should be attributable to the change in the remaining covariates�tra¢ c

patterns, reporting bias, the controls included in X as well as cell phone use. We formalize

this RD at the threshold then, by calculating a �rst di¤erence, Dr;1;1;h, which represents the

change in crashes during some time window immediately before the threshold from some

window immediately after the threshold. Intially, we restrict focus to weekdays during

the post period. Assuming that speeding regulations, weather, and safety technology

and compliance are unchanged locally around the threshold, Xr;1;1;h drops out of the �rst

di¤erence:

(4) Dr;1;1;h = Crashr;1;1;h;w � Crashr;1;1;h;w0 = �01�Trafficr;1;1;h
+ �03�Re pBiasr;1;1;h + �

0�Cellr;1;1;h + v
0
r;1;1;h

Intuitively, our RD model assumes that tra¢ c patterns and reporting bias may vary

across the threshold. The �exibility that this assumption adds to the estimation will
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be explored more fully below. However, in the face of covariates which vary across the

threshold, we can calculate a second di¤erence, DDr;1;h, by contrasting the di¤erence (D)

in crashes around the time threshold during the "post" period from a "pre" period prior to

the threshold era:

(5) DDr;1;h = Dr;1;1;h �Dr;0;1;h = �00(�Cellr;1;1;h ��Cellr;0;1;h) + v00r;1;h

If we assume that the di¤erence in tra¢ c as well as the di¤erence in the reporting bias

around the threshold in the "pre" and "post" periods compared to weekends does not

systematically di¤er, then the double di¤erence in crash rates is simply a function of the

residual post-pre threshold di¤erence in cell phone use.

Finally, to allay the concern that the di¤erences in reporting bias across the threshold

may systematically vary across the "pre" and "post" periods, as a placebo test we can

analogously calculate a second double di¤erence, for weekend periods. We discuss details

of the pricing discontinuity and document the subsequent change in cell phone call volume

below.

3.2.2 Price Discontinuities and Cell Phone Call Volumes

Pricing Plans. In recent years, contracts for cell phones have been characterized by a

�at monthly fee which entitles subscribers to a speci�ed number of minutes depending on

the time of use. Any use in excess of this allotment is subject to relatively high marginal

fees. For instance, a "900 Nation" plan o¤ered by Cingular in 2006 allows 900 minutes of

"peak" usage from 6am to 9pm each weekday, unlimited use for "o¤-peak" periods after

9pm and before 6am on weekdays, and unlimited use all day on weekends.17 Marginal fees

for excess usage commonly vary from $.35 to $.45 per minute.

Table 2 documents the evening thresholds at which major providers distinguished be-

tween peak and o¤-peak usage for national calling plans o¤ered to New York subscribers

from 2002 to 2005.18 The table also describes the estimated share of new users associated

with each threshold in a given year. Unfortunately, calculating the share of users tied to a

particular threshold is di¢ cult because providers do not disclose plan level market shares

and turnover rates.
17Actual plans often specify some large, but �nite, limit for non-peak usage. Cingular for example,

establishes usage limits even for non-peak periods that are marketed as allowing for "unlimited" usage.
This limit is often 5,000 or 10,000 minutes.
18The table displays only those plans which were listed on the websites of each provider based on monthly

snapshots taken by EconOne Research for their Wireless Survey. National calling plans, which tend not to
distinguish between local and non-local calls, are most likely to feature the described pricing structure.
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We estimate threshold speci�c shares by calculating the unweighted proportion of provider

plans associated with each threshold, and then weighting these �gures by the estimated lo-

cal market share of each provider reported in the table�s �nal column. While we expect

plans within a provider to vary in popularity, for the most part, our naive, unweighted,

estimation only confounds those few cases for which a provider has plans that do not share

a common threshold. Local market shares are extrapolated from national �gures published

in the S&P Industry Guide since the local shares for New York providers are not available

(S&P 2002-2006).

There is reason to believe that national plans in New York City may be representative of

broader o¤erings in other markets. Although not all providers service all regions, national

calling plans o¤ered by major providers are typically identical for subscribers regardless of

local origin. Therefore, New York City plans are likely to be approximately representative

of plans nationwide.
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Table 2

PRICING PLAN THRESHOLDS FOR NYC, 2002 - 2005

SWITCHING THRESHOLD

7PM 8PM 9PM MARKET SHARE

Sprint 0 0 22 0.17
AT&T 0 26 10 0.23
Verizon 0 0 42 0.35
Cingular 0 0 14 0.25

Total Share 0.00 0.17 0.83

Sprint 0 0 42 0.15
AT&T 0 0 18 0.20
Verizon 0 0 43 0.33
Cingular 30 0 30 0.21
T-mobile 0 0 8 0.11

Total Share 0.11 0.00 0.89

Sprint 82 0 68 0.16
AT&T 6 0 10 0.16
Verizon 0 0 58 0.29
Cingular 6 0 9 0.18
T-mobile 0 0 9 0.11
Nextel 0 0 3 0.10

Total Share 0.22 0.00 0.78

Sprint 46 0 64 0.16
Verizon 0 0 28 0.29
Cingular 0 0 12 0.32
T-mobile 0 0 12 0.12
Nextel 0 0 7 0.11

Total Share 0.07 0.00 0.93

2002

2004

Notes: The table displays the number of pricing plan listed by each provider on their website for New
York City subscribers as recorded monthly in the EconOne Wireless Survey.  The estimated total market
shares are generated by multiplying the unweighted fraction of plans associated with each time threshold
by the estimated market share reported in the last column.

2005

2003

Table 2 depicts strong consistency in available pricing plan options across providers for

the years from 2002 to 2005. By 2002, most providers had abandoned the 8pm threshold�

which had been popular in earlier years�in favor of a 9pm threshold. As a promotional

incentive, some providers in subsequent years began o¤ering plans with earlier switching

times of 7pm. However, we estimate that at least 75% of new subscribers in each year since

2002 had enrolled in 9pm plans. Assuming a 1-2 year typical contract duration, and in
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light of the dramatic rise in cellular ownership since 2001, Table 2 suggests that, in recent

years, most active cellular users faced a 9pm threshold.

Cellular Call Volume. Does the existence of a sharp change in marginal minute

pricing lead to a corresponding change in the actual volume of calls? There is suggestive

evidence that cell phone subscribers are price sensitive. In a Pew Research Center survey

of 1503 people in 2006, 44% of cell phone users reported delaying their calls until they

did not count against their allotment of peak minutes.19 In another survey of 30,000 cell

phone users, only 7% admitted to exceeding their monthly allotment of minutes. Such

users were subject to "overage" fees which, on average, amounted to 50-60% of their usual

bill.20 It seems then that two-part tari¤ pricing, coupled with the tiered allotment of

peak and o¤-peak minutes, produces a salient discontinuity in price for many users during

weekday evenings.

We explicitly test for the correspondence between call price and usage at the plan switch-

ing threshold by using two rare datasets of actual calls.21 A �rst data set was acquired from

a research group at the MIT Media Lab which embedded surveillance technology in cellular

phones in order to track subject movements, interactions, and cellular communication over

the course of 1-2 years (Eagle and Pentland 2006). We examine the full distribution of

outgoing cell phone calls for 65 subjects�comprised of both students and faculty�over the

course of 2005.22 This amounts to more than 80,000 call records.

Figure 2 depicts the distribution of calls made by subjects in the sample over 10 minute

intervals from 8pm to 10pm across weekdays and weekends in 2005, while Figure A2 in the

appendix depicts call volumes across hourly intervals over a larger portion of the day. A

vertical line in each plot marks the 9pm threshold at which time the marginal price of calls

on weekdays�but not weekends�drops sharply. The latter �gure illustrates a steady rise

in call volume through the weekday afternoon and early evening, a modest drop at around

six o�clock, followed by a rise through the late evening. Call volumes are considerably less

variable on the weekends. This pattern of high evening and low afternoon weekday calling

seems consistent with a typical subject�s likely schedule (e.g. the start and end of classes

etc.).

Collectively the �gures indicate a sharp increase in the number of calls made immediately

after 9pm on weekdays but not weekends. The increase in calls is on the order of 15-25%

19Survey published in an Internet Project Data Memo entitled "Cell Phone Use" from April 2006.
20This is according to an analysis of 30,000 cell phone users conducted by Telephia as part of their

Customer Value Metrics Service, from 2006.
21Data on call volume is very di¢ cult to acquire. Providers generally view such data as propriety, and the

few third party �rms which maintain private databases of billing statements either do not release individual
call records, or make it available only at prohibitively high prices.
22Not all of the subjects remained in the sample for the course of the calendar year. Additionally, many

of the subjects surrendered their phones, or left the sample, over the summer. Consequently, call volumes
are much lower in summer months than during the rest of the year.
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and seems to persist at least until midnight. Table 3 explicitly enumerates the change in call

volumes in windows of varying lengths around each hour from 7pm to 10pm on weekdays

relative to the same change on weekends. Standard errors are reported parenthetically

for the 9pm threshold. The table con�rms the pattern evident in the �gures�call volume

increases by 16% from 9pm to 10pm on weekdays, and is unchanged over this period on

weekends. Proximal weekday hours do not exhibit similarly pronounced changes in call

volume.

Table 3

7PM 8PM 9PM 10PM
(1) (2) (3) (4)

10 minute bins 10% -3% 24% 1%
(9%)***

20 minute bins 4% 7% 22% 2%
(9%)***

30 minute bins 2% 3% 18% 2%
(9%)**

60 minute bins 8% 12% 16% -1%
(12%)

10 minute bins 0% 18% 8% 2%
(8%)

20 minute bins 6% 17% 5% 5%
(5%)

30 minute bins 4% 8% 3% 1%
(4%)

60 minute bins 5% 5% 0% 1%
(2%)

* significant at 10%; ** significant at 5%; *** significant at 1%

WEEKEND

Notes: Each cell reports the change in call volume across the time threshold for the
respective time window.  Standard errors are reported in parentheses.  For the 10, 20 and
30 minute bins, the standard errors are computed from observations in the 8 pm to 10 pm
time band.  For the 60 minute bins, the standard errors are computed using the 7 pm to 11
pm band.

CHANGES IN HOURLY CALL VOLUME (MIT), 7PM - 10PM, 2005

WEEKDAY

It is important to note, however, that this sample of callers is unlikely to include many

drivers. Most students and faculty at MIT live near campus, and the campus itself is

situated in close proximity to public transportation. Moreover, the subject pool may not be
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representative of the larger population across a variety of additional dimensions. To address

these concerns, we appeal to a second, much larger, dataset of over 560,000 calls made by

9,907 cell phone users from households across the country in each quarter of 2000 and 2001

(TNS 2001).23 The data was extracted from cellular phone bills voluntarily submitted from

households randomly selected as part of a broader survey of telecommunications behavior

and attitudes.24 While the data includes callers whose plans feature switching thresholds

from 6pm to 10pm, or, in many cases, ambiguous or single tiered pricing, we are able to

infer the time of the switching threshold, if it exists, given that individual calls are labeled

as being "peak" or "o¤-peak".

From the 9907 callers in the original sample, we retain a subsample of callers that satisfy

each of the following conditions: (1) Callers are in the sample for at least 30 consecutive

days (2) Callers log a minimum of at least 30 calls (incoming and outgoing) (3) Callers

have no calls that are ambiguously tagged (i.e. each call is tagged as either "peak" or

"o¤-peak" rather than "unclear") (4) Callers have a mix of peak and o¤-peak calls which

allows us to infer the switching hour of the caller�s plan.25 Of the remaining 500 callers

in this subsample, most have plans with switching thresholds at either 7 pm (139), 8 pm

(166) or 9 pm (102).

Figure 5 illustrates the sensitivity of callers in the 7pm, 8pm and 9pm plans to their

particular plan thresholds on weekdays. The �gure depicts a relative rise of about 15% for

callers on 7pm plans at 7pm relative to other callers, 25% for callers on 8pm plans at 8pm,

and about 30% for callers on 9pm plans at 9pm. The rise in call volume at each plan�s

respective threshold hour is in contrast to the general decline in calls for all other hours

across all the plans over the depicted period.26

23While TNS Telecom continued to harvest cellular phone bills after 2001, we were unable to acquire this
data for a more recent period.
24The "ReQuest Consumer Survey" is a quarterly survey of about 30,000 households on consumer behavior

and attitudes related to telecommunications. It is administered by TNS Telecom and is primarily marketed
to telecom clients to help them better understand consumer attitudes and product preferences. Households
were o¤ered a small payment in exchange for copies of one month�s worth of cellular, cable, TV and internet
bills. In the fourth quarter of 2001, households were o¤ered $5 and participation in a "special cash prize
ra e" for their bills.
25We impute the switching hour by computing the change in the average hourly peak/o¤-peak rating for

each evening hour. Peak calls are tagged with the value "1" while o¤-peak calls are tagged with the value
"2". In principle, if a caller has a 7 pm switching threshold, then the average peak/o¤-peak rating should
jump cleanly from 1 to 2 at 7 pm on weekdays. However, due to the presence of holidays or calls made in
excess of the allowed quota for that month, we do not always observe unit jumps in the rating but jumps of
just under 1 unit. Given the absence of clean rating jumps, we tag the evening hour with the largest jump
in average peak/o¤-peak rating as the switching hour.
26The rationale for the length and call duration requirement is to ensure su¢ cient power for a �xed e¤ects

estimation, as well as to minimize any potential miscategorization of switching time thresholds. The basic
results and �gures are robust to less strict selection criteria.
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A panel regression at the level of the individual caller, sizes and con�rms this sensitivity

of callers to their respective thresholds:

(6) Callsh;s;i = �+ Switchs + �AfterSwitchh;s;i + �h + �i + "h;s;i

where Callsh;s;i refers to the total calls made in hour h under a calling plan which switches

to "o¤-peak" pricing at hour s by caller i. Fixed e¤ects are included to control for hour

speci�c variation, as well as for each individual caller. Switchs refers to the hour when a

caller transitions from "peak" to "o¤-peak" pricing, while AfterSwitchh;s;i denotes hours

after (but not inclusive of) the switching threshold. The regression is estimated for all

weekday outgoing and incoming calls made from 5pm to 12am for those callers included in

the sample.

Table 4 reports that outgoing calls increase by 33.1% at the switching threshold while

incoming calls sustain a smaller, and insigni�cant, increase of 9.7%. To address the concern

that the rise in calls at the switching threshold may be counteracted by a fall in duration,

the �nal column of the table shows that duration is unchanged at the threshold.
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Table 4

DEPENDENT VARIABLE:  HOURLY WEEKDAY CALLS & DURATION

POISSON REGRESSION OLS

Outgoing Calls Incoming Duration
(1) (2) (3)

Switching Threshold 1.331*** 1.097 -0.095
(0.102) (0.102) (0.429)

After Switching Threshold 1.075 0.957 -0.102
(0.134) (0.158) (0.551)

X X X

X X X

N = 3256 N = 2736 N = 2270

Individual Fixed Effects

CHANGE IN CALL VOLUME AT PLAN THRESHOLD, 2000-2001

Hour Fixed Effects

* significant at 10%; ** significant at 5%; *** significant at 1%

N

Notes: The dependent variable for the first two columns is the number of hourly phone calls
made on weekdays from 2000 - 2001 for callers included in the TNS sample from 5pm to 12am.
Coefficients are presented as incident rate ratios.  The first column presents results of a poisson
regression for all outgoing calls, while the second column estimates the model for incoming
calls.  The switching threshold is a dummy variable which indicates the hour when a caller
transitions from peak to off-peak pricing.  The after switching threshold is a dummy variable
which denotes those hours following (but not inclusive of) the switching hour.  The final column
presents OLS regression results for the link between call duration and switching time thresholds.
Standard errors are robust and clustered by the individual caller.

3.2.3 Change in Crash Rate at Price Discontinuity

Do crash rates respond to the increased cellular usage induced by a change in prices? We

answer this question for both fatal and all crashes by comparing driver behavior at the 9pm

price discontinuity on weekdays during the period characterized by both high cell phone

ownership and high price threshold conformity with such behavior on weekends as well as

a control period preceding the one of interest.

Reporting bias. A well recognized drawback of using a crash database based on

self-reports is the presence of substantive periodic heaping. The trajectory of a fatal crash

record helps to illuminate the origin of this bias in the FARS database of fatal crashes. Once

a fatality linked to a vehicular crash occurs in a given state, it is documented by a variety

of state agencies, and is then translated onto standardized paperwork and inputted into the

FARS database by a trained analyst at a federally sponsored state agency. Consequently,

the actual crash statistics themselves are derived from one of several existing state �les such
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as police crash reports, death certi�cates, or hospital records. Any bias which is likely to

occur, then, may vary in severity across states as well as over time. Figure 6 illustrates

the extent and nature of the heaping that occurs over the course of a representative hour

in 2005.
# 

of
 F

at
al

 C
ra

sh
es

FATAL CRASH REPORTING BIAS (FARS)

Figure 6, Average FARS Crashes by Minute in 2005

# 
of

 F
at

al
 C

ra
sh

es

FATAL CRASH REPORTING BIAS (FARS)

Figure 6, Average FARS Crashes by Minute in 2005

A closer examination of the crash records indicate that over 8% of crashes are reported

to have occurred exactly on the hour. Nearly 27% of crashes are reported to have occurred

either on the hour, half hour, or quarter hour, and 61% of crashes are reported to have

occurred in a minute ending in either 0 or 5. We control �exibly for these biases in

the regression analysis below through three primary strategies. The �rst strategy entails

choosing a unit of analysis which is aggregated across multiple minute bins. For example,

if all crashes were reported at the nearest �ve minute interval, then the use of �fteen minute

bins should be bias free. Consequently we report results for bins of 5, 15 and 30 minutes.

A second strategy is implicit in the double di¤erencing approach. Assuming no systematic

change of biases across time, then, as the model above outlined, the double di¤erence across

the pre and post period should mitigate the impact of any reporting bias. Finally we use

�xed e¤ects for each minute bin interval which help to control for equivalent biases across

control and treatment periods.

Fatal crashes. We turn �rst to the distribution of fatal crashes around the pricing

plan threshold. Again, our estimation draws on variation in such crashes across all EAs

over a 19 year period from 1987 to 2005.

The natural experiment produced by the price discontinuity lends itself to a number of

control comparisons. As outlined above, we test for a link between cellular use and crashes
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by comparing the di¤erence in crash rates before and after 9pm on weekdays during the

"post" period from 2002 to 2005 to the "pre" period before 1998 when pre-paid plans were

�rst introduced. As a robustness check, we examine this same double di¤erence (DD) for

weekends when the pricing thresholds are not in e¤ect.

Figure 7 illustrates this iterative di¤erence in crash rates across each of the control

periods. The histograms depict the average number of yearly crashes nationwide for

increasingly larger windows, ranging from 2 to 15 minutes, on both sides of 9pm for both

weekdays and weekends in the "pre" and "post" periods. We exclude crashes reported

as having occurred exactly at 9pm itself to circumvent the considerable on-hour bias in

reporting. Treating each year as an independent draw allows us to calculate standard

errors, which are displayed parenthetically. Surprisingly, the �gure indicates a rise in

crashes across the 9pm threshold in all quadrants except that within which the pricing

discontinuity actually occurs. None of the di¤erences, however, are signi�cant given the

calculated standard errors.
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Figure 3 depicts time trends in total fatal crashes summed across 20 minute intervals for

weekdays compared to weekends from 8 to 10pm in 2005. The vertical line again marks the

onset of the pricing plan threshold. In contrast to the depiction of call volumes in Figure

2, the plot of crash frequencies do not display any discernible break in weekday crashes

around the 9pm threshold.

We formally estimate the relative change in crashes around 9pm in the period of interest

with the following model:

(7)

crashy;m;d;b = �+�(Post �After 9pm)y;b+1After 9pmb+2Posty+�y+�m+�d+�b+"y;m;d;b

where crashy;m;d;b denotes the sum of crashes in year y, month m, day of the week d, and
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in minute bin b. Posty indicates whether the crash occurred during the period of both

high ownership and threshold conformity from 2002 to 2005, and After 9pmb is a dummy

variable indicating whether the crash occurred after 9pm.

The interaction term (Post�After 9pm)y;b is the explanatory variable of interest. Intu-
itively, our experimental comparison in this regression are di¤erentials around the threshold

in the "post" period from 2002 to 2005 compared to the same di¤erential in a control period

preceding 1998. We estimate the model for the years from 1987 to 1998 as well as from

2002 to 2005. Further, we restrict the regression to hours between 7 and 11pm.27 Fixed

e¤ects for each minute bin control for non-linear movement in crashes across the estimation

period as well as help control for reporting biases.28 The model also includes �xed e¤ects

to control for year, month and day of the week speci�c variation.

The regression is estimated with a Poisson distribution.29 Table 6 presents the results.

The �rst three columns report marginally negative but insigni�cant point estimates for

the interaction term of interest for the weekday 6pm to 10pm estimation. The fourth

column extends the treatment window to two hours after 9pm. The results indicate no

evidence for a positive increase in crashes, and our favored speci�cation, reported in the �rst

column, implies a upper bound of 2.4%. As a robustness check, the �nal column estimates

the double di¤erence using crashes on weekends rather than weekdays. The higher point

estimate for the weekend provides evidence that a systematic and unobserved change in

the driving environment across the pre and post periods is not masking the estimation

of positive weekday di¤erentials. Overall, the results provide no evidence for a positive

relative change in fatal crash rates across the threshold.

27Alternatively, we estimate the model for both shorter and longer time bands around 9pm. While the
standard errors are modestly sensitive to the choice of estimation window, the basic results are substantively
unchanged.
28We experimented with other, more granular, controls for the reporting bias. The choice of such controls

does not seem to qualitatively alter the results.
29The estimation choice is dictated by the highly non-normal shape of the crash count distribution. Many

of the year-weekday-minute bin cells contain 0 fatal crashes. A Poisson distribution represents one possible
distributional choice for our count data. Our results are also robust to estimations based on alternative
distributional assumptions (e.g. the linear probability model, and negative binomial regression).
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Table 5

RELATIVE PRE-POST CHANGE IN FATAL CRASH RATE AT 9PM THRESHOLD

DEPENDENT VARIABLE - FATAL CRASHES PER MINUTE BIN

WEEKDAY WEEKEND

6 PM - 10PM 6 PM - 11PM 6 PM - 10PM

5 MN 15 MN 30 MN 5MN 5MN
(1) (2) (3) (4) (5)

Post x After 9pm -0.0092 -0.0116 -0.0107 -0.0419** 0.0267
(0.017) (0.022) (0.024) (0.018) (0.030)

After 9pm 0.0308 0.0443* 0.0604*** -0.0284 -0.0021
(0.033) (0.023) (0.017) (0.037) (0.082)

Post -0.0317* -0.0729** -0.0897** -0.0372* -0.0835***
(0.019) (0.035) (0.037) (0.019) (0.030)

Minute Bin Fixed Effects X X X X X

Yr, DOW, Month
Fixed Effects X X X X X

N N = 29846 N = 11364 N = 6093 N = 36914 N = 13374

Notes:  The table presents poisson regression results for the pre (1990-1998) and post (2002-2004) difference in
aggregate fatal crashes for each minute bin on a particular day of the week-month-year.  The first three columns present
the basic specification for weekdays from 6pm to 10pm for 5, 10 and 15 minute bins while column (4) estimates the
model for 6pm to 11pm, and column (5) provides estimates for the weekend.  The After 9pm dummy variable is coded as
1 for any crash occuring after nine 9pm in the estimation period.  Constants and fixed effects are not reported.  All
estimations use robust standard errors and are clustered by day of the week X year.

* significant at 10%; ** significant at 5%; *** significant at 1%

All Crashes. We turn next to the pattern of all crashes around the pricing plan

threshold. A bene�t of expanding focus to all crashes is that non-fatal crashes are about

100 times more frequent than their fatal counterparts. A drawback is that, unlike the

FARS dataset, the SDS data of all crashes is limited to seven states in the period ranging

from 1990 to 2004.30 Figure 4 depicts the trend in crashes summed across 20 minute

intervals for weekdays in the "pre" and "post" periods for those states for which data is

available. Once again, no relative break is evident at the threshold.

We again formally test for driver response to the 9pm price discontinuity in the period

of interest through a panel regression. The estimated model is identical to the equation

30For Florida, data is available only until 2002, while for California, Illinois, Missouri and Pennsylvania,
data is available through 2003. Data is available until 2004 for Mexico and Maryland. Illinois reports the
time of crash only beginning in 1996, and Illinois and Pennsylvania did not make crash records available to
the SDS for 2002. There are a total of 55 EAs across the seven states of which 2 were eliminated because
they spanned state borders and problematized county-EA matching. The variability in data availability is
understandable given that the SDS must ultimately rely on each state to provide its own crash records.
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outline above, but with the crashes no longer restricted to just fatal crashes, and the

dependent variable ln(crashy;m;d;b). The model is estimated with an OLS regression for

the period from 7pm to 11pm for the years from 1990 to 1998 and 2002 to 2004.

Table 6 reports the results of the estimation. The table points to a negative double

di¤erence (Post �After 9pm)y;b across each of the weekday speci�cations. The results are
similar to the above estimates for fatal crashes�the weekday double di¤erence estimates

for the interaction are non-positive across speci�cations, and the weekend estimate o¤ers

no evidence that an unobserved confound is masking a positive e¤ect. Our favored speci�-

cation, presented in the �rst column, suggests an upper bound for the change in all crashes

of .9%.

Table 6

RELATIVE PRE-POST CHANGE IN ALL CRASH RATE AT 9PM THRESHOLD

DEPENDENT VARIABLE - LN(ALL CRASHES PER MINUTE BIN)

WEEKDAY WEEKEND

6 PM - 10PM 6 PM - 11PM 6 PM - 10PM

5 MN 15 MN 30 MN 5 MN 5 MN
(1) (2) (3) (4) (5)

Post x After 9pm -0.0244 -0.023 -0.0227 -0.0338 0.0235
(0.017) (0.016) (0.016) (0.028) (0.021)

After 9pm -1.519*** -0.897*** -0.571*** -0.412*** -0.0736
(0.019) (0.014) (0.015) (0.018) (0.049)

Post -0.164*** -0.175*** 0.345*** -1.916*** -2.015***
(0.024) (0.023) (0.023) (0.028) (0.022)

Minute Bin Fixed Effects X X X X X

Yr, DOW, Month
Fixed Effects X X X X X

N N = 34410 N = 11472 N = 5743 N = 43030 N = 13765

Notes:  The table presents OLS regression results for the pre (1990-1998) and post (2002-2004) difference in ln(all
crashes) data aggregated across the seven states for which data is available for each minute bin on a particular day of
the week-month-year.  The first three columns present the basic specification for weekdays from 6pm to 10pm for 5, 10
and 15 minute bins while column (4) estimates the model for 6pm to 11pm, and column (5) provides estimates for the
weekend.  after having eliminated crashes reported on each hour.  The After 9pm dummy variable indicates any crash
occuring after nine 9pm in the estimation period.  Constants and fixed effects are not reported.  All estimations use
robust standard errors and are clustered by day of the week X year.

* significant at 10%; ** significant at 5%; *** significant at 1%

In summary, the 9pm pricing analysis provides upper bounds of the relative change in

fatal crashes of about 2.4% and an upper bound of .9% for all crashes. This upper bound
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compares to the 4% increase that one would expect to see given the RT estimate of a 4.3

fold increase in relative crash risk, a baseline driver cell phone usage of 10%, and the 16%

discontinuity in call volume at the threshold implied by the MIT data. We comment on

the implications of these estimates further in the discussion below.

While the pricing discontinuity provides a relatively clean research design, one drawback

of this natural experiment is that it produces only a local average treatment e¤ect of the

increase in crash rates around weekdays at 9pm. Moreover, the estimated behavioral

response at 9pm is prompted by changes in cellular usage rather than changes in cell phone

ownership. To address these concerns, we provide an additional set of analyses in the next

section.

3.3 Additional Analyses

A series of additional empirical approaches con�rm our basic results. In the �rst approach,

we compare aggregate national trends in crashes and cellular ownership at the EA level.

Each EA consists of one or more economic nodes - a metropolitan or micropolitan statistical

area that serves as a regional economic center. The 172 EAs identi�ed by the BEA range

in population from 61,285 (North Platte, Nebraska) to 25 million (the EA spanning New

York City, Northern New Jersey and Long Island). EAs represent a greater level of

disaggregation than data at the state (or national) level, and, as such, are closer to the

ideal for this type of analysis. We then exploit implied di¤erences in cellular ownership

in predominantly urban versus rural counties within each EA, as an even more precise test

of the link between ownership and crashes. Finally, using a state-month panel design, we

examine whether complete legislative bans on driver cell phone use in a number of states

have had any impact on reducing the fatal crash rate.

3.3.1 Aggregate Trends in Crashes and Cell Phone Ownership

A basic test of whether cell phone use causes crashes is to compare the change in cell phone

ownership with the change in the rate of crashes across time. Figure 1 jointly depicts

the trend in cellular ownership with the trends in tra¢ c adjusted fatal and all crashes.

If anything, the �gure hints at a negative correlation between the two series. Such a

negative correlation would be even more pronounced if changes in cell phone usage per

month, depicted in Figure A1, were additionally considered.

However, given that the rise in cell phone ownership across regions is su¢ ciently het-

erogeneous, we can exploit variation across regions as well as years to more accurately pin

down the link between cellular ownership and crashes. Indeed, EAs are associated with

considerable variation in ownership. Ownership rates ranged from 19 to 57% across the
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EAs in 2001. By 2005, this range grew to 41 to 95% ownership. Accordingly, we estimate

the following model with OLS:

ln(Crash)r;y = �+ Cell Ownr;y + �V olr;y + �1r + �2y + "r;y

where ln(Crashr;y) denotes the log of crashes for region r and year y, while Cell Ownr;y
refers to cell phone ownership in percent terms for region r and year y. The model also

includes �xed e¤ects to control for region and year speci�c variation as well as more �exible

controls for region speci�c linear and quadratic time trends. As a robustness check, we

include one speci�cation which has an additional control, V olr;y, for tra¢ c volume across

region and year. All estimations are conducted at the EA level, with the exception of the

robustness speci�cation which is estimated at the state-level.

Table 7 presents the results of the estimation for both fatal and all crash data. The

�rst two columns provide estimations for the universe of fatal crashes for all 172 EAs from

1987 to 2005 for all states. Since cellular ownership is only observed from 2001 to 2005, we

code it as missing from 1993 to 2000, and assume it be zero prior to 1993. This strategy

allows us to e¤ectively construct a control period with zero ownership and contrast it with

the period for which ownership is both positive and known. The �rst column reports the

estimated percent change in the fatal crash rate given a 1% point increase in cell phone

ownership in a representative EA after controlling for EA and year �xed e¤ects. The next

column includes more �exible controls which allow for EA speci�c time trends. Columns

(3) and (4) repeat the exercise for all crashes for the six states for which data is available.

The point estimates in these speci�cations fail to suggest a link between ownership and

fatal crashes, and if anything, suggest a marginally negative relationship.

The �nal column includes a regression of fatal accidents controlling for state-year high-

way volume and provides an important robustness check of the results. This regressions

is limited to fatal accidents at the state, rather than the EA, level.31 Changes in tra¢ c

volume over time and region do not seem to alter the earlier results.

Given the favored speci�cation for all crashes, in column (4), our estimation allows us

to reject any e¤ect size larger than -.0032 + 1.96*.0031 = .0029. That is, we can place the

upper bound of the e¤ect on the all crash rate of a 1% point increase in cellular ownership

at .29% given a 95% con�dence interval. With current ownership at 75%, a simple linear

extrapolation then suggests that the introduction of cellular technology has caused no more

than a 22% increase in all crashes compared to the counterfactual scenario in which cell

phones were never used. An analogous calculation, using the regression result for fatal

31Tra¢ c is coded at the state level. Regressions are con�ned to fatal accidents since the limited number of
states in the SDS dataset precludes including all crashes in the estimation.As opposed to EA level penetration
which is available only since 2001, state level ownership data is available since 1999.
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Table 7

TRENDS IN CELLULAR OWNERSHIP AND CRASHES ACROSS REGION-YEAR

DEPENDENT VARIABLE - LN(CRASHES PER 100,000 POP)

Fatal Crashes (FARS) All Crashes (SDS) Fatal Crashes

Economic Area Economic Area State
(1) (2) (3) (4) (5)

-0.0010 -0.0004 -0.0018 -0.0032 -0.1274
(0.0013) (0.0002) (0.0024) (0.0031) (0.3948)

ln(Traffic Volume) 0.3978
(0.2803)

X X X X X

X X X X X

X X X

X X X

N = 1361 N = 1361 N = 315 N = 315 N = 540

0.86 0.93 0.96 0.99 1.00

Region FE x Year

Cell Phone Ownership

Year Fixed Effects

Region Fixed Effects

Region FE x Year2

* significant at 10%; ** significant at 5%; *** significant at 1%

R2

Notes: The dependent variable of this OLS regression is the natural log of the number of crashes in a given year for a
particular region from 1987 to 2005 for fatal crashes, and from 1990 to 2004 for all crashes.  For the first two columns,
crashes are confined to fatal crashes, while the next two columns report all crash data.  The explanatory variable of interest is
the rate of cell phone ownership (i.e. cell phone subscribers / population) for the corresponding year and region.  Constants
are excluded.  All estimations use robust standard errors and are clustered by EA.

N

crashes in column (2), suggests that the introduction of cell phones did not cause any

increase in fatal crashes as compared to the counterfactual.32

There are multiple plausible explanations for why our estimations do not yield signi�cant

results. One, of course, is the absence of any genuine correlation between crashes and

cellular ownership. A second possibility is that there are unobserved variables which are

correlated with the growth in cell phone ownership across regions and time. The likelihood

for this bias in results is more pronounced given the lack of EA level ownership data before

2001. A �nal possibility is that our test lacks power to detect the size of the true e¤ect.

The lack of precision in our all crash estimates can partially be attributed to the high

32These upper bounds neglect the dramatic rise in cell phone usage per subscriber in recent years, as well
as the increase in usage of cell phones speci�cally by drivers. For example, the FCC reports that cell phone
use per subscriber has risen from 140 to 740 minutes per month from 1993 to 2005. If one were to weight
yearly ownership by usage by subscriber, then our estimates of e¤ect size bounds might be even lower.
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level of aggregation of our unit of analysis. Though the EA represents the most disaggre-

gated level for which subscription data is widely available, our analysis ignores the potential

variation of cell phone ownership within a given Economic Area. Given systematic histor-

ical di¤erences in ownership across rural and urban areas, one strategy through which to

engage this variation, is to infer county speci�c cellular ownership through the rural/urban

character of each county. We turn to this analysis next.

3.3.2 Crashes & Urban/Rural Variation in Coverage

One drawback of the region-year regressions is that cellular ownership and crashes are

compared at a high level of aggregation. This aggregation introduces imprecision in the

estimated correlation between the two trends. As an alternative, more precise, estimation

strategy, we exploit the heterogeneity in the spread of cellular coverage in urban as compared

to rural areas. We �nd no additional evidence for a link between vehicle crashes and cell

phone ownership.

Urban/Rural Coverage Gap. Policy makers have long recognized the existence

of an urban-rural gap in telecommunications infrastructure. The Federal Communica-

tions Commission (FCC) �rst explicitly addressed urban-rural di¤erences in cellular service

provision in its annual report in 2002 (FCC 2002). The organization assessed competi-

tive di¤erences between urban and rural markets using a variety of classi�cation schemes

through which they distinguished urban from rural areas.33 Based on their analysis, the

FCC has consistently concluded that rural consumers have far less choice in providers�and

therefore inferior coverage�than their urban counterparts.

There have been attempts to redress this urban-rural imbalance. Most prominent

amongst such e¤orts is the Universal Service Fund (USF) which levies a tax on all interstate

and international telecommunications providers to fund telecommunications infrastructure

in rural areas. Between 2000 and 2005, the USF increased spending from $1.8 billion to $3.8

billion on programs to subsidize capital and operating costs for telecommunications service

provision in rural areas. Much of that increase was earmarked to rural wireless providers.

Despite these gains, rural areas still tend to be characterized by less provider choice, more

dead zones and worse service quality. Such factors cause�or perhaps re�ect� the lower

ownership levels found in rural as opposed to urban populations. At least in the early

years of cell phone technology, the marginal urban consumer has been more pro�table to

serve than her rural counterpart.34

33These classi�cation schemes included "Cellular Market Areas" (i.e. "Metropolitan Statistical Areas" vs
"Rural Service Areas"), population density, and "Economic Area nodal" versus "Economic Area non-nodal"
counties. The FCC reports clearly state, however, that, �The FCC does not have a statutory de�nition of
what constitutes a rural area."
34A news article in the USA Today highlights some of the concerns of rural consumers and the factors

33



The intuition underlying the analysis in this section is that trends in the urban-rural

gap in cellular ownership should be at least partly mirrored by trends in the urban-rural

di¤erentials in crash rates if cell phone usage impacts driving safety. Unfortunately, precise

measures of the urban-rural gap are di¢ cult to locate. The challenge is that ownership

data is not separately available for rural and urban areas.35 However, we are able to

con�rm the suggested evidence of lagging rural ownership using an indirect approach.

Since the most disaggregated subscription data is available at the level of the EA, a

�rst step in assessing urban-rural ownership is to identify the urban-rural character of each

EA. Accordingly, counties in the US are often classi�ed along a urban-rural continuum

depending on the size of the urban population and proximity to a metro area.36 Appendix

Table A2 enumerates the nine categories of counties on the urban-rural continuum and

also displays the distribution of counties and population across these categories in the year

2000.

From these county level classi�cations, we generate two measures of EA urban-rural

character. The �rst is the population-weighted average of the urban rural continuum codes

of the counties in each EA. The second is the distribution of the EA population across the

nine county types. Figure 10 presents an EA level scatter plot of cellular ownership against

the fraction of the EA population that resides in metropolitan counties (corresponding to

codes 1 to 3) in 2001�the �rst year for which EA level ownership data is available. The

�gure illustrates that metropolitan EAs tend to have higher levels of cellular ownership.

determining choice of cell tower location in rural markets (Davidson, USA Today, December 20th, 2005).
35Since 2001, the FCC has been collecting subscription data at a far more disaggregated geographical

level - the so-called rate centers. Rate centers are small geographical areas used by local carriers for a
number of purposes including toll determination. Urban rate centers are usually a few square miles while
very rural areas have rate centers encompassing hundreds of square miles. All service providers must report
total number of subscribers at the rate center level to the Number Resource Utilization/Forecast (NRUF)
database. There are 18,000 rate centers or on average 6 per county. This detailed data are not available to
the authors.
36This coding scheme was originated in 1975 by David L. Brown, Fred K. Hines, and John M. Zimmer for

a report Social and Economic Characteristics of the Population in Metro and Nonmetro Counties: 1970. It
was updated after both the 1980 and 1990 censuses. The current coding is from 2003 and is similar in spirit
to the earlier approach. However, in the 2000 census there were major changes to delineating metro areas
and measuring urban and rural areas and so the current coding is not comparable to that of the earlier
period.
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To test this relationship more formally, Table A4 in the Appendix presents the results

of EA level regressions of the change in ownership �rst from 1992 to 2001 and then from

2001 to 2005, on the two measures of urban-rural character.37 The results con�rm the

graphical intuition that cellular ownership was lagging in more rural EAs as of 2001. On

average, cell phone ownership was -1.9% points lower for every 1 point increase in the EA

average urban-rural continuum code in the period prior to 2001. This translates into a

di¤erence of about 14% in cell phone ownership between the most urbanized and the most

rural of EAs in 2001.38 The analogous estimate for the change in ownership from 2001 to

2005 is negative but insigni�cant. If rural areas narrowed the ownership divide during that

period, one would expect positive coe¢ cients on rural markers. If anything, the results of

the regressions suggests that the most urban counties made further gains relative to their

counterparts from 2001 to 2005.

Vehicular Crashes & Urban/Rural Character. Next we turn to trends in the

urban-rural di¤erential in fatal and non-fatal vehicular crashes during the period of high

cellular ownership. We classify fatal crashes as occurring in either metro, urban, or rural

counties using the urban-rural continuum codes. Since rural ownership lags urban owner-

ship within an EA, we expect ownership levels to be decreasing in the urban-rural continuum

codes. Consequently, within an EA, the more urban counties should have a higher level

37This change is equivalent to the level of penetration in 2001 given the assumed 0% penetration in 1992.
38The regression also suggests that penetration in 2001 is strongly correlated with the population share

of the major metropolitan counties � that is, a 1% increase in the metro population share of an EA is
associated with a 0.14% increase in cell phone ownership.
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of cellular ownership than suggested by their EA average, while the most rural counties

should have ownership levels lower than that indicated by their EA average. For ease of

exposition, we aggregate counties into three groups. Counties with urban rural continuum

codes 1-3, 4-7, and 8-9 in 2000 are grouped as metropolitan, urban/suburban, and rural

areas respectively.39

To test the relationship between county type and crashes, we regress county fatal crash

rates on EA level ownership as well as its interaction with the county type t:

(8) ln(Crash)r;y;t = �+Cell Ownr;y+
X

t2furb;rurg
t[Cell Ownr;y �Dt]+�r+�y+�t+"r;y;t

Table 8 presents the results of the OLS regressions. If increasing cellular ownership has

a su¢ ciently large impact on fatal crashes, one would expect the metropolitan crash rate

to rise relative to the rural rate. While crashes in rural areas are far less common than in

more populous urban and suburban areas, rural crashes are actually more likely to be fatal

because such crashes involve higher average speeds, fewer average safety restraints, and

relative delays in the arrival of medical care40. The �rst three columns provide estimation

results for fatal crashes, while the remaining columns provide results for all crashes. Fixed

e¤ects and EA speci�c linear and quadratic time trends are used to control for possible

confounds.

The �rst column con�rms the large di¤erences in levels across the three county types.

On average, urban/suburban and rural counties have fatal crash rates 31% and 68% higher

than that of metropolitan counties. The second and third columns indicate that higher

EA-level ownership is associated with a reduction in the fatal crash rate in metropolitan

counties. Within an EA ownership is decreasing across the urban-rural continuum. Because

the dummy variables are coded with the metro county type as the base case, if cellular

ownership is linked to the fatal crash rate, then one would expect negative coe¢ cients on

the interactions terms (urban � cell own) and (rural � cell own). Yet, relative to the e¤ect
of increasing ownership for metropolitan counties, there is an increase in the urban crash

rate, and no signi�cant di¤erence for rural counties. A F-test on the joint signi�cance

of cellular ownership and its interaction with county type yields an F-statistic of 29.9,

indicating signi�cance at the 1% level. These results are robust to the inclusion of linear

and quadratic time trends across the three county types. While the results are clearly

39We have run the analyses at a more disaggregate level - using the 1 to 9 urban rural continuum code -
and the results remain substantively similar.
40There is the intriguing possibility that the spread of cell phones may actually help reduce crash fatalities

especially in rural areas if crash victims or passing motorists are able to summon medical assistance more
promptly.
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inconsistent with a simple story of increasing cellular ownership leading to increasing fatal

crash rates, they could be indicative of heterogeneous treatment e¤ects within county types.

It is unclear, however, why such heterogeneity would exist.

Columns (4-6) present results from the same speci�cations using the SDS data for all

crashes for seven states from 1990 to 2004. Column (4) indicates that the level of all crashes

is lower in rural as opposed to metro areas. The �nal two columns indicate a small negative

e¤ect of ownership on metropolitan crash rates, but the interaction terms again o¤er no

evidence for a di¤erential e¤ect on crashes across urban and rural counties. An F-test on

the joint signi�cance of cellular ownership and its interaction with county type yields an

F-statistic of 1.39 which is insigni�cant at the 10% level. These results are robust to the

inclusion of �exible time trends across the county types. In summary, there appears to

be no evidence of di¤erential trends in urban-rural crash rates linked to increasing cellular

ownership.

3.3.3 Legislative Ban on Cell Phones & Crashes

In our �nal approach, we estimate the impact of legislative bans which restrict cellular

use by drivers. Three states have legislated complete bans on hand-held phones: New

York was the �rst in November of 2001, followed by New Jersey in July 2004, and then

Connecticut in October 2005. Beyond these states, a number of municipalities have also

enacted complete bans. The largest of these municipalities are Washington D.C. which

enacted a complete ban in July 2004, and Chicago, Illinois whose ban took e¤ect in July

of 2005. Six additional states have legislated partial bans on driver cellular use, but each

of these bans targeted a modest fraction of drivers (Table A5 in the Appendix enumerates

the states and large municipalities with complete or partial bans).41

Figure 9 reports the raw monthly counts of fatal crashes for the months preceding

and following the enactment of each complete ban for the �ve relevant regions. The

series for Connecticut and Chicago are truncated due to the relatively recent imposition

of their respective bans. The �gure indicates no apparent drop in crashes for any of the

regions during the month immediately following the ban (t+ 1) as compared to the month

immediately preceding the ban (t � 1). An examination of longer horizons reveals no

signi�cant dip in crashes for any region other than, at �rst glance, the state of New York.

However, we attribute the drop in crashes in New York at least partially to the attacks on

September 11th, 2001, as opposed to the imposition of the legislative restrictions. In fact,

41Chicago is the largest municipality to enact a complete ban against driver cell phone use. Other
smaller municipalities have also enacted bans. However, of these bans, many are subject to minimal
enforcement. An enumeration of municipalities with bans can be found in the "Phones and Highway
Safety: 2005 Legislative Update" published by the National Conference of State Legislatures (available at:
www.ncsl.org/programs/transportation/cellphoneupdate05.htm#stateCell)
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Table 8

LINK BETWEEN CRASHES AND URBAN/RURAL CHARACTER

DEPENDENT VARIABLE - LN(CRASHES PER 100,000 POP)

Fatal Crashes (FARS) All Crashes (SDS)
(1) (2) (3) (4) (5) (6)

0.3134*** 0.3306*** 0.3094*** 0.0390 0.0234 0.1370**
(0.0254) (0.0332) (0.0378) (0.0419) (0.0735) (0.0548)

0.6776*** 0.5898*** 0.6818*** -0.2004*** -0.2518** -0.2243***
(0.0428) (0.0779) (0.0678) (0.0613) (0.1023) (0.0821)

-0.0019*** -0.0019*** -0.0008* -0.0008*
(0.0002) (0.0002) (0.0004) (0.0004)

0.0053*** 0.0055*** 0.0005 -0.0012
(0.0011) (0.0015) (0.0020) (0.0027)
0.0010 -0.0003 -0.0004 -0.0011

(0.0030) (0.0040) (0.0047) (0.0057)

X X X X X X

X X X X X X

X X X X

X X

N = 46758 N = 23226 N = 23226 N = 6345 N = 2617 N = 2617

0.31 0..32 0.32 0.48 0.50 0.50

EA Fixed Effects x Year

Urban/Suburban County

Year Fixed Effects

EA Fixed Effects

Rural County

Cell Phone Ownership

Urban/Suburban x Ownership

Rural x Ownership

EA Fixed Effects x Year2

* significant at 10%; ** significant at 5%; *** significant at 1%

R2

Notes:  The dependent variable for the first three columns is the natural log of the number of fatal crashes per 100,000 in population in
a given year for a particular Economic Area.  For the next three columns the dependent variable is the per capita log of all crashes for
EAs in SDS states.  Counties with urban-rural continuum codes of <= 3, 4 to 7, and >= 8 are respectively designated as metro,
urban/suburban and rural.  All errors are robust and clustered at the EA level.

N

the New York legislation, while nominally enacted in November of 2001, was not enforced

with binding �nes until March of 2002 which corresponds to (t+ 4) in the �gure.
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In order to control for possible confounds in crash patterns during this period, we

estimate the following Poisson regression at the EA level for fatal crashes from 2000 to

2005:

(9) Crashr;m;y = �+ �Banr;m;y + �r + �m + �y + "r;m;y

where Banr;m;y is a dummy variable which indicates that a complete ban was in e¤ect for

any part of a given EA r in month m, and year y. Month, year, and EA �xed e¤ects were

included along with linear time trends by EA to �exibly control for time and region speci�c

variation in crashes. The results of the estimated coe¢ cient b� (1.38%, p=.93) con�rms the
general intuition of Figure 9� legislative bans on cellular use do not seem to reduce fatal

crash counts.

4 Discussion

The present analysis implies lower crash rates than suggested by popular or academic

belief. Table 9 enumerates the absolute risk rates for aggregate crashes implied by the RT

study�the most widely cited study on cellular use and relative crash risk�under varying

assumptions of cell phone usage by drivers, as well as the estimates of call volume increase

produced by our two �rst stage data sets. For example, using the 2006 NOPUS estimate

of handheld and handsfree driver cell phone use of 10%, and the estimatde call volume
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increase from 9 to 10pm of 16% from the MIT sample, the 4.3 fold increase in relative crash

risk of RT implies a 4% relative increase in crashes during the hour following the weekday

9pm threshold.

Since the TNS sample is larger and more representative than the MIT sample, the

rise in call volume is arguably closer to 33% than to 16%. A key assumption relates to

cellphone usage during nighttime driving. However, we were unable to �nd any accurate

and recent assessments. The NOPUS estimate of 10% cellular usage was conducted during

the day. The only nighttime assessment of cell phone usage, the 1.5% estimate of drivers

on the NJ Turnpike, was published in 2004, but relied on data collected between March

and July of 2001 and focused explicitly on drivers on high speed roadways (Johnson et.

al. 2004). As such, the estimates are from a period with minimal cellular ownership, and

near-zero hands-free usage.42 It is reasonable then to assume that nighttime usage may

be lower than the daytime NOPUS �gure of 10% although interestingly the NJ Turnpike

study found no signi�cant di¤erence between afternoon and nighttime usage. Yet it is also

likely that combined usage (handheld and handsfree) during the late evening hours in 2005

is well above 1.5%.

Our most convincing evidence suggests that cellular use does not increase crash risk.

That is, point estimates for the increase in both fatal and all crashes are approximately

0 across speci�cations. In this sense, the �ndings of this paper are more consistent with

the trends of Figure 1 than that of the estimates produced by RT. In fact, for all but

implausibly low ranges of possible cell phone use, the upper bounds of our estimates for

all crashes fall below the RT estimates. Given the lower frequency of fatal crashes, the

resulting standard errors, as well as upper bounds, of the estimation are higher than for

the all crash analysis. Nevertheless, the upper bound of 2.4% for the fatal crash rate still

falls below most plausible RT estimates.

42Note that the NOPUS estimates of cellular usage doubled from 2000 (3%) to 2005 (6%), and was 4%
in 2002.
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Table 9

COMPARISON OF 9PM % CRASH INCREASE IMPLIED BY
RT AND PRESENT ANALYSIS

9PM THRESHOLD
RT STUDY ANALYSIS

UPPER BOUND

Driving Time on Cell Phone Fatal All

1.5% 4% 7% 10%
9pm Call Volume Rise

16% (MIT) 0.8 1.9 3.0 4.0 2.4 0.9

33% (TNS) 1.6 3.8 6.2 8.2 2.4 0.9

Notes: This table presents the increase in aggregate crash risk due to driver cell phone use implied by the RT (1997) study
as compared to the present study.  The table reports the risk increase implied by varying estimates of driver cell phone use,
as well as the estimates of call volume increase from 9pm to 10pm indicated by the two first stage samples.  The mean RT
relative crash risk estimate of 4.3 was used to calculate the figures.

An important caveat of our analysis is that the estimated e¤ects represent a local treat-

ment e¤ect. That is, while our research design allows for a relatively precise estimation

of the driver response at 9pm on weekdays after 2002, mappings to an absolute crash risk

presume that the local average treatment e¤ect is in fact the average treatment e¤ect. One

way through which we dealt with the issue of generalizability is to examine aggregate EA

level trends in both ownership and crashes as well as urban-rural di¤erentials in crashes.

While these analysis provide directional support for a zero e¤ect, they su¤er from greater

imprecision than that produced from the natural experiment. Importantly, the analysis

reveals no salutary e¤ect of existing state-wide cell phone bans. Additionally, we do not

estimate the rise in call volume exclusively for drivers. It is possible that driver sensitivity

to the 9pm price threshold is less than that of non-drivers. However, the rise in cell phone

usage amongst drivers at the threshold would have to be quite modest for the upper bounds

of our analysis for all crashes to fall below the RT estimates.

What might then explain the departure of our results from that of RT? As mentioned

earlier, the RT study, inventive as it was, su¤ers from two principle drawbacks. The

�rst is that it relies on an unrepresentative sample of those involved in a recent crash.

Additionally, there is the possibility that the RT result is driven by a confound such as

driver anxiety which prompts both cellular use as well as higher crash risk. Our study
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for the most part avoids these problems. Finally, it is possible that the �ndings of RT,

generated in 1997, may no longer apply to the seasoned cell phone drivers of recent years.

More recent studies, however, have very closely replicated the RT results (McEvoy et. al.

2005). We turn next to the mechanisms which might explain the absence of a correlation

between crashes and cellular use.

Interpreting the E¤ect Magnitude. If cell phones are a source of distraction, given
limits to attentional capacity, how is it that our estimates suggest that such phones have

zero, or perhaps even a mitigating, in�uence on crashes? Indeed, there are a number of

plausible explanations for why cell phone use may appear to reduce rather than raise crash

frequency.

One explanation is that drivers who use cell phones compensate for the added distrac-

tion by modifying their driving behavior. This so called �Peltzman E¤ect�was popularized

by Sam Peltzman who suggested that the bene�ts of seat-belt regulations might be o¤set

by the riskier driving of those who substituted one form of risk for another (1975). While

compensatory responses to the imposition of seat-belts may seem far-fetched, it is more

plausible to imagine drivers who slow down, pull over, shift to uncongested lanes or road-

ways, or simply allocate more attention to driving in response to making or receiving a cell

phone call.

A second, related, possibility is that the drivers who tend to use cell phones while driving

are drivers who have an a¢ nity for riskiness. In this scenario, risk loving drivers simply

use cell phones as a substitute for other distractions (e.g. talking to a fellow passenger, or

�ddling with their radios). Hahn and Prieger present a model for such behavior, as well as

survey evidence which suggests that driver heterogeneity in riskiness has led most research

to signi�cantly overestimate the impact of cell phone use on crashes (2006). Much like our

study, they conclude that driver use of cell phones has close to a zero e¤ect on crashes.

A third possibility is that cell phones actually improve driver outcomes for some drivers

by alleviating boredom. The NHTSA reports that 100,000 crashes, and 1500 fatal crashes

each year are attributable to driver fatigue or sleepiness (NHTSA 2004). "The 100-Car

Naturalistic Study" concluded that 20% of crashes and 12% of near-crashes were linked to

driver fatigue (NHTSA 2006a). The dangers of fatigue may be particularly pronounced

for drivers accustomed to driving long distances or long hours such as large truck or cab

drivers. In 2003, the Federal Motor Carrier Safety Administration implicated fatigue as

a factor in 13% of all fatal large-truck crashes.43 It is possible that for a certain class of

drivers, cell phone use actually reduces fatigue and leads to safer outcomes.

Finally, the e¤ect of cellular use on crashes may be heterogeneous across drivers. That

is, while the local average treatment e¤ect may be marginally negative or zero, there may

43Reported as a part of the Report to Congress on the Large Truck Crash Causation.
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be drivers for whom the use of cell phones is particularly detrimental, as well as some

drivers for whom the e¤ect is negligible or even bene�cial. Since our estimation does not

distinguish between di¤erent driver types, our results could be masking the variation in the

dangers of cell phone use that is evident in some of the experimental results. One possible

direction of future research is to explore the potential heterogeneity of this e¤ect.

Implications for Welfare & Policy. Incontestably, cell phones provide economic

value to drivers. Driver use of cell phones has been increasing over the years, and there is

some evidence that such use continues even in spite of explicit regulations. The Harvard

Center for Risk Analysis pegged the value of non-emergency cellular calls by drivers at $43

billion annually (Lissy et. al. 2000). Yet, despite the transparent bene�ts, a majority of

Americans support bans of driver cell phone use and view such devices as a leading threat

to public safety (Gallup 2003). A large number of municipalities, every state in the nation,

as well as Congress itself has either considered or passed legislation against driver use of

cell phones during the last several years.

In light of the bene�ts of cellular devices, our results suggest that such bans on all

cellular use may not be economically e¢ cient. However, given that our results do not rule

out heterogeneity in the riskiness of cell phones across driver type, then bans on certain

demographics, or bans on cellular use in certain contexts may indeed be worthwhile. Bans

of cell phone use by teenagers in a number of states suggests that policy makers believe

in such heterogeneity in risk (AAA 2007). More research should be done to elucidate the

subpopulations of drivers for whom the link to crashes may indeed be relatively high.

Moreover, policies aimed at regulating cellular usage while driving trade o¤ the value

to society of unfettered cell phone use against the risk to life, limb and property. As such,

the estimates of our paper could then be used to make explicit the statistical value of life

which is implicit in such policies and could further inform cost-bene�t analyses of the same

(see Kniesner and Viscusi 2003, Johansson 2002 for discussion of the statistical value of life

implied by regulatory decisions).

5 Conclusion

The link between cell phone use and driver safety has emerged in recent years as a topic

of considerable research and policy interest. Most studies have concluded that cell phone

usage increases crash risk with some even comparing its danger to that of alcohol consump-

tion. The most notable of these studies (RT) suggest that cell phones result in a four fold

increase in relative crash risk. Policy makers in several states have responded by pushing

through either partial or complete bans on cell phones while driving.

We investigate the link between driver phone use and crash rates by exploiting a natural
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experiment induced by a discontinuity in pricing in popular cell phone plans. We �rst

document a jump in call volume immediately after 9 pm on weekdays�when most plans

since 2002 allow for free calls�using two large, distinct set of call level data. No such jump

occurs on the weekend. Given call sensitivity to the change in marginal prices, we then

examine the corresponding change in crash rates around the 9pm threshold since 2002. In

order to control for possible confounds, we compare the change in crashes around 9pm to

the same change in the period prior to the introduction of pre-paid plans in 1998, as well as

to weekends. While the RT results imply an approximately 1 to 8% rise in crashes across

the pricing threshold, we �nd no evidence for a relative rise in crash rates. In fact, the

upper bounds of our estimates allow us to rule out any rise in fatal crashes larger than 2.4%

and any rise in all crashes larger than .9%. To corroborate our results, we pursue three

additional empirical strategies. None of these provide evidence to support a link between

crash rates and driver cell phone use.

Reconciling our �ndings with that of the 4.3 fold increase in relative crash risk observed

by RT presents a challenge. However, a few hypotheses exist. Drivers for whom cell

phones greatly increases the risk of a crash may be overrepresented in the RT sample. Such

selection e¤ects suggest that the RT result is at best an upper bound for the population of

drivers as a whole. Further, risk loving drivers may simply treat cell phones as a substitute

for other distractions (e.g. talking to a fellow passenger, or �ddling with their radios) (Hahn

and Prieger 2006).

It is important to note, however, that this research does not imply that cell phone use

is innocuous. It simply implies that current cellular use by drivers does not appear to

cause a rise in crashes. It could be that drivers who use such devices compensate for

the added distraction by driving more carefully. This hypothesis is consistent with the

theory put forth by Peltzman (1975). In the least, we believe that these �ndings should

renew interest in empirical research examining the e¤ects of cell phone use, and possibly

reopen policy discussions on the costs and bene�ts of regulations where such dialogue has

quieted. One direction of future research which may prove particularly important to policy

makers involves examining whether the in�uence of cellular use di¤ers across drivers and

contexts. Our research design allows for such an analysis of driver heterogeneity if one

uses di¤erences in cell phone price sensitivity across demographic groups as an additional

source of treatment variation.
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7 Appendix

Table A1.

SUMMARY OF DATA SOURCES

DATA SOURCE YEARS DESCRIPTION
(1) (2) (3)

Fatal Crashes Fatality Analysis Reporting System (FARS) 1987 - 2005 Crash records for all fatal crashes for all 50 states
All Crashes State Data System (SDS) 1990 - 2004 Crash records for all crashes for seven states
Traffic Federal Highway Administration 1987 - 2005 Traffic volume by county by year

Cellular Subscribers Cellular Telephone Industry Association Survey (CTIA) 1999 - 2005 Cellular subscribers by state by year
Federal Communications Commission (FCC) 2001 - 2005 Cellular subscribers by Economic Area (EA)

Population Bureau of Labor Statistics (BLS) 1987 - 2005 Yearly population by county
EA - County Codes The Bureau of Economic Analysis 2000 EA codes for each county

Reality Mining Project, MIT 2005 Logs tracking ~80,000 outgoing cellular calls for
60

TNS Telecom 2000 - 2001 Data from cellular phone bills for 9000+
households

Provider Pricing Plans Econ One Research 2001 - 2005 Historical pricing plan details for all providers
offering plans in NYC

Provider Market Shares S&P Industry Reports 1999 - 2005 Market shares by provider by year

United States Census 1990 - 2005 Population density by county

United States Department of Agriculture 1990 - 2005 Urban/ Rural classifications by county

URBAN/RURAL GAP

ACCIDENT/TRAFFIC

PENETRATION DATA

PRICING DATA

CALL VOLUME DATA
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SUMMARY STATISTICS

BY ECONOMIC AREA (EA)

N MEAN MIN MAX MED

(1) (2) (3) (4) (5)

in Millions

172 1.45 0.06 23.95 0.63
(2.60)

172 1.72 0.06 26.38 0.76
(3.01)

% share of Population

2001 168 40.2 19 57 40.5
(7.2)

2005 169 68 41 95 67
(10.2)

rate per 100,000

1990 172 19.4 9.4 40.0 18.7
(5.7)

2005 172 17.4 7.0 44.3 16.2
(6.3)

rate per 100,000

1990 55 2239 1013 4294 2105
(921.2)

2003 46 2170 793 3573 2370
(810.4)

Table A2

POPULATION

2005

1990

PENETRATION

ALL CRASHES

FATAL CRASHES
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DESCRIPTION NUMBER % POP
(1) (2) (3)

Counties in metro areas of 1 million in population or more 413 0.53
Counties in metro areas of 250,000 to 1 million in population 325 0.20
Counties in metro areas of fewer than 250,000 in population 351 0.10
Urban population of 20,000 or more, adjacent to a metro area 218 0.05
Urban population of 20,000 or more, not adjacent to a metro area 105 0.02
Urban population of 2,500 to 19,999, adjacent to a metro area 609 0.05
Urban population of 2,500 to 19,999, not adjacent to a metro area 450 0.03
Completely rural or less than 2,500 in urban population, adjacent to a metro area 235 0.01
Completely rural or less than 2,500 in urban population, not adjacent to a metro area 435 0.01

Table A3

8

4

7

5
6

9

COUNTY AND POPULATION DISTRIBUTION ACROSS THE URBAN-RURAL CONTINUUM IN 2000

CODE

3
2
1
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CHANGE IN % CELLULAR OWNERSHIP

1992 - 2001 2001 - 2005
(1) (2) (3) (4)

-1.929*** -0.629
(0.3120) (0.7590)

0.139*** 0.205*
(0.0470) (0.1190)

0.026 0.108
(0.0420) (0.1610)

-0.026 -0.007
(0.0490) (0.2100)

0.016 0.105
(0.0470) (0.1120)

-0.024 0.138
(0.1130) (0.1080)

-0.031 0.191*
(0.0490) (0.1060)

-0.128 0.059
(0.0790) (0.1150)

0.026
(0.0760)

0.135
(0.1930)

R2 0.17 0.27 0.01 0.08

N = 168 N = 168 N = 172 N = 172

CELLULAR OWNERSHIP & URBAN/RURAL CHARACTER

* significant at 10%; ** significant at 5%; *** significant at 1%

N

Notes: Penetration refers to number of subscribers for every 100 in population.  EA rural code refers to
the county average urban/rural continuum code weighted by population for an EA in year 2000.  More
rural EAs are assigned higher value types.

% Pop - County Type 9

Table A4

% Pop - County Type 8

EA Rural Code (Type)

% Pop - County Type 1

% Pop - County Type 2

% Pop - County Type 3

% Pop - County Type 4

% Pop - County Type 5

% Pop - County Type 6

% Pop - County Type 7
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SUMMARY OF STATE BANS ON CELL PHONES

STATES DATE OF ENACTMENT SCOPE OF BAN PUNISHMENT

Connecticut Oct 2005 Complete $100 fine
New Jersey July 2004 Complete Secondarily enforced, fines from $100-250
New York Nov 2001* Complete $100 fine

Washington D.C. July 2004 Complete $100 fine (first offense waivable)
Illinois Complete ban for Chicago

Colorado Ban on permit drivers Secondarily enforced, fine of $15
Deleware Ban on permit drivers Similar to reckless driving penalties

Maine Ban on permit drivers No penalty specified
Maryland Ban on permit drivers License may be suspended for up to 90 days
Minnesota Ban on permit drivers License may be restricted

Texas Ban on permit drivers* Not Available

NOTE. Table compiled from National Conference of State Legislatures reports, as well as various other news sources.  New York law was enacted in November
2001, but fines were not fully binding until March 2002.  In New Jersey and Colorado, cell phone use is ticketed only in combination with some other violation.
California has also passed a state-wide ban on handheld cellular usage, but the ban will not go into effect until July of 2008.  The Texas ban on permit drivers
applies to drivers only for the first six months following the issuance of a permit.
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Figure A2, Outgoing Calls from 12pm – 12am in 2005
(60 mn bins)
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(60 mn bins)
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