Working Paper Series

	CGC 00.038.166/0001-05				
Working Paper Series	Brasilia	n. 219	Oct.	2010	p. 1-54

Working Paper Series

Edited by Research Department (Depep) - E-mail: workingpaper@bcb.gov.br
Editor: Benjamin Miranda Tabak - E-mail: benjamin.tabak@bcb.gov.br Editorial Assistant: Jane Sofia Moita - E-mail: jane.sofia@bcb.gov.br
Head of Research Department: Adriana Soares Sales - E-mail: adriana.sales@bcb.gov.br
The Banco Central do Brasil Working Papers are all evaluated in double blind referee process.
Reproduction is permitted only if source is stated as follows: Working Paper n. 219.
Authorized by Carlos Hamilton Vasconcelos Araújo, Deputy Governor for Economic Policy.

General Control of Publications

Banco Central do Brasil
Secre/Surel/Cogiv
SBS - Quadra 3 - Bloco B-Edifício-Sede - 1° andar
Caixa Postal 8.670
70074-900 Brasília - DF - Brazil
Phones: +55 (61) 3414-3710 and 3414-3565
Fax: +55 (61) 3414-3626
E-mail: editor@bcb.gov.br

The views expressed in this work are those of the authors and do not necessarily reflect those of the Banco Central or its members.

Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced.

As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem, necessariamente, a visão do Banco Central do Brasil.

Ainda que este artigo represente trabalho preliminar, é requerida a citação da fonte, mesmo quando reproduzido parcialmente.

Consumer Complaints and Public Enquiries Center

Banco Central do Brasil
Secre/Surel/Diate
SBS - Quadra 3 - Bloco B - Edifício-Sede - 2° subsolo
70074-900 Brasília - DF - Brazil
Fax: +55 (61) 3414-2553
Internet: http://www.bcb.gov.br/?english

The Brazilian Interbank
 Network Structure and Systemic Risk*

Edson Bastos e Santos ${ }^{\dagger}$
Rama Cont ${ }^{\ddagger}$

This Working Paper should not be reported as representing the views of the Banco Central do Brasil. The views expressed in the papers are those of the authors and do not necessarily reflect those of the Banco Central do Brasil.

Abstract

We explore the structure and dynamics of interbank exposures in Brazil using a unique data set of all mutual exposures of financial institutions in Brazil, as well as their capital reserves, at various periods in 2007 and 2008. We show that the network of exposures can be adequately modeled as a directed scalefree (weighted) graph with heavy-tailed degree and weight distributions. We also explore the relationship between connectivity of a financial institution and its capital buffer. Finally, we use the network structure to explore the extent of systemic risk generated in the system by the individual institutions.

Keywords: contagion, systemic risk, macro-prudential regulation, liquidity, leverage.

JEL Classification: C10, E44, E58, G01, G21.

[^0]
1 Introduction

The recent financial crisis has emphasized the importance of systemic risk, defined as macro-level risk which can influence the entire stability of a financial system. Control over systemic risk has been the main motivation of the recent bailouts of large financial institutions in United States. Regulators have had great difficulties anticipating the impact of defaults partly due to a lack of both visibility and relevant indicators on the structure of the financial system. Therefore the focus on Too big to fail, maybe is not the right criterion, but contribution to financial stability and possibility for contagion could be better ones, i.e., Too interconnected to fail, see Griffin (2008). Availability of better indicators of systemic risk would have greatly helped formulating a consistent approach to bailout. Elsinger et al. (2006), Furfine (2003), Forbes and Rigobon (2002), Upper and Worms (2004), Wells (2004). In particular, Elsinger et al. (2004).

Section 2 provides details about the financial institutions and details about exposures and capitals comprising the data sets. Section 3 provides an empirical analysis of the topology of the interbank network for the Brazilian Financial System. As far as we know this is the first study to provide a full detailed description of the interbank topology considering only real data. Most of the studies so far have either focused on clearing financial systems, e.g., Ágnes Lublóy (2006), Iori et al. (2008), Cajueiro and Tabak (2008), Rørdam and Bech (2009) or considered incomplete sets of data, Elsinger et al. (2004), Upper and Worms (2004), Degryse and Nguyen (2007), thereupon, completing the data set with methods such as maximizing entropy or cross-entropy. An interesting approach was suggested by Elsinger et al. (2006), where the analysis of interbank network was extended to other sources of risk, such as the credit and market risks originated from non-financial institutions. However, it was required many assumptions regarding the estimation of the data set. In Section 4, we study the relationship between capital reserves and exposures. We propose a linear model for the concept of capital buffer and provide additional insights for the distribution behavior of residuals of the model proposed, therefore, complementing the previous section. Section 5 is mainly concerned with systemic risk. We identify the impact of contagion if any particular bank fails with its obligations with respect to other financial institutions. To analyze contagion in this context, we define what is default in terms of tier I and tier II capital. This is crucial and many authors usually don't give it the proper importance, hence, considering unrealistic assumptions, Mistrulli (2007), Cont and Moussa (2009). In this section, we extend the systemic risk analysis incorporating other sources of risk, such as market, credit and liquidity risks. Section 6 provides the conclusions for the study.

2 Data Description

2.1 Mutual Exposures

The Brazilian Financial System encompassed 2,400 financial institutions chartered by Banco Central do Brasil. Table 1 shows that the number of financial institutions of Type I and Type II are less than of type III. Type I banking institutions have commercial portfolios, and Type II represent all other banking institutions excluding Type III which are subject to particular regulations. Despite their reduced number, financial institutions of Type I and II accounts for the majority of total assets in the Brazilian Financial System (close to 98%), see Table 2. This is intuitive, since the majority of financial institutions that are of our interest are considered as either Type I or II, such as multiple banks, savings banks, investment banks, development banks, and other security brokerage or distribution companies. In addition, the majority of Type I and Type II financial institutions, which can be seen as a good proxy of the Brazilian Financial System, are mainly held by private capital (approximately 70\%) and operate as a financial conglomerate (approximately 75%).

Since most of the financial institutions belong to a conglomerate, it is quite meaningful to analyze contagion from a consolidated perspective because funds and liquidity are managed as if all affiliated financial institutions are only one. To cope with this fact, we consider only consolidated information for financial conglomerates. The accounting standards for consolidation of financial statements were established by Resolutions 2,723 and 2,743 , BCB (2000a,b), and they are very similar to IASB and FASB directives. If we regard financial institutions of Type I and II as conglomerates, the number of institutions is reduced substantially.

In summary, our database considers 6 dates, i.e., June 2007, December 2007, March 2008, June 2008, September 2008 and November 2008. The interbank exposures for all financial conglomerates contemplate all sources risk, that is, fixed-income instruments (certificate of deposits and debentures), borrowing and lending (credit risk), derivatives (including over-the-counter instruments such as swaps) and foreign exchange (currencies). It is important to note that all derivatives were accounted by their market prices when available, or fair value when a model-based valuation is required. It is also important to remark that all the exposures represent real operations.

2.2 Capital Reserves

We consider three types of capital, as defined in the guidelines provided by Basel Accord I, BIS (1988), that is, the Required Capital C_{r}, the Capital tier I C_{1} and the Reference Capital $C_{2}{ }^{1}$

Considering both the Brazilian legal system and the types of financial instruments Brazilian banks have access to build their capitals, Banco Central do Brasil, in accordance with the Basel I and II Accords, issued Resolution 3,444, BCB (2007a), determining that banks compute tier I Capital as the accounting concept of shareholder's equity plus net income (loss), deducted by redeemed preferred stocks, capital and revaluation of fixed assets reserves, deferred taxes, and non-realized gains (losses), such as mark-to-market adjustments from securities registered as available-for-sale and hedge accounting. Eligible tier II Capital is equal to the sum of these same deductions, excepted for the deferred taxes, in addition to complex or hybrid capital instruments and subordinated debt. Reference Capital is just the sum of tier I and tier II capitals.

The Required Capital is a function of the associated risks regarding each financial institution's operations, whether registered in their balance sheets (assets and liabilities) or not (off-balance sheet transactions), as defined in Resolution 3,490, BCB (2007b). Roughly speaking, the Required Capital C_{r}, can be computed as

$$
\begin{equation*}
C_{r}=\delta \times \text { Risk Base }, \tag{1}
\end{equation*}
$$

where the δ is the minimum required Basel Index and Risk Base is the sum of the following components: credit exposures weighted by their respective risk; foreign currencies and gold exposures; interest rate exposures; commodity prices exposures; stocks prices exposures; and, operational risk exposures. It is important to remark not only that these exposures include all the financial conglomerate counterparties, including corporations, mutual and hedge funds, individuals and government, but also that the maximum allowable leverage for the Brazilian financial institutions is approximately 9.10 , instead of 12.50 . This last observation is a consequence of the minimum required Basel Index of $\delta=0.11$ which is different from the American financial system which requires a minimum Basel Index of $\delta=0.08$ for its financial institutions.

[^1]
3 Interbank Network Topology

3.1 Network Representation

We could view the interbank system as a directed network Γ_{t} for $t=1,2, \ldots, T$. The interbank system Γ_{t} is defined as the triplet $\Gamma_{t}=\left(\mathcal{V}_{t}, \mathcal{L}_{t}, \mathcal{C}_{t}\right)$, where the vertices $\mathcal{V}_{t}=\left\{1,2, \ldots, n_{t}\right\}$ are the existing financial conglomerates on time t, the matrix \mathcal{L}_{t} of dimension $n_{t} \times n_{t}$ represents the exposures among these financial institutions and $\mathcal{C}_{t}=\left\{C_{r}, C_{1}, C_{2}\right\}$ is the capitalization structure. Each element $\ell_{i j} \in \mathcal{L}_{t}$ represents that bank i has an exposure to bank j, that is, if all exposures should be cleared in time t, bank i should receive from bank j the amount $\ell_{i j}$.

From \mathcal{L}_{t}, we may define the adjacency matrix \mathcal{A}_{t} of same dimension as \mathcal{L}_{t} whose elements are defined as the indicator function of the elements of the exposure matrix \mathcal{L}_{t}, that is $a_{i j}=\mathbb{1}_{\left\{\ell_{i j}>0\right\}}$ for all $a_{i j} \in \mathcal{A}_{t}$. We may also represent the adjacency matrix \mathcal{A}_{t} as a vector \mathcal{E}_{t} of edges, listing the financial conglomerates that are connected. The elements are defined as positions of the elements of the adjacency matrix that are equal to 1 , that is, all the pairs $\{(i, j)\} i, j \in \mathcal{V}_{t}$ for which $a_{i j}=1$. This representation will be useful for the clustering and mixing assortativity analysis in Subsection 3.5.

For a directed network the number of edges in respect to a vertice is denoted degrees and depends on the direction of the exposure. The in-degree $k_{i n, i}$ and out-degree $k_{\text {out }, i}$ of bank $i \in \mathcal{V}_{t}$ are defined as

$$
\begin{equation*}
k_{i n, i}=\sum_{j \in \mathscr{Y}_{\text {in }, i}} a_{i j}, \quad k_{\text {out }, i}=\sum_{j \in \mathscr{Y}_{\text {out }, i}} a_{j i}, \tag{2}
\end{equation*}
$$

where $\mathscr{V}_{\text {in }, i}=\left\{j: a_{i j}=1\right\}$ and $\mathscr{V}_{\text {out }, i}=\left\{j: a_{j i}=1\right\}$. Consequently, the degree of financial conglomerate i is equal to $k_{i}=k_{i n, i}+k_{\text {out }, i}$. From a statistical point of view, the degree distribution of vertices plays a very important role to generate random networks as shown in Subsection 3.2.

In a similar manner, the in-weighted degree $w_{i n, i}$, out-weighted degree $w_{\text {out }, i}$ and weighted degree w_{i} of financial conglomerate $i \in \mathcal{V}_{t}$ are defined as

$$
\begin{equation*}
w_{i n, i}=\sum_{j \in \mathscr{Y}_{i n, i}} \ell_{i j}, \quad w_{\text {out }, i}=\sum_{j \in \mathscr{Y}_{\text {out }, i}} \ell_{j i}, \tag{3}
\end{equation*}
$$

and $w_{i}=w_{i n, i}+w_{o u t, i}$. The weighted degree distributions are analyzed in Subsection 3.3.

3.2 Connectivity

An important issue that has never been scrutinized in the financial literature due to the lack of available data for different dates is whether the distribution of in-degree, out-degree and degree are stationary, that is, they do not change across time. ${ }^{2}$

Hypothesis 1 (Distribution Stationarity of Degrees). The in-degree $\mathbb{P}\left(K_{\text {in }} \leqslant k\right)$, out degree $\mathbb{P}\left(K_{\text {out }} \leqslant k\right)$ and degree $\mathbb{P}(K \leqslant k)$ distributions are stationary.

Figure 2 shows the Q-Q Plot of the Cumulative Density Function (CDF) $\mathbb{P}(K \leqslant k)$ of the degree distributions of two networks for consecutive dates. It is easy to verify that data are plotted around a 45 degree line, indicating that the degree distribution doesn't change with time. The Komolgorov-Smirnov test between CDFs for consecutive dates, see Massey Jr. (1951), can be written as $K S=\sup _{k}\left|\hat{F}_{t+1}(k)-\hat{F}_{t}(k)\right|$, where $\hat{F}_{t}(k)$ is the empirical CDF of degrees in $t=1,2, \ldots, T-1$. The p-values are all greater than 0.6 , suggesting that for relatively high levels of significance the null hypothesis H_{0} cannot be rejected. Therefore, this strongly supports that the connectivity structure of the Brazilian interbank network is stable over time. This is not what would be expected, since the data spanned over turbulent times, such as the years 2007 and 2008, where financial stability was a big issue.

Figures 3, 4 and 5 show, respectively, the log-log plot of the empirical complementary cumulative distribution for in-degree $\hat{\mathbb{P}}\left(K_{\text {in }} \geqslant k\right)$, out-degrees $\hat{\mathbb{P}}\left(K_{\text {out }} \geqslant k\right)$, and degrees $\hat{\mathbb{P}}(K \geqslant k)$, for $k \geqslant 1$. It is possible to notice that above a particular threshold $k_{\text {min }}$ the distributions demonstrate a linear decay in the tail, suggesting a power-law nature of the distribution. This property is typical of scale-free networks such as the World Wide Web. For a comprehensive description of scale-free graphs see Albert-Lászó et al. (2003) and Newman et al. (2006).

Hypothesis 2 (Power Distribution of the Tail of Degrees). The tail distributions of in degrees $\mathbb{P}\left(K_{\text {in }}=k \mid k \geqslant k_{\text {min }}\right)$, out degrees $\mathbb{P}\left(K_{\text {out }}=k \mid k \geqslant k_{\text {min }}\right)$ and degrees $\mathbb{P}(K=$ $k \mid k \geqslant k_{\text {min }}$) follow a discrete power law with parameters α and $k_{\text {min }}$ defined as

$$
\begin{equation*}
\mathbb{P}\left(K=k \mid k \geqslant k_{\text {min }}\right)=\eta k^{-\alpha}, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=1 / \zeta\left(\alpha, k_{\min }\right), \tag{5}
\end{equation*}
$$

[^2]and η is the reciprocal of the Hurwitz (or Generalized) Riemann Zeta function $\zeta\left(\alpha, k_{\min }\right)=$ $\sum_{k=k_{\text {min }}}^{\infty} k^{-\alpha}$.

The power law distribution is characterized by the slope of the linear relation $\log \left(\mathbb{P}(K \geqslant k) \mid k \geqslant k_{\text {min }}\right)=-\alpha \log (k)+c$ where c is a constant and α is called the tail exponent. Applying the MLE approach introduced by Clauset et al. (2009), we may jointly estimate the tail exponent α and the minimum threshold $k_{\text {min }}$ by maximizing the likelihood function, see equation (25) in the Appendix.

Table 3 shows some statistics for the MLE estimates for in-degree, out-degree and degree distributions' parameters $\hat{\alpha}$ and $\hat{k}_{\text {min }}$. It is possible to see that the MLE estimate ranges from 2 to 3. Although these results agree with those found for the Austrian interbank network, see Elsinger et al. (2004), the Austrian network estimates did not considered the joint estimate of α and $k_{\text {min }}$. They determined an arbitrary value for $k_{\text {min }}$, which greatly impact the estimated value of α.

It is important to notice that MLE estimates are not consistent in case of misspecification of the distribution for the data generating process underlying the tails of degrees. Therefore, a better way to test the goodness-of-fit of the power law distribution is investigating the null hypothesis H_{0} via Komolgorov-Smirnov test for CDF (cumulative distribution function) of a power law distribution, i.e., $K S=\sup _{k \geqslant k_{m i n}}\left|\hat{F}(k)-F\left(k \mid \alpha, k_{m i n}\right)\right|$, where \hat{F} is the empirical CDF and F the power-law with parameters α and $k_{\text {min }}$. The results in Figures 3, 4 and 5 provide ample evidence that that the power-law distribution null hypothesis should not be rejected. This is supported through the p-values of KS test that are all greater than a 1% level of significance for all distributions, except for both June 2007 and September 2008 out-degrees distributions. Nevertheless, the total degree for these same dates do not reject the null hypothesis.

3.3 Exposures' Sizes

Following the same pattern for degrees, the distribution of exposures indicates that exposures also behave in accordance to the power law.

Hypothesis 3 (Power Distribution of the Exposures' Sizes). The tail of the distribution for exposures $\operatorname{dP}\left(E_{i j} \leqslant \ell \mid \ell \geqslant \ell_{\min }\right) i, j \in \mathcal{V}_{t}$ follows a continuous power law with parameters α and $\ell_{\text {min }}$, i.e.,

$$
\begin{equation*}
\mathrm{dP}\left(L_{i j} \leqslant \ell \mid \ell \geqslant \ell_{\min }\right)=\eta \ell^{-\alpha}, \tag{6}
\end{equation*}
$$

where $\eta=(\alpha-1) \ell_{\text {min }}^{\alpha-1}$.

The last column of Table 3 shows some statistics of the MLE parameters ($\hat{\alpha}, \hat{\ell}_{\text {min }}$) estimates for the power law distribution of the exposures, see equation (27) in Appendix. It is important to remark that for all in-exposures exist an analogous out-exposure, so under this circumstance, the distribution of in and out exposures are equal. The only difference is how this exposures are allocated among the banks, that is, how we allocate these exposures within the rows and columns of matrix \mathcal{L}_{t}. Following the same modus operandi for the degrees' tail distribution, Figure 6 shows that under a 1% level of significance it is not possible to reject the null hypothesis that the exposures for all dates are generated by a power law distribution.

3.4 Relationship between exposure size and connectivity

Another important property that we shall probe is the relationship between degrees and exposures' size. It is intuitive that if financial conglomerate $i \in \mathcal{V}_{t}$ has a low (high) level of connectivity, i.e., a small number of degrees k_{i}, it should have less (more) weighteddegrees w_{i}. The reverse is also true, the higher the number of degrees, the higher the amount of exposures. However, a more meaningful way to determine whether there is a relationship between degree and exposures is to investigate the relationship between degrees k_{i} and the mean weighted-degree w_{i} / k_{i}.

Hypothesis 4 (Degrees and Weighted Degrees Dependence). The the number of degrees k and the mean weighted-degree w_{i} / k_{i} for $i \in \mathcal{V}_{t}$ are not independently distributed.

There is strong evidence that we cannot reject the null hypothesis H_{0} that a linear relationship between the two variables does not exist. Table 4 shows the Pearson Coefficient $\rho_{\text {Pearson }}$ for the Brazilian network and their respective p-values, where $\rho_{\text {Pearson }}$ gauges the strength and direction of the linear relationship between these variables. Nevertheless, just looking for linear relationships is not sufficient to guarantee that degree k_{i} and the mean weighted-degree w_{i} / k_{i} are independently distributed, this would only be true for a multivariate normal distribution, and the previous results show that this is not the case.

Table 4, also shows the Kendall tau $\tau_{\text {Kendall }}$ and the Spearman coefficient $\rho_{\text {Spearman }}$. On one's hand, the $\tau_{\text {Kendall }}$ is a non-parametric correlation coefficient that can be used to assess correlations between the distributions of the variables, and, on the other hand, $\rho_{\text {Spearman }}$ is a rank correlation coefficient and measures how well an arbitrary monotonic function could describe the relationship between two random variables without making any assumption about their distributions. The p-values for both the Spearman
coefficient and the Kendall tau test the null H_{0} that there is no relationship between degree k_{i} and the mean weighted-degree w_{i} / k_{i}. The results are complementary to the Pearson Coefficient $\rho_{\text {Pearson }}$, in the sense that the p-values indicate that we should reject the null hypothesis for both the $\rho_{\text {Spearman }}$ and $\tau_{\text {Kendall }}$, therefore, not rejecting the alternative hypothesis H_{a} that there is a non-linear relationship between the number of degrees k_{i} and the expected exposures w_{i} / k_{i}. As a consequence, forasmuch there is evidence in favor a non-linear relationship, we should consider modeling these variables as dependently distributed. The source of this dependence appears to be represented by a logarithmic shape between these variables.

3.5 Clustering and Assortativity

The clustering and mixing assortativity (or affinity) provide aditional information about the network representation. Following Watts and Strogatz (1998), the local clustering coefficient $c_{i} \in[0,1]$ for $i \in \mathcal{V}_{t}$ assesses the connectivity density of vertices' neighbors. If $c_{i}=0$ then all possible vertices are directed disconnected, and if $c_{i}=1$ then all possible vertices are directed connected. Moreover, the local clustering coefficient c_{i} of financial conglomerate i is the ratio of the number of directed connected neighbors of i and the maximum possible number of connections among these neighbors given the degree k_{i}.

Figure 7 shows the relationship between the local clustering coefficient and number of degrees for the Brazilian interbank network. The negative slope of the plots shows that financial conglomerates with fewer connections (degrees) have counterparties that are more connected to each other than financial conglomerates with many connections. We may appreciate this property as existence of fierce competition among highly connected financial conglomerates. For example, highly connected financial conglomerates compete for businesses with same less connected financial institutions, but they do transact that much with each other. On the other hand, less connected financial conglomerates tend to operate more often with each other, possible because of the lack of power for choosing their counterparties.

The assortativity coefficient measures how connected financial conglomerates are to other financial conglomerates with the same properties. Therefore, we might interpret mixing assortativity as a means to verify affinity within financial conglomerates, for example, affinity of degrees ρ_{k} or exposures ρ_{ℓ}. One compelling way to calculate mixing assortativity patterns is the approach proposed by Newman (2003), which evaluates linear dependence of edges' properties. Since each directed edge $(i, j) \in \mathcal{E}_{t}$ and
$i, j \in \mathcal{V}_{t}$ can be associated with both degrees $\left(k_{i n, i}-1, k_{\text {out }, j}-1\right)$ and weighted degrees $\left(w_{i n, i}, w_{o u t, j}\right)$, Newman (2003) approach for directed networks is to calculate the Pearson correlation of this pairs, see equations (31) and (32). As a result, the assortativity coefficient assumes values in the range $\rho \in[-1,1]$, so that in case $\rho=-1$, it means that the network is perfectly mixing dissortative, and in case $\rho=1$, it means that the network is perfectly mixing assortative, and, lastly, $\rho=0$ means that there is no clear mixing assortative pattern.

Corroborating the clustering analysis, in the Brazilian network, the assortativity coefficient ρ_{k} shows that highly connected financial conglomerates tend to be linked to low connected financial conglomerates, see Table 4 . This property can be verified by the significant negative sign of the coefficient for all dates $\rho_{k}<0$, and their respective small standard deviations. Following the same reasoning, the analysis of ρ_{ℓ} shows that there is no clear mixing assortativity pattern. That means that financial conglomerates with large exposures tend to be either connected to financial conglomerates with small or large exposures. However, the sign $\rho_{\ell}<0$ changed over time from positive to negative, which could also means a tendency for more concentration of exposures in the prospective future. Merges of financial conglomerates with large weighted degrees in Brazil during 2008 could be the explanation for that characteristic, suggesting that if this trend persists in the future, then financial conglomerates with large exposures' will be more likely to be connected to financial conglomerates with small exposures.

4 Capital Structure

To avoid any abuse of notation, we will denote \bar{B}_{2} as total capital buffer adjusted for non-banking activities, \bar{B}_{1}, Tier I capital buffer adjusted for non-banking activities, B_{2}, total capital buffer. Therefore, the bar means the necessary adjustments that will be made for non-banking activities, see equation (9). We will still continue with the previous notation C_{2} total capital, C_{1} tier I capital, and C_{r} required capital.

4.1 Cross-Sectional patterns of Capital Buffer

As we point out in Section 2, Reference Capital (tier I plus tier II capitals) depends on the Risk Base, which is a measure of risk for all operations, and not just risk generated by interbank transactions. In this sense, Reference Capital is not a good measure for liquidity reserves to cover interbank losses. Moreover, in Brazil, some interbank operations do not require capital allocation, such as REPO's (repurchase agreements)
and reverse REPO's, since the majority of these transactions are collateralized with Brazilian government securities which are exempted from capital requirements.

Therefore, models that consider only minimum Basel ratio requirements such as $\delta=0.11$ in the case of Brazil are not very meaningful when we deal with contagion under a short term perspective. Another issue are the costs involved when banks want to increase or reduce their capital. This is more clear for banks that have shares traded in stock exchanges. Raising money to finance capital usually required preparing financial statements and auditing expenses. So it is natural that banks allocate their capital in respect to what risk they expect to bear from their current and future operations. A more interesting way to analyze systemic risk is to consider the capital buffer B as a proxy for liquidity reserves, i.e.,

$$
\begin{equation*}
B_{2}=C_{2}-C_{r} . \tag{7}
\end{equation*}
$$

Table 6 shows different plausible linear models for the capital buffer B_{2} as defined in equation (7). Although, the results contemplate pooled data from all dates, the robustness was also verified within individuals dates. The regressors that were considered in our analysis were in-degree $k_{i n}$, out-degree $k_{\text {out }}$, weighted in-degree $w_{i n}$, weighted out-degree $w_{\text {out }}$, and the interaction among these variables, more especially, $w_{i n} \times k_{\text {in }}$, $w_{\text {out }} \times k_{\text {out }}, w_{\text {in }} \times w_{\text {out }}$, and $k_{\text {in }} \times k_{\text {out }}$. Initially, we consider OLS estimates for betas coefficients, given that there is no evidence that the residuals will follow a normal distribution.

Hypothesis 5 (Capital Buffer Linear Model). The weighted in-degree $w_{i n}$ is the variable that most explains the Capital Buffer B_{2} in a linear model.

The plausibility of these models were verified by the F-statistic p-value. Under very small levels of significance level all models in Figure 6 did not reject the null hypothesis that the β coefficients were jointly different than zero.

Nevertheless, not all the t-statics from individuals β 's of each model seem to be significantly different than zero. For example, models 3 and 4, which do not include exposures as regressors, suggest that the constant is not different than zero. In addition, interaction between degrees and exposures usually have p-values for the t-statistics greater than 1%, except for model 14 , giving evidence that interaction doesn't improve the regression substantially.

Moreover, the R^{2} shows that there are models that explain more than others. Except for models 2,3 and 4 , all models have a very similar R^{2} ranging around 0.44.

Nonetheless, model 1 which is very parsimonious, considers only one regressor, i.e., the weighted in-degree $w_{i n}$ and it has approximately the same explanatory power of all other competing models. This means that including other variables is actually not very helpful. From the R^{2} of models 1 and 2 , it is clear that weighted out-degree $w_{\text {out }}$ have little relevance in explaining capital buffer B_{2}, while the weighted in-degree seems to dominate the set of relevant information.

From the Akaike (AIC) and the Bayesian (BIC) Information Criteria, see respectively Akaike (1974) and Schwarz (1978), we can corroborate that models 1 and 10 represent the best model alternatives. However, as pointed earlier, not all β 's from from model 10 could be considered significantly different than zero. Since the BIC penalizes the inclusion of more regressors, and both the R^{2} and the adjusted R^{2} are very close to those of model 1 , we have that model 1 is the most parsimonious model.

In view of these facts, we select model 1 as the most appropriate for modeling the behavior of capital buffer B_{2}, i.e.,

$$
\begin{equation*}
B_{2, i}=\beta_{0}+\beta_{1} \times w_{i n, i}+\varepsilon_{i} . \tag{8}
\end{equation*}
$$

Model 1 also has a meaningful economic interpretation. It would be natural to expect that capital buffer B_{2} depends on the weighted in-degree, since this is the main counterparty source of risk. A financial conglomerate with have higher level of weighted in-degree $w_{i n}$ will be more susceptible to their conterparties because the effect in term of losses in case some of them default is likely to be greater. On the other hand, it is natural that out-exposures and out-degree will play no role in the allocation of resources to capital buffer, since there is no counterparty risk in this exposures for the financial conglomerate.

On this ground, the greater the number of counterparties (in-degrees) k_{i} and the higher the average weighted in-degree w_{i} / k_{i}, the higher the weighted in-degree w_{i} will be for financial conglomerate i and, consequently, the greater the amount of resources will be allocated for capital buffer. Surprisingly, model 1 shows that, if banks i and j have the same level of connectivity in terms of in-degree $k_{i}=k_{j}$, and the same amount of weighted in-degree $w_{i}=w_{j}$, but bank i is mainly concentrated to only one counterparty, while bank j has even exposures to all its counterparties, they will allocate the same amount of capital buffer regardless that bank i seems to be riskier, these structures will have different impact on systemic risk.

The OLS estimates for the parameters were $\beta_{0}=50.8826$ and $\beta_{1}=0.1887$. β_{0} means that independent of the size of the financial conglomerate, it will have minimum capital
buffer to operate a banking business of BRL 50.9 million of BRL, and β_{1} indicates that for each BRL of weighted in-degree the bank will allocate BRL 0.1887 to its capital buffer. Figure 9 (upper left plot) shows the regression plot of the model 1 described in equation (8).

4.2 Distribution of Residuals and Leverage

The residuals of the model presented in equation (8) can be viewed as shocks in the capital buffer B_{2}. Since financial conglomerates are dynamic entities, the remaining capital buffer that is not explained by the linear model in equation (8) can be understood as resources allocated to capital buffer to cover risks associated with their non-banking operations. The shocks ε_{i} seem to be generated by a distribution with fat tails.

Hypothesis 6. The residuals ε of the capital model proposed in equation (8) follow a scaled t-student distribution

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \mathbb{P}(\varepsilon)=\frac{\Gamma\left(\frac{\alpha+1}{2}\right)}{\sigma \sqrt{\alpha \pi} \Gamma\left(\frac{\alpha}{2}\right)}\left[1+\frac{\left(\frac{\varepsilon-\mu}{\sigma}\right)^{2}}{\alpha}\right]^{-\left(\frac{\alpha+1}{2}\right)}, \tag{9}
\end{equation*}
$$

where μ is the location parameter, $\sigma>0$ is the scale parameter, $0<\alpha<1$ is the shape parameter, and Γ is the Gamma function $\Gamma(z)=\int_{0}^{\infty} \xi^{z-1} e^{-\xi} \mathrm{d} \xi$.

Figure 9 (upper right plot) shows the Normal Probability plot for the fitted residuals $\hat{\varepsilon}_{i}$ for $i \in \mathcal{V}_{t}$. The 45° line represents the cumulative distribution of a standard normal distribution. It is clear that the fat tails are relevant in the analysis. On the other hand, the fitted residuals show a behavior similar to the Scaled t-student distribution. The parameters of the distribution were obtained numerically maximizing the log-likelihood function. In addition, under high levels of significance the Komolgorov-Smirnov test p-value (0.42) gives strong evidences that we cannot reject the null hypothesis that the liquidity shocks follows a Scaled t-student distribution.

Moreover, Figure 9 (upper left plot and lower plots) provides enough evidence that $\alpha<1$. Both the MLE estimate for the parameter $\alpha=0.5962$ and the hill estimator of the tail exponent $\alpha=0.7260$ corroborate that the tail behavior has an exponent index less than one. Remark that we calculated the Hill estimator following the approach presented by Resnick (2006), Section 4.4. The heavy tail of the scaled t-student distribution has to be analyzed carefully, especially in the context of OLS regression, where the residuals mean and variance must be finite, i.e., $\mathbb{E}(\varepsilon)<\infty$ and $\sigma^{2}(\varepsilon)<\infty$. This is clearly not the case when $\alpha<1$, since the scaled t -distribution will not have a well
defined mean $\mathbb{E}(\varepsilon)$ and its variance will be infinite $\sigma^{2}(\varepsilon)=\infty$. As a consequence we could not guarantee that the β 's for the regression models presented in Table 6 would be stable in terms of consistency. However, this seem to be case, since after regressing the same models in Table 6 via MLE considering the scaled t-distribution we find very similar values for the β 's providing evidence of the robustness of the results for the OLS estimators.

Furthermore, if we rewrite equation (8) as

$$
\begin{equation*}
\frac{B_{2, i}-\beta_{0}}{w_{i n, i}}=\beta_{1}+\bar{\varepsilon}_{i}, \tag{10}
\end{equation*}
$$

where $\bar{\varepsilon}_{i}=\varepsilon_{i} / w_{i n, i}$ then we could interpret β_{1} as the leverage coefficient. Adopting the same modus operandi we find that leverage also follows a student t-scaled distribution and its tail coefficient $\alpha=0.6966$ is less then one. Since the coefficient does't change this provides additional evidence for the scaled t-student distribution not just for the leverage but also for the model presented in equation (8).

5 Systemic Risk

As we noted before, supervisory agencies, such as central banks, demand that financial conglomerates maintain minimum capital requirements. Therefore, if a financial conglomerate shows a Basel Index smaller than what was established, then it is susceptible to legal sanctions. The Basel Index is defined as

$$
\begin{equation*}
I_{\text {Basel }}=\frac{C_{2}}{\text { Risk Base }} \geqslant \delta, \tag{11}
\end{equation*}
$$

where the Risk Base was defined in equation (1). For the Brazilian case $\delta=0.11$ and for the United States financial system $\delta=0.08$. There is a strong connection between the Basel Index $I_{\text {Basel }}$ and the capital buffer B_{2}. Since they both depend on the same variables, you may also state an equivalent condition in terms of capital buffer B_{2}, i.e.,

$$
\begin{equation*}
B_{2} \geqslant 0 . \tag{12}
\end{equation*}
$$

It is important to remark that capital and exposures should represent the same basis of assets. Since we have considered only interbank exposures in our matrix \mathcal{L}_{t}, then the capital buffer should be calculated accordingly. Since capital are only required for in-exposures, an interesting approach should be adjust the required capital for these
sources of risk. Therefore, our capital buffer will only represent all capital available to absorb losses not related to non-banking exposures.

Definition 1 (Capital Buffer). The capital buffer of financial institution $i \in \mathcal{V}_{t}$ is defined as

$$
\begin{equation*}
\bar{B}_{2, i}=C_{2, i}-C_{r, i}-\delta \times \sum_{j \in \mathscr{Y}_{i n, i}} \ell_{i j} . \tag{13}
\end{equation*}
$$

In this sense, capital buffer will represent all required capital for banking exposures (interbank exposures) and any discretionary additional capital that the financial conglomerate management considers necessary.

Therefore, in our model we will establish that a financial conglomerate is not in condition to absorb losses spilled over from its exposures if the financial conglomerate is not well capitalized. Although the terminology may be used in different contexts, we will define this situation as a default.

Definition 2 (Default). A financial conglomerate $i \in \mathcal{V}_{t}$ is in default if the banking capital buffer is negative, i.e.,

$$
\begin{equation*}
\bar{B}_{2, i}<0 \tag{14}
\end{equation*}
$$

In the Brazilian case, this situation could mean, in extreme cases, the intervention in the financial conglomerate's management or liquidation of its assets by Banco Central do Brasil.

5.1 Contagion via Default

A contagion model is concerned with risk propagation. This means that when a financial conglomerate defaults, a natural question arises: What would be the impact of this default to other financial conglomerates?

To answer this question, it is important to notice that exposures don't represent cash flows until they are due. Therefore, a realistic approach is to consider losses as write-offs to the capital buffer, which is in accordance to banking practices. If in time t, financial conglomerate j has good reason to believe that its counterparty i will not honor exposure $\ell_{i j}$ when it is due, then, in time t, financial conglomerate i has to writeoff exposure $\ell_{i j}$ from its asset portfolio, and this procedure will negatively affect its capital buffer in the same amount. As a consequence from the initial defaulting state, some financial conglomerates in $i \in \mathcal{V}_{t}$ could also default in the subsequent state, and this process of defaulting financial conglomerates causing other financial conglomerates
to default could go on for several rounds (defaulting states) until the system achieves an equilibrium (final state). Clearly, write-offs will drive the default mechanism of our contagion model.

Definition 3 (write-off procedure). Let the set

$$
\begin{equation*}
\mathscr{D}^{(s)}=\left\{j \in \mathcal{V}_{t}: \bar{B}_{2, j}^{(s)}<0\right\} \tag{15}
\end{equation*}
$$

represent the financial conglomerates in default in state s, where $\bar{B}_{2, i}^{(s)}$ for all $i \in \mathcal{V}_{t}$ are the capital buffers in this state s. Then the write-off procedure will be given by the capital buffer dynamics

$$
\begin{equation*}
\bar{B}_{2, i}^{(s+1)}=\bar{B}_{2, i}^{(s)}-\sum_{j \in \mathscr{O}(s)} \ell_{i j}, \tag{16}
\end{equation*}
$$

where $s+1$ is the subsequent state.
Note that the our analysis comprises a short-term perspective, where the financial institution is required to write-off the losses in its financial reports, but has no sufficient time to recover some of all of its losses. This doesn't mean that the financial institution will not take advantage of any legal procedure it has to execute liens and guarantees. On the other hand, it is easy to generalize the above equation rewriting the right-hand sided term as $\sum_{j \in \mathscr{D}(s)}\left(1-r_{j}\right) \ell_{i j}$, where r_{j} is the recovery rate for financial conglomerate j. From Definition 3, it is possible to calculate the contagion impact of each financial conglomerate. The contagion impact is the sum of the losses suffered by all financial conglomerates within a financial system given that a set of financial conglomerates default. Initially, we arbitrarily established a set of defaulting financial conglomerates \mathscr{D}_{0}. The set of defaulted financial conglomerates in state $s=0$ will be given by

$$
\begin{equation*}
\mathscr{D}_{0}^{(0)}=\mathscr{D}^{(0)} \bigcup \mathscr{D}_{0}, \tag{17}
\end{equation*}
$$

where the superscript indicates that $\mathscr{D}_{0}^{(s)}$ will depend on the choice of the initial set \mathscr{D}_{0}. If we choose a nonempty set $\mathscr{D}_{0} \neq \emptyset$, then, according to the write-off procedure, financial conglomerates $\Omega \backslash \mathscr{D}_{0}$ will suffer losses, and their capital buffers in the next state will be given by

$$
\begin{equation*}
\bar{B}_{2, i}^{(1)}=\bar{B}_{2, i}^{(0)}-\sum_{j \in \mathscr{O}_{0}^{(0)}} \ell_{i j} . \tag{18}
\end{equation*}
$$

Then on the next state $s=1$, some financial conglomerates in $\Omega \backslash \mathscr{D}_{0}$ will eventually
join the set

$$
\begin{equation*}
\mathscr{D}_{0}^{(1)}=\left\{j \in \mathcal{V}_{t}: \bar{B}_{2, j}^{(1)}<0\right\} \tag{19}
\end{equation*}
$$

and, as a consequence, new losses will be incurred by financial system. This processes can take many states until the financial system finds an equilibrium state s^{*} characterized as

$$
\begin{equation*}
s^{*}=\inf \left\{s: \mathscr{D}_{0}^{(s)} \backslash \mathscr{D}_{0}^{(s+1)}=\emptyset\right\} . \tag{20}
\end{equation*}
$$

Consequently, the dynamics presented through equations (17), (18), (19) and (20) will represent our contagion mechanism, which is similar to the one presented in Mistrulli (2007), Cont and Moussa (2009), however adapted to our context.

Suppose we choose that our initial defaulting set comprises only one financial conglomerate, i.e., $\mathscr{D}_{0}=\{j\}$ for one $j \in \mathcal{V}_{t}$, then it is possible to verify how much losses other financial conglomerates will suffer and eventually come up with the most contagious financial conglomerate in the system.

Definition 4 (Default Impact). The default impact $D I_{j}$ of financial conglomerate $j \in$ \mathcal{V}_{t} for $t=1, \ldots, T$ is defined as

$$
\begin{equation*}
D I_{j}=\frac{\sum_{i \in \mathcal{V}_{t}}\left\{\max \left(\bar{B}_{2, i}^{(0)}, 0\right)-\max \left(\bar{B}_{2, i}^{\left(s^{*}\right)}, 0\right)\right\}}{\sum_{i \in \mathcal{V}_{t}} \bar{B}_{2, i}} \tag{21}
\end{equation*}
$$

given that the initial defaulting set is $\mathscr{D}_{0}=\{j\}$.
From this definition it is clear that a financial conglomerate cannot lose more than its capital, and that the $D I_{j}$ is the sum of the losses suffered by the system, in case financial conglomerate j defaults, expressed as a percentage of the total capitalization of the system. Therefore, $D I_{j} \in[0,1]$ for $j \in \mathcal{V}_{t}$ represents the percentage of capitalization that is destroyed if bank j defaults. From a regulatory agency perspective the $D I$ is an important measure because it shows both which financial conglomerates poses more risk to the system stability and how the losses propagates throughout financial conglomerates, helping these agencies to allocate their resources in the supervision of the most riskier financial conglomerates.

Figure 8 (lower left plot) shows the histogram of the $D I$ distribution. It is possible to notice that there is an exponential shape, which means that most of the financial institutions will destroy not more than 4% of the system capitalization. However, there are few financial institutions which are very risky, that could destroy as much as 15% of the system capitalization. We argue that central banks should focus its efforts in
supervising those more risky financial conglomerates in terms of $D I$.

5.2 Market and Credit Risks

Following the terminology presented by Bandt and Hartmann (2000), it would be interesting to introduce an index for the systemic risk that considers not only contagion such as the $D I$ but also systemic events, such as exogenous shocks that incorporates market and credit information that could affect the capital buffer of all financial conglomerates at the same time. We will follow the idea proposed by Cont and Moussa (2009), however adapted to the results presented in Subsection 4.2.

Definition 5 (Systemic Risk Index). The Systemic Risk Index of financial conglomerate $i \in \mathcal{V}_{t}$ is given by

$$
\begin{equation*}
S I_{i}=\mathbb{E}\left[D I_{i}^{\varepsilon} \mid \bar{B}_{2, i}+\sigma_{i} \varepsilon_{i}<0\right] \tag{22}
\end{equation*}
$$

where the Default Impact $D I_{i}^{\varepsilon}$ is computed considering capital buffer after the effects of exogenous shock ε_{i} and σ_{i} is a scale factor to adjust the exogenous shocks for the credit risk.

Following this definition the $S I_{i}$ is the expected contagion loss considering scenarios where capital buffer of financial conglomerate i is wiped out by systemic events. Remark that the exogenous shocks will comprise the market and credit risk information. Let $u_{1}, u_{2}, \ldots, u_{i}, \ldots, u_{n_{t}}$ be a sequence of correlated uniform random variables. ${ }^{3}$ Lehar (2005) gives estimates for volatilities and correlations of assets of international banks. Following his estimates, we considered a correlation coefficient of 0.4 for the uniform sequence. From the uniform sequence we generate a sequence of heavy tail random variables $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{i}, \ldots, \varepsilon_{n_{t}}$ obtained from the inverse of the cumulative density function of the scaled student distribution with parameters given by the MLE estimates found in Subsection 4.2.

Although the moments are not well defined when the tail exponent is less than 1, the cumulative density function F is well established, and therefore we can find σ_{i}, such

[^3]that the cumulative density function matches the probability of default π_{i} of financial conglomerate i. Since the condition $\bar{B}_{2, i}+\sigma_{i} \varepsilon_{i}<0$ is equivalent to $\varepsilon_{i}<-\bar{B}_{2, i} / \sigma_{i}$, follows that the constant σ_{i} is
\[

$$
\begin{equation*}
\mathbb{P}\left(\varepsilon_{i}<-\frac{\bar{B}_{2, i}}{\sigma_{i}}\right)=F\left(-\frac{\bar{B}_{2, i}}{\sigma_{i}}\right)=\pi_{i} \Leftrightarrow \sigma_{i}=-\frac{\bar{B}_{2, i}}{F^{-1}\left(\pi_{i}\right)} . \tag{23}
\end{equation*}
$$

\]

To compute the Systemic Risk Index given by equation (22), we consider Monte Carlo simulation with 10,000 number of iterations and applied the Importance Sampling to improve the performance of the algorithm, see for example Asmussen and Glynn (2007), Chapter V. Moreover, the probabilities of default π were basically obtained from credit rating agencies, such as Standard \& Poor's, Moody's, and Fitch Ratings. Figure 8 (upper left plot) shows the histogram of the $S I$ distribution. It is possible to notice the log normal shape of the distribution with a positive skewness. The skewness suggests heterogeneity among the $S I$ of Brazilian financial conglomerates, and could be explained mainly by the fat tails of the scaled student distribution and idiosyncratic probabilities of default, respectively, representing market and credit risk factors. In addition, we have that a mode within the range of 15% to 20% which is relatively higher then the $D I$. Following the same analysis, there are few financial institutions which are very risky, that could destroy as much as 40% of the system capitalization.

5.3 Liquidity Effect

Besides market and credit risks, during financial crisis, systemic events are reinforced by lack of liquidity. Therefore, liquidity risk plays a crucial role in the analysis of systemic risk under stress conditions. Encompassing liquidity risk in our analysis can be easily accomplished by considering capital buffer of financial conglomerates in terms of tier I capital C_{1}. This is equivalent to substituting the Reference Capital C_{2} to only tier I capital C_{1}, yielding capital buffer equal to

$$
\begin{equation*}
\bar{B}_{1, i}=C_{1, i}-C_{r, i}-\delta \times \sum_{j \in \mathscr{Y}_{i n, i}} \ell_{i j} . \tag{24}
\end{equation*}
$$

The idea behind this analysis is to consider only capital that can be redeemed at the option of the the financial institution shareholders. Therefore, tier I capital is the only capital that is really under the financial management's control, and, consequently the only instrument available to manage liquidity and leverage, especially during crisis. Accordingly, we share the view that tier I capital is a conservative way to measure the
bank's financial strength from a regulator's point of view. This view is also shared by representatives of other governmental and non-governmental regulatory organizations, such as the U.S. Securities and Exchange Commission and Financial Services Authority (FSA) representatives, see Cox (2008). In this framework, tier I capital C_{1} is seen as a metric of permanent capital which yields a better measurement of the banks' available capital to absorb losses in the short term, that is, in a going-concern perspective.

Figure 8 (upper and lower right plots) shows respectively the histogram of the $S I$ and $D I$ distributions considering the stressed scenario where financial conglomerates can rely only on tier I capital. The shape of the distribution are clearly the same as if there was no liquidity risk, notwithstanding, we can notice that the distributions shift in time. It would be natural to expect that the most right histogram would indicate periods where liquidity matters, such as crises. This is exactly what we observe for both the $S I$ and $D I$. The left most histogram represents the data from June/2007 and the right most histogram is the June/2008, where the former could be associated with the development phase of the financial in the United States where negative news from bond and credit markets were affecting investors confidence and the latter date is associated with the apogeu of the same crises where banks such as Lemon Brothers and Merrill Lynch filed for bankruptcy and Citibank were suffering losses and liquidity difficulties.In addition, we have that in June/2008, the Systemic Risk Index SI comprised financial conglomerates that could destroy the financial system capitalization as much as double what would be destroyed without liquidity effects, that is 80%, and for the Default Impact $D I$ this were even more dramatic, indicating destruction as much as six times if liquidity risk were not taken in consideration.

6 Conclusions

In the preceding sections, we explore the structure and dynamics of interbank exposures using a unique data set of all exposures of financial institutions in Brazil, as well as their capital reserves, at various periods in 2007 and 2008. We also explore the relationship between connectivity of a node and its capital buffer. We have tried to present, in some detail, a set of statistical facts which emerge from the empirical study of an interbank network topology. The properties mentioned here are model free in the sense that they do not result from a parametric hypothesis on the network topology but from rather general hypothesis of qualitative nature. As such, they should be viewed as constraints that a random graph describing the behavior of an interbank network
has to verify in order to reproduce the statistical properties of the network accurately. Unfortunately, most currently existing models fail to reproduce all these statistical features at once, showing that they are indeed very constraining. Nevertheless, it seems that an interesting model that could actually and adequately capture most of these properties adequately would be a directed scale-free (weighted) graph with heavytailed degree and weighted distributions.

Finally, we should point out several issues we have not discussed here. One important question is whether these properties are relevant from an economic point of view. In other words, can these empirical facts be used to confirm or rule out certain modeling approaches used in economic theory? Another question is whether these empirical facts are useful from a supervisory agency perspective, such as central banks. For example, does the presence of heavy tail distributions in connectivity and exposures imply more systemic risk and eventually more capital requirements. Maybe the answer to this question is yes, but we have not explored this subject closely to withdraw any scientific conclusions. In addition, we have not explored the effects of using estimation technics for the data base, such as minimum entropy, and how these methods can be used to complete a data set without losing the statistical properties verified in this paper. We leave these questions for future research.

7 Appendix

7.1 Maximum likelihood estimates

According to Clauset et al. (2009), the likelihood function for the joint estimates of the parameters of the discrete power law random variables is given by

$$
\begin{equation*}
\left(\hat{\alpha}, \hat{k}_{\text {min }}\right)=\arg \max \left\{n_{t} \log \left(\zeta\left(\alpha, k_{\text {min }}\right)\right)-\alpha \sum_{i=1}^{n_{t}} \log \left(k_{i}\right)\right\}, \tag{25}
\end{equation*}
$$

and the error of the estimate $\hat{\alpha}$ is given by

$$
\begin{equation*}
\sigma(\hat{\alpha})=\frac{1}{\sqrt{n_{t}\left[\frac{\zeta^{\prime \prime}\left(\hat{\alpha}, \hat{k}_{\text {min }}\right)}{\zeta\left(\hat{\alpha}, \hat{k}_{\text {min }}\right)}-\left(\frac{\zeta^{\prime}\left(\hat{\alpha}, \hat{k}_{\text {min }}\right)}{\zeta\left(\hat{\alpha}, \hat{k}_{\text {min }}\right)}\right)^{2}\right]}}, \tag{26}
\end{equation*}
$$

where $\zeta^{\prime}\left(\hat{\alpha}, \hat{k}_{\text {min }}\right)$ and $\zeta^{\prime \prime}\left(\hat{\alpha}, \hat{k}_{\text {min }}\right)$ are respectively the first and second derivatives of zeta function ζ in respect to $\hat{\alpha}$.

Similarly, the likelihood function of the joint estimate of the parameters of the continuous power law random variable is given by

$$
\begin{equation*}
\left(\hat{\alpha}, \hat{\ell}_{\text {min }}\right)=\arg \max \left\{1+n_{t}\left[\sum_{i=1}^{n_{t}} \log \left(\frac{\ell_{i}}{\ell_{\text {min }}-\frac{1}{2}}\right)\right]^{-1}\right\}, \tag{27}
\end{equation*}
$$

and the error of $\hat{\alpha}$ is equal to

$$
\begin{equation*}
\sigma(\hat{\alpha})=\frac{\hat{\alpha}-1}{\sqrt{n_{t}}} . \tag{28}
\end{equation*}
$$

7.2 Mixing Coefficient

Following Newman (2003), we have that the assortativity coefficient for the pairs

$$
\begin{equation*}
e_{y, k}^{(i, j)}=\left(k_{i n, i}-1, k_{o u t, j}-1\right) \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{y, \ell}^{(i, j)}=\left(w_{i n, i}, w_{o u t, j}\right), \tag{30}
\end{equation*}
$$

can be expressed as

$$
\begin{equation*}
\rho=\frac{\sum_{y=1}^{E_{t}} e_{y}^{(i, \cdot)} e_{y}^{(\cdot, j)}-\frac{1}{E_{t}} \sum_{y=1}^{E_{t}} e_{y}^{(i, \cdot)} \sum_{y^{\prime}=1}^{E_{t}} e_{y^{\prime}}^{(\cdot, j)}}{\sigma\left(e_{y}^{(i,)}\right) \sigma\left(e_{y}^{(\cdot, j)}\right)}, \tag{31}
\end{equation*}
$$

where

$$
\begin{align*}
\sigma^{2}\left(e_{y}^{(i, \cdot)}\right) & =\sum_{y=1}^{E_{t}}\left(e_{y}^{(i, \cdot)}\right)^{2}-\frac{1}{E_{t}}\left(\sum_{y=1}^{E_{t}} e_{y}^{(i, \cdot)}\right)^{2}, \tag{32}\\
\sigma^{2}\left(e_{y}^{(\cdot, j)}\right) & =\sum_{y=1}^{E_{t}}\left(e_{y}^{(\cdot, j)}\right)^{2}-\frac{1}{E_{t}}\left(\sum_{y=1}^{E_{t}} e_{y}^{(\cdot, j)}\right)^{2}, \tag{33}
\end{align*}
$$

where $y=1, \ldots, E_{t}$ is the enumeration of edges and $E_{t}=\#\left\{(i, j) \in \mathcal{E}_{t}\right\}$, and the variance of ρ is given by

$$
\begin{equation*}
\sigma^{2}(\rho)=\sum_{y=1}^{E_{t}}\left(\rho-\rho_{y}\right)^{2} \tag{34}
\end{equation*}
$$

where ρ_{y} is the value of ρ in case we exclude edge e_{y} from the network.

References

Ágnes Lublóy (2006, July). Topology of the hungarian large-value transfer system. Occasional Papers 57, Magyar Nemzeti Bank, Budapest.

Akaike, H. (1974, December). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716-723.
Albert-Lászó, E. M., E. M. Barabási, and E. Bonabeau (2003, May). Scale-free networks. Scientific American 288(5), 60-60.

Asmussen, S. and P. W. Glynn (2007). Stochastic Simulation: Algorithms and Analysis. Number 100 in Stochastic Modelling and Applied Probability. New York: Springer.
Bandt, O. D. and P. Hartmann (2000, November). Systemic risk: A survey. Working Paper Series 35, European Central Bank, Frankfurt, Germany.

BCB (2000a). Resolution 2,723, Brazilian Central Bank, Brazil. May 31th.
BCB (2000b). Resolution 2,743, Brazilian Central Bank, Brazil. June 28th.
BCB (2007a). Resolution 3,444, Brazilian Central Bank, Brazil. February 28th.
BCB (2007b). Resolution 3,490, Brazilian Central Bank, Brazil. August 29th.
BIS (1988). International convergence of capital measurement standards. Technical report, Bank of International Settlement, Basel Committee on Banking Supervision, Basel.

BIS (2005). International convergence of capital measurement standards: A revised framework. Technical report, Bank of International Settlement, Basel Committee on Banking Supervision, Basel.

Cajueiro, D. O. and B. M. Tabak (2008). The role of banks in the brazilian interbank market: Does bank type matter? Physica A: Statistical Mechanics and its Applications 387(27), 6825-6836.

Clauset, A., C. R. Shalizi, and M. E. J. Newman (2009). Power-law distributions in empirical data. Working Paper.

Cont, R. and A. Moussa (2009). Too interconnected to fail: contagion and systemic risk in financial networks. Financial Engineering Report 2009-04, Columbia University.

Cox, C. (2008, March). Letter to basel committee in support of new guidance on liquidity management. Technical Report 2008-48, SEC.

Degryse, H. and G. Nguyen (2007, June). Interbank exposures: An empirical examination of contagion risk in the belgian banking system. International Journal of Central Banking, 123-171.

Elsinger, H., A. Lehar, and M. Summer (2004). The network topology of the interbank market. Quantitative Finance.

Elsinger, H., A. Lehar, and M. Summer (2006, September). Risk assessment for banking systems. Management Science 52(9), 1301-1314.
Forbes, K. J. and R. Rigobon (2002, October). No contagion, only interdependence: Measuring stock market comovements. Journal of Finance 57(5), 2223-2261.
Furfine, C. H. (2003, February). Interbank exposures: Quantifying the risk of contagion. Journal of Money, Credit and Banking 35(1), 111-128.
Griffin, K. (2008). Testimony of to the house committee on oversight and government reform. Technical report, US Congress, Committee on Government Reform. November 13th.
Iori, G., G. D. Masi, O. V. Precup, G. Gabbi, and G. Caldarelli (2008, January). A network analysis of the italian overnight money market. Journal of Economic Dynamics ${ }^{8}$ Control 31(1), 259-278.
Lehar, A. (2005, October). Journal of banking \& finance. Measuring systemic risk: A risk management approach 29(10), 2577-2603.

Massey Jr., F. J. (1951, March). The kolmogorov-smirnov test for goodness of fit. Journal of the American Statistical Association $46(253), 68-78$.
Mistrulli, P. E. (2007, September). Assessing financial contagion in the interbank market: Maximum entropy versus observed interbank lending patterns. Bank of Italy Research Paper Series - Temi di Discussione 641, Bank of Italy, Economic Research Department, Rome, Italy.
Newman, M., Albert-Lászó, E. M. Barabási, and D. J. Watts (2006). The Structure and Dynamics of Networks. Princeton Studies in Complexity. Princeton: Princeton University Press.

Newman, M. E. J. (2003, February). Mixing patterns in networks. Physical Review Letters $67(2), 026126$.

Resnick, S. I. (2006). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer Series in Operations Research and Financial Engineering. New York: Springer.
Rørdam, K. B. and M. L. Bech (2009). The topology of danish interbank money flows. Working Paper 2009/01, Finance Research Unit Department of Economics, University of Copenhagen, Copenhagen, Denmark.
Schwarz, G. (1978, March). Estimating the dimension of a model. The Annals of Statistics 6(2), 461-464.
Upper, C. and A. Worms (2004). Estimating bilateral exposures in the german interbank market: Is there a danger of contagion? European Economic Review 48(4), 827-849.
Watts, D. J. and S. H. Strogatz (1998, June). Collective dynamics of 'small-world' networks. Nature 393(4), 440-442.

Wells, S. (2004). Financial interlinkages in the united kingdom's interbank market and the risk of contagion. Working Paper 230, Bank of England, London.

Figure 1: Brazilian interbank network as in date December 2007.

Figure 2: Q-Q plot for the Brazilian interbank network degree distribution for consecutive dates.

Type	Jun-07	Dec-07	Mar-08	Jun-08	Sep-08	Nov-08	Dec-08
Multiple Bank	135	135	135	136	139	139	140
Commercial Bank	20	20	21	20	20	18	18
Development Bank	4	4	4	4	4	4	4
Savings Bank	1	1	1	1	1	1	1
Investment Bank	17	17	17	18	18	18	17
Consumer Finance Company	51	52	51	56	55	55	55
Security Brokerage Company	113	107	114	107	107	107	107
Exchange Brokerage Company	48	46	48	46	46	45	45
Security Distribution Company	132	135	133	133	136	136	135
Leasing Company	40	38	41	37	36	36	36
Real Estate Credit Company and Savings and Loan Association	18	18	18	18	18	17	16
Mortgage Company	6	6	6	6	6	6	6
Development Agency	12	12	12	12	12	12	12
Total Banking Institutions of Type I and II	597	591	601	594	598	594	592
Credit Union	1.461	1.465	1.460	1.466	1.460	1.457	1.453
Micro-financing Institution	54	52	54	48	46	45	47
Total Banking Institutions Type III	2.112	2.108	2.115	2.108	2.104	2.096	2.092
Non-Banking Institutions	332	329	333	324	317	318	317
Total Banking and Non-Banking Institutions	2444	2.437	2.448	2.432	2.421	2.414	2.409

Table 1: Number of financial institutions by type of operation of the Brazilian Financial System. Source: Sisbacen.

Assets in Billions of USD	Jun-07	\%	Dec-07	\%	Mar-08	\%	Jun-08	\%	Sep-08	\%	Dec-08	\%
Banking - Type I	1,064.8	87.1	1,267.7	87.8	1,366.9	87.9	1,576.0	87.7	1,433.2	88.0	1,233.6	87.5
Banking - Type II	129.6	10.6	142.7	9.9	152.7	9.8	179.4	10.0	160.1	9.8	148.3	10.5
Banking - Type I and II	1,194.5	97.7	1,410.4	97.7	1,519.6	97.7	1,755.4	97.7	1,593.2	97.8	1,382.0	98.0
Banking - Type III	17.7	1.5	21.5	1.5	23.7	1.5	28.3	1.6	24.1	1.5	19.1	1.4
Non-Banking	10.4	0.9	12.8	0.9	12.5	0.8	14.4	0.8	11.4	0.7	9.3	0.7
Total Financial System	1,222.6	100.0	1,444.8	100.0	1,555.8	100.0	1,798.1	100.0	1,628.8	100.0	1,410.4	100.0

Number of Conglomerates	Jun-07	\%	Dec-07	\%	Mar-08	\%	Jun-08	\%	Sep-08	\%	Dec-08	\%
Banking - Type I	102	5.4	101	5.4	101	5.4	101	5.4	103	5.5	101	5.4
Banking - Type II	32	1.7	32	1.7	32	1.7	33	1.8	34	1.8	35	1.9
Banking - Type I and II	134	7.1	133	7.1	133	7.1	134	7.2	137	7.3	136	7.3
Banking - Type III	1,440	76.8	1,440	77.0	1,436	77.0	1,441	77.0	1,442	76.9	1,438	77.0
Non-Banking	302	16.1	298	15.9	297	15.9	296	15.8	296	15.8	294	15.7
Total Financial System	1,876	100.0	1,871	100.0	1,866	100.0	1,871	100.0	1,875	100.0	1,868	100.0

Table 2: Representativeness of Brazilian financial institutions in terms of total Assets and number. The total assets were converted from BRL (Brazilian Reais) to USD (American Dollars) with the following foreign exchange rates (BRL/USD):
1.9262 (Jun-07), 1.7713 (Dec-07), 1.7491 (Mar-08), 1.5919 (Jun-08), 1.9143 (Sep-08), and 2.3370 (Dec-08). Source: Sisbacen.

In-Degree	Jun-07	Dec-07	Mar-08	Jun-08	Sep-08	Nov-08	Mean
$\hat{\mathbb{E}}\left(K_{\text {in }}\right)$	8.6	8.6	8.8	9.0	9.0	7.9	8.6
$\hat{\sigma}\left(K_{i n}\right)$	10.8	10.9	10.6	11.2	11.3	11.0	11.0
$\min \left(k_{i n}\right)$	0	0	0	0	0	0	0.0
$\max \left(k_{i n}\right)$	54	54	51	57	60	62	56.3
$\hat{\alpha}^{M L E}$	2.1997	2.7068	2.2059	3.3611	2.1610	2.1320	2.4611
$\hat{\sigma}\left(\hat{\alpha}^{M L E}\right)$	0.4887	0.4692	0.4756	0.5336	0.4722	0.4417	0.4802
$\hat{k}_{\text {in,min }}^{M L E}$	6	13	7	21	6	5	9.7
Out-Degree	Jun-07	Dec-07	Mar-08	Jun-08	Sep-08	Nov-08	Mean
$\hat{\mathbb{E}}\left(K_{\text {out }}\right)$	8.6	8.6	8.8	9.0	9.0	7.9	8.6
$\hat{\sigma}\left(K_{\text {out }}\right)$	8.7	8.8	9.0	9.4	9.4	8.8	9.0
$\min \left(k_{\text {out }}\right)$	0	0	0	0	0	0	0.0
$\max \left(k_{\text {out }}\right)$	36	37	39	41	39	44	39.3
$\hat{\alpha}^{M L E}$	1.9855	3.4167	3.4000	2.9110	2.4302	2.8861	2.8383
$\hat{\sigma}\left(\hat{\alpha}^{M L E}\right)$	0.6359	0.5914	0.4884	0.4384	0.4174	0.4955	0.5112
$\hat{k}_{\text {out } \text { min }}^{\text {MLE }}$	5	15	16	12	9	11	11.3
Degree	Jun-07	Dec-07	Mar-08	Jun-08	Sep-08	Nov-08	Mean
$\hat{\mathbb{E}}(K)$	17.1	17.2	17.5	18.0	18.0	15.8	17.3
$\hat{\sigma}(K)$	17.5	17.5	17.5	18.2	18.6	18.3	17.9
$\min (k)$	1	1	1	1	1	1	1.0
$\max (k)$	86	87	80	87	90	106	89.3
$\hat{\alpha}^{M L E}$	2.6163	3.3750	2.2997	2.4840	2.2705	2.2311	2.5461
$\hat{\sigma}\left(\hat{\alpha}^{M L E}\right)$	0.5222	0.4767	0.4834	0.4124	0.4394	0.3580	0.4487
$\hat{k}_{\text {min }}^{M L E}$	17	34	12	15	12	10	16.7
Exposures*	Jun-07	Dec-07	Mar-08	Jun-08	Sep-08	Nov-08	Mean
$\hat{\mathbb{E}}(L)$	1,214.8	872.5	914.3	954.0	977.1	1,364.8	1,049.6
$\hat{\sigma}(L)$	3,785.5	1,952.6	2,029.6	2,018.3	2,309.9	3,565.7	2,610.2
$\min (\ell)$	0.0	0.3	0.5	0.0	0.1	0.0	0.2
$\max (\ell)$	30,106.6	12,874.9	12,979.5	12,863.2	15,814.1	23,664.9	18,050.5
$\hat{\alpha}^{M L E}$	1.9792	2.2297	2.2383	2.3778	2.2766	2.5277	2.2716
$\hat{\sigma}\left(\hat{\alpha}^{M L E}\right)$	0.0260	0.6000	0.2140	0.6920	0.3840	0.9820	0.4830
$\hat{\ell}_{\text {min }}^{M L E}$	39.5	74.0	80.0	101.7	93.4	336.7	120.9

*values in millions of BRL (Brazilian Reals)

Table 3: General statistics and MLE estimates for the power law distribution parameters: tail exponent α, minimum tail value for in-degree $k_{\text {in,min }}$, out-degree $k_{\text {out,min }}$, degree $k_{\text {min }}$, and exposures $\ell_{\text {min }}$.

Figure 6: Brazilian interbank network: distribution of exposures in BRL.

$k_{\text {in }}$ vs. $w_{\text {in }} / k_{\text {in }}$	Jun-07	Dec-07	Mar-08	Jun-08	Sep-08	Nov-08
$\rho_{\text {Pearson }}$	0.0381	-0.0353	-0.0410	-0.0359	-0.0379	-0.0303
(p-value)	(0.6900)	(0.7082)	(0.6724)	(0.7047)	(0.6915)	(0.7523)
$\tau_{\text {Kendall }}$	0.2839	0.2554	0.2294	0.2648	0.2409	0.2144
(p-value)	(0.0000)	(0.0001)	(0.0006)	(0.0001)	(0.0002)	(0.0013)
$\rho_{\text {Spearman }}$	0.3907	0.3508	0.3109	0.3642	0.3328	0.2876
(p-value)	(0.0000)	(0.0001)	(0.0010)	(0.0001)	(0.0003)	(0.0022)
$k_{\text {out }}$ vs. $w_{\text {out }} / k_{\text {out }}$	Jun-07	Dec-07	Mar-08	Jun-08	Sep-08	Nov-08
$\rho_{\text {Pearson }}$	0.0315	0.2456	0.2415	0.2543	0.2302	0.0200
(p-value)	(0.7402)	(0.0104)	(0.0126)	(0.0071)	(0.0137)	(0.8301)
$\tau_{\text {Kendall }}$	0.2728	0.2807	0.3143	0.3274	0.3440	0.3025
(p-value)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
$\rho_{\text {Spearman }}$	0.3787	0.3969	0.4329	0.4562	0.4704	0.4241
(p-value)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
k vs. w	Jun-07	Dec-07	Mar-08	Jun-08	Sep-08	Nov-08
$\rho_{\text {Pearson }}$	-0.0130	-0.0573	-0.0607	-0.0531	-0.0539	-0.0280
(p-value)	(0.8854)	(0.5270)	(0.5085)	$(0.55610$	(0.5489)	(0.7552)
$\tau_{\text {Kendall }}$	0.2460	0.2487	0.2179	0.2378	0.2386	0.2309
(p-value)	(0.0001)	(0.0001)	(0.0005)	(0.0001)	(0.0001)	(0.0002)
$\rho_{\text {Spearman }}$	0.3370	0.3550	0.3086	0.3337	0.3336	0.3329
(p-value)	(0.0001)	(0.0001)	(0.0006)	(0.0001)	(0.0001)	(0.0001)

Table 4: Brazilian interbank network: Pearson $\rho_{\text {Pearson }}$, Kendall $\tau_{\text {Kendall }}$ and Spearman $\rho_{\text {Spearman }}$ coefficients for in-degree $k_{\text {in }}$ vs. in-exposures $w_{i n}$, out-degree $k_{\text {out }}$ vs. outexposures $w_{\text {out }}$, and degree k vs. exposures w.

	Jun-07	Dec-07	Mar-08	Jun-08	Sep-08	Nov-08
ρ_{k}	-0.2546	-0.2870	-0.2783	-0.2972	-0.3207	-0.3548
$\sigma^{2}\left(\rho_{k}\right)$	0.0008	0.0008	0.0009	0.0008	0.0008	0.0008
ρ_{ℓ}	0.0262	0.0070	0.0115	-0.0196	-0.0102	-0.0578
$\sigma^{2}\left(\rho_{\ell}\right)$	0.0019	0.0013	0.0013	0.0011	0.0012	0.0009
$\mathbb{E}(c)$	0.1759	0.1718	0.1745	0.1774	0.1960	0.1951
d	2.7043	2.7103	2.7313	2.6651	2.6460	2.6618

Table 5: Brazilian interbank network: assortativity coefficient for adjacency matrix ρ_{k} and for exposure matrix ρ_{ℓ}, their respectives variances $\sigma^{2}\left(\rho_{k}\right)$ and $\sigma^{2}\left(\rho_{\ell}\right)$, global clustering coefficient $\mathbb{E}(c)$ and network diameter d.

Figure 7: Degree vs. local clustering coefficient for the Brazilian Interbank Network. The grey line is the average coefficient (or global clustering coefficient).

Figure 8: Brazilian interbank network: Default Impact and Systemic Risk

Model	const.	$w_{\text {in }}$	$w_{\text {out }}$	$k_{i n}^{\hat{\beta}}$	/ t-statistic (p-value)			$w_{\text {in }} \times w_{\text {out }}$	$k_{\text {in }} \times k_{\text {out }}$	F-stat (p-value)	R^{2}	adj. R^{2}	Rank	
					$k_{\text {out }}$	$w_{\text {in }} \times k_{\text {in }}$	$w_{\text {out }} \times k_{\text {out }}$						AIC	BIC
1	50.8826	0.1887								0.0000	0.4370	0.4362	2	1
	0.0011	0.0000												
2	124.5975		0.0484							0.0001	0.0204	0.0191	16	16
	0.0000		0.0001											
3	(20.2225)			19.7413						0.0000	0.1578	0.1567	13	12
	0.3852			0.0000										
4	65.7781				9.7704					0.0000	0.0261	0.0248	15	14
	0.0159				0.0000									
5	49.0315	0.1880	0.0042							0.0000	0.4371	0.4356	7	5
	0.0023	0.0000	0.6573											
6	34.0570	0.1811		2.4155						0.0000	0.4386	0.4371	4	3
	0.0768	0.0000		0.1397										
7	(25.5890)		0.0208	19.0959						0.0000	0.1614	0.1592	12	13
	0.2752		0.0747	0.0000										
8	67.6556		0.0322		7.5889					0.0000	0.0339	0.0313	14	15
	0.0129		0.0150		0.0013									
9	54.1457	0.1784	0.0108	5.0243	(5.4325)					0.0000	0.4433	0.4403	3	8
	0.0105	0.0000	0.2862	0.0108	0.0138									
10	49.1316	0.2137				(0.0007)				0.0000	0.4402	0.4387	1	2
	0.0016	0.0000				0.0401								
11	51.0875	0.1948						(0.0001)		0.0000	0.4379	0.4364	6	4
	0.0010	0.0000						0.2801						
12	47.2623	0.2130	0.0043			(0.0007)				0.0000	0.4403	0.4381	5	6
	0.0033	0.0000	0.6536			0.0402								
13	43.9205	0.1981	0.0168					(0.0001)		0.0000	0.4393	0.4371	8	7
	0.0073	0.0000	0.1621					0.0873						
14	48.0497	0.1868	0.0038						0.0137	0.0000	0.4372	0.4349	11	9
	0.0040	0.6961	0.8233						0.0000					
15	48.8387	0.2132	(0.0130)			(0.0007)	0.0008			0.0000	0.4410	0.4379	9	10
	0.0026	0.0000	0.5348			0.0329	0.3556							
16	42.0272	0.1962	0.0164					(0.0001)	0.0247	0.0000	0.4395	0.4364	10	11
	0.0136	0.0000	0.1764					0.0818	0.6884					

Table 6: Plausible regression linear models for the capital buffer B_{2} as defined in equation (7) for all dates pooled data, i.e., June 2007, December 2007, March 2008, June 2008, September 2008, and, November 2008.

Figure 9: Hill Estimator for the tail exponent α of a Scaled t -Student distribution considering the fitted residuals (liquidity shocks) for all dates. Note that $\alpha<1$ which determines that the distribution is heavy-tailed and the moments are not well defined.

Banco Central do Brasil

Trabalhos para Discussão
Os Trabalhos para Discussão podem ser acessados na internet, no formato PDF, no endereço: http://www.bc.gov.br
\section*{Working Paper Series}
Working Papers in PDF format can be downloaded from: http://www. bc.gov.br

1 Implementing Inflation Targeting in Brazil
Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang

2 Política Monetária e Supervisão do Sistema Financeiro Nacional no
Banco Central do Brasil
Eduardo Lundberg
Monetary Policy and Banking Supervision Functions on the Central Jul/2000
Bank
Eduardo Lundberg

3 Private Sector Participation: a Theoretical Justification of the Brazilian
Jul/2000

Position

Sérgio Ribeiro da Costa Werlang
4 An Information Theory Approach to the Aggregation of Log-Linear Models
Pedro H. Albuquerque
5 The Pass-Through from Depreciation to Inflation: a Panel Study
Jul/2000 Ilan Goldfajn and Sérgio Ribeiro da Costa Werlang

6 Optimal Interest Rate Rules in Inflation Targeting Frameworks
Jul/2000
José Alvaro Rodrigues Neto, Fabio Araújo and Marta Baltar J. Moreira
7 Leading Indicators of Inflation for Brazil
Sep/2000
Marcelle Chauvet
8 The Correlation Matrix of the Brazilian Central Bank's Standard Model
Sep/2000 for Interest Rate Market Risk
José Alvaro Rodrigues Neto
9 Estimating Exchange Market Pressure and Intervention Activity
Nov/2000
Emanuel-Werner Kohlscheen
10 Análise do Financiamento Externo a uma Pequena Economia
Mar/2001 Aplicação da Teoria do Prêmio Monetário ao Caso Brasileiro: 1991-1998
Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior
11 A Note on the Efficient Estimation of Inflation in Brazil
Mar/2001
Michael F. Bryan and Stephen G. Cecchetti
12 A Test of Competition in Brazilian Banking
Márcio I. Nakane
13 Modelos de Previsão de Insolvência Bancária no BrasilMar/2001Marcio Magalhães Janot14 Evaluating Core Inflation Measures for BrazilMar/2001Francisco Marcos Rodrigues Figueiredo
15 Is It Worth Tracking Dollar/Real Implied Volatility?Mar/2001Sandro Canesso de Andrade and Benjamin Miranda TabakMar/2001Brasil para a Taxa de Variação do IPCASergio Afonso Lago Alves
Evaluation of the Central Bank of Brazil Structural Model's Inflation Jul/2001 Forecasts in an Inflation Targeting Framework Sergio Afonso Lago Alves
17 Estimando o Produto Potencial Brasileiro: uma Abordagem de FunçãoAbr/2001de ProduçãoTito Nicias Teixeira da Silva Filho
Estimating Brazilian Potential Output: a Production Function Approach Aug/2002
Tito Nicias Teixeira da Silva Filho
18 A Simple Model for Inflation Targeting in Brazil Apr/2001
Paulo Springer de Freitas and Marcelo Kfoury Muinhos
19 Uncovered Interest Parity with Fundamentals: a Brazilian Exchange May/2001 Rate Forecast Model
Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo
20 Credit Channel without the LM Curve May/2001Victorio Y. T. Chu and Márcio I. Nakane
21 Os Impactos Econômicos da CPMF: Teoria e Evidência Jun/2001
Pedro H. Albuquerque
22 Decentralized Portfolio Management Jun/2001
Paulo Coutinho and Benjamin Miranda Tabak
23 Os Efeitos da CPMF sobre a Intermediação Financeira Jul/2001
Sérgio Mikio Koyama e Márcio I. Nakane
24 Inflation Targeting in Brazil: Shocks, Backward-Looking Prices, and Aug/2001 IMF Conditionality
Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn and Alexandre Antonio Tombini
25 Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00
Pedro Fachada
26 Inflation Targeting in an Open Financially Integrated Emerging Aug/2001 Economy: the Case of Brazil
Marcelo Kfoury Muinhos
27 Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais
Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres JúniorSet/2001

28 Regras Monetárias e Dinâmica Macroeconômica no Brasil: uma

29 Using a Money Demand Model to Evaluate Monetary Policies in Brazil

30 Testing the Expectations Hypothesis in the Brazilian Term Structure of
Benjamin Miranda Tabak and Sandro Canesso de Andrade
31 Algumas Considerações sobre a Sazonalidade no IPCA
Nov/2001
Francisco Marcos R. Figueiredo e Roberta Blass Staub
32 Crises Cambiais e Ataques Especulativos no Brasil
Nov/2001
Mauro Costa Miranda
33 Monetary Policy and Inflation in Brazil (1975-2000): a VAR Estimation
Nov/2001 André Minella

34 Constrained Discretion and Collective Action Problems: Reflections on the Resolution of International Financial Crises
Arminio Fraga and Daniel Luiz Gleizer
35 Uma Definição Operacional de Estabilidade de Preços
Dez/2001 Tito Nícias Teixeira da Silva Filho

36 Can Emerging Markets Float? Should They Inflation Target?
Feb/2002 Barry Eichengreen

37 Monetary Policy in Brazil: Remarks on the Inflation Targeting Regime, Mar/2002 Public Debt Management and Open Market Operations
Luiz Fernando Figueiredo, Pedro Fachada and Sérgio Goldenstein
38 Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro
Frederico Pechir Gomes
39 Opções sobre Dólar Comercial e Expectativas a Respeito do Mar/2002 Comportamento da Taxa de Câmbio Paulo Castor de Castro

40 Speculative Attacks on Debts, Dollarization and Optimum Currency
Apr/2002
Areas
Aloisio Araujo and Márcia Leon
41 Mudanças de Regime no Câmbio Brasileiro
Jun/2002
Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho
42 Modelo Estrutural com Setor Externo: Endogenização do Prêmio de
Jun/2002 Risco e do Câmbio
Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella
43 The Effects of the Brazilian ADRs Program on Domestic Market
Jun/2002 Efficiency
Benjamin Miranda Tabak and Eduardo José Araújo Lima

44 Estrutura Competitiva, Produtividade Industrial e Liberação Comercial
Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén
45 Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence
André Minella
46 The Determinants of Bank Interest Spread in Brazil
Aug/2002
Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane
47 Indicadores Derivados de Agregados Monetários
Set/2002
Fernando de Aquino Fonseca Neto e José Albuquerque Júnior
48 Should Government Smooth Exchange Rate Risk?
Sep/2002
Ilan Goldfajn and Marcos Antonio Silveira
49 Desenvolvimento do Sistema Financeiro e Crescimento Econômico no
Set/2002
Brasil: Evidências de Causalidade
Orlando Carneiro de Matos
50 Macroeconomic Coordination and Inflation Targeting in a Two-Country
Sep/2002 Model
Eui Jung Chang, Marcelo Kfoury Muinhos and Joanílio Rodolpho Teixeira
51 Credit Channel with Sovereign Credit Risk: an Empirical Test
Sep/2002
Victorio Yi Tson Chu
52 Generalized Hyperbolic Distributions and Brazilian Data
Sep/2002
José Fajardo and Aquiles Farias
53 Inflation Targeting in Brazil: Lessons and Challenges
Nov/2002
André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos

54 Stock Returns and Volatility
Nov/2002
Benjamin Miranda Tabak and Solange Maria Guerra
55 Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil
Nov/2002
Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guillén

56 Causality and Cointegration in Stock Markets:
Dec/2002 the Case of Latin America
Benjamin Miranda Tabak and Eduardo José Araújo Lima
57 As Leis de Falência: uma Abordagem Econômica
Dez/2002 Aloisio Araujo

58 The Random Walk Hypothesis and the Behavior of Foreign Capital Dec/2002 Portfolio Flows: the Brazilian Stock Market Case Benjamin Miranda Tabak

59 Os Preços Administrados e a Inflação no Brasil Dez/2002 Francisco Marcos R. Figueiredo e Thaís Porto Ferreira

60 Delegated Portfolio Management Dec/2002 Paulo Coutinho and Benjamin Miranda Tabak

61 O Uso de Dados de Alta Frequiência na Estimação da Volatilidade e
Dez/2002 do Valor em Risco para o Ibovespa
João Maurício de Souza Moreira e Eduardo Facó Lemgruber
62 Taxa de Juros e Concentração Bancária no Brasil
Fev/2003
Eduardo Kiyoshi Tonooka e Sérgio Mikio Koyama
63 Optimal Monetary Rules: the Case of Brazil
Feb/2003
Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak

64 Medium-Size Macroeconomic Model for the Brazilian Economy
Feb/2003
Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves
65 On the Information Content of Oil Future Prices
Feb/2003
Benjamin Miranda Tabak
66 A Taxa de Juros de Equilíbrio: uma Abordagem Múltipla
Fev/2003
Pedro Calhman de Miranda e Marcelo Kfoury Muinhos
67 Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de
Fev/2003 Mercado de Carteiras de Ações no Brasil
Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
68 Real Balances in the Utility Function: Evidence for Brazil
Feb/2003
Leonardo Soriano de Alencar and Márcio I. Nakane

69 r-filters: a Hodrick-Prescott Filter Generalization
Feb/2003
Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto
70 Monetary Policy Surprises and the Brazilian Term Structure of Interest
Feb/2003 Rates
Benjamin Miranda Tabak
71 On Shadow-Prices of Banks in Real-Time Gross Settlement Systems
Apr/2003 Rodrigo Penaloza

72 O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros
Brasileiras
Ricardo Dias de Oliveira Brito, Angelo J. Mont'Alverne Duarte e Osmani
Teixeira de C. Guillen
73 Análise de Componentes Principais de Dados Funcionais - uma
Maio/2003 Aplicação às Estruturas a Termo de Taxas de Juros
Getúlio Borges da Silveira e Octavio Bessada
74 Aplicação do Modelo de Black, Derman \& Toy à Precificação de Opções
Maio/2003 Sobre Títulos de Renda Fixa Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das Neves

75 Brazil's Financial System: Resilience to Shocks, no Currency

André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos

78 Contornando os Pressupostos de Black \& Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio Carlos Figueiredo, Eduardo Facó Lemgruber

79 Inclusão do Decaimento Temporal na Metodologia Out/2003 Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil
Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo,
Eduardo Facó Lemgruber
80 Diferenças e Semelhanças entre Países da América Latina: uma Análise de Markov Switching para os Ciclos Econômicos de Brasil e Argentina
Arnildo da Silva Correa
81 Bank Competition, Agency Costs and the Performance of the
Jan/2004
Monetary Policy
Leonardo Soriano de Alencar and Márcio I. Nakane
82 Carteiras de Opções: Avaliação de Metodologias de Exigência de Capital no Mercado Brasileiro
Cláudio Henrique da Silveira Barbedo e Gustavo Silva Araújo
83 Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries
Thomas Y. Wu
84 Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis
Aloisio Araujo and Marcia Leon
85 Risk Premia for Emerging Markets Bonds: Evidence from Brazilian Government Debt, 1996-2002
André Soares Loureiro and Fernando de Holanda Barbosa
86 Identificação do Fator Estocástico de Descontos e Algumas Implicações
Maio/2004 sobre Testes de Modelos de Consumo
Fabio Araujo e João Victor Issler
87 Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito
Dez/2004 Total e Habitacional no Brasil Ana Carla Abrão Costa

88 Ciclos Internacionais de Negócios: uma Análise de Mudança de Regime
Dez/2004 Markoviano para Brasil, Argentina e Estados Unidos Arnildo da Silva Correa e Ronald Otto Hillbrecht

89 O Mercado de Hedge Cambial no Brasil: Reação das Instituições
Dez/2004 Financeiras a Intervenções do Banco Central Fernando N. de Oliveira
90 Bank Privatization and Productivity: Evidence for Brazil Dec/2004
Márcio I. Nakane and Daniela B. Weintraub
91 Credit Risk Measurement and the Regulation of Bank Capital and Dec/2004
Provision Requirements in Brazil - a Corporate Analysis
Ricardo Schechtman, Valéria Salomão Garcia, Sergio Mikio Koyama andGuilherme Cronemberger Parente
92 Steady-State Analysis of an Open Economy General Equilibrium Model Apr/2005 for Brazil
Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes Silva, Marcelo Kfoury Muinhos
93 Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Abr/2005 Cambial
Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
94 Simulação Histórica Filtrada: Incorporação da Volatilidade ao Modelo Abr/2005 Histórico de Cálculo de Risco para Ativos Não-Lineares Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo e Eduardo Facó Lemgruber
95 Comment on Market Discipline and Monetary Policy by Carl Walsh Apr/2005
Maurício S. Bugarin and Fábia A. de Carvalho
96 O que É Estratégia: uma Abordagem Multiparadigmática para a Ago/2005 Disciplina
Anthero de Moraes Meirelles
97 Finance and the Business Cycle: a Kalman Filter Approach with Markov Switching
Ryan A. Compton and Jose Ricardo da Costa e Silva
98 Capital Flows Cycle: Stylized Facts and Empirical Evidences for Aug/2005 Emerging Market Economies
Helio Mori e Marcelo Kfoury Muinhos
99 Adequação das Medidas de Valor em Risco na Formulação da Exigência Set/2005 de Capital para Estratégias de Opções no Mercado Brasileiro Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo,e Eduardo Facó Lemgruber
100 Targets and Inflation Dynamics Oct/2005
Sergio A. L. Alves and Waldyr D. Areosa
101 Comparing Equilibrium Real Interest Rates: Different Approaches to Mar/2006 Measure Brazilian Rates
Marcelo Kfoury Muinhos and Márcio I. Nakane
102 Judicial Risk and Credit Market Performance: Micro Evidence from Apr/2006 Brazilian Payroll Loans
Ana Carla A. Costa and João M. P. de Mello
103 The Effect of Adverse Supply Shocks on Monetary Policy and Output Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. SilvaApr/2006
104 Extração de Informação de Opções Cambiais no Brasil Abr/2006
Eui Jung Chang e Benjamin Miranda Tabak
105 Representing Roommate's Preferences with Symmetric Utilities Apr/2006
José Alvaro Rodrigues Neto
106 Testing Nonlinearities Between Brazilian Exchange Rates and Inflation May/2006 Volatilities
Cristiane R. Albuquerque and Marcelo Portugal
107 Demand for Bank Services and Market Power in Brazilian Banking Jun/2006
Márcio I. Nakane, Leonardo S. Alencar and Fabio Kanczuk
108 O Efeito da Consignação em Folha nas Taxas de Juros dos Empréstimos Jun/2006 Pessoais
Eduardo A. S. Rodrigues, Victorio Chu, Leonardo S. Alencar e Tony Takeda
109 The Recent Brazilian Disinflation Process and Costs Jun/2006
Alexandre A. Tombini and Sergio A. Lago Alves
110 Fatores de Risco e o Spread Bancário no Brasil
Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues
111 Avaliação de Modelos de Exigência de Capital para Risco de Mercado do Cupom Cambial
Alan Cosme Rodrigues da Silva, João Maurício de Souza Moreira e Myrian Beatriz Eiras das Neves
112 Interdependence and Contagion: an Analysis of Information Jul/2006 Transmission in Latin America's Stock Markets Angelo Marsiglia Fasolo
113 Investigação da Memória de Longo Prazo da Taxa de Câmbio no Brasil Sergio Rubens Stancato de Souza, Benjamin Miranda Tabak e Daniel O. Cajueiro
114 The Inequality Channel of Monetary Transmission Aug/2006
Marta Areosa and Waldyr Areosa
115 Myopic Loss Aversion and House-Money Effect Overseas: an Experimental Approach
José L. B. Fernandes, Juan Ignacio Peña and Benjamin M. Tabak
116 Out-Of-The-Money Monte Carlo Simulation Option Pricing: the Join Use of Importance Sampling and Descriptive Sampling
Jaqueline Terra Moura Marins, Eduardo Saliby and Joséte Florencio dos Santos
117 An Analysis of Off-Site Supervision of Banks' Profitability, Risk and Sep/2006 Capital Adequacy: a Portfolio Simulation Approach Applied to Brazilian Banks
Theodore M. Barnhill, Marcos R. Souto and Benjamin M. Tabak
118 Contagion, Bankruptcy and Social Welfare Analysis in a Financial Oct/2006 Economy with Risk Regulation Constraint
Aloísio P. Araújo and José Valentim M. Vicente119 A Central de Risco de Crédito no Brasil: uma Análise de Utilidade deOut/2006InformacãoRicardo Schechtman
120 Forecasting Interest Rates: an Application for Brazil Oct/2006
Eduardo J. A. Lima, Felipe Luduvice and Benjamin M. Tabak
121 The Role of Consumer's Risk Aversion on Price Rigidity
121 The Role of Consumer's Risk Aversion on Price Rigidity Nov/2006 Nov/2006
Sergio A. Lago Alves and Mirta N. S. Bugarin
Sergio A. Lago Alves and Mirta N. S. Bugarin
122 Nonlinear Mechanisms of the Exchange Rate Pass-Through: a Phillips Nov/2006 Curve Model With Threshold for Brazil
Arnildo da Silva Correa and André Minella
123 A Neoclassical Analysis of the Brazilian "Lost-Decades" Nov/2006
Flávia Mourão Graminho
124 The Dynamic Relations between Stock Prices and Exchange Rates: Nov/2006
Evidence for Brazil
Benjamin M. Tabak
125 Herding Behavior by Equity Foreign Investors on Emerging Markets Dec/2006
Barbara Alemanni and José Renato Haas Ornelas
126 Risk Premium: Insights over the Threshold Dec/2006
José L. B. Fernandes, Augusto Hasman and Juan Ignacio Peña
127 Uma Investigação Baseada em Reamostragem sobre Requerimentos de Dec/2006 Capital para Risco de Crédito no Brasil
Ricardo Schechtman
128 Term Structure Movements Implicit in Option Prices Dec/2006
Caio Ibsen R. Almeida and José Valentim M. Vicente
129 Brazil: Taming Inflation Expectations Jan/2007
Afonso S. Bevilaqua, Mário Mesquita and André Minella
130 The Role of Banks in the Brazilian Interbank Market: Does Bank Type Jan/2007 Matter?
Daniel O. Cajueiro and Benjamin M. Tabak
131 Long-Range Dependence in Exchange Rates: the Case of the European Mar/2007 Monetary System
Sergio Rubens Stancato de Souza, Benjamin M. Tabak and Daniel O. Cajueiro
132 Credit Risk Monte Carlo Simulation Using Simplified Creditmetrics’ Mar/2007
Model: the Joint Use of Importance Sampling and Descriptive Sampling Jaqueline Terra Moura Marins and Eduardo Saliby
133 A New Proposal for Collection and Generation of Information on Mar/2007
Financial Institutions' Risk: the Case of Derivatives
Gilneu F. A. Vivan and Benjamin M. Tabak
134 Amostragem Descritiva no Apreçamento de Opções Européias através Abr/2007 de Simulação Monte Carlo: o Efeito da Dimensionalidade e da Probabilidade de Exercício no Ganho de Precisão Eduardo Saliby, Sergio Luiz Medeiros Proença de Gouvêa e Jaqueline Terra Moura Marins
135 Evaluation of Default Risk for the Brazilian Banking Sector May/2007
Marcelo Y. Takami and Benjamin M. Tabak
136 Identifying Volatility Risk Premium from Fixed Income Asian Options May/2007
Caio Ibsen R. Almeida and José Valentim M. Vicente
137 Monetary Policy Design under Competing Models of Inflation May/2007 Persistence
Solange Gouvea e Abhijit Sen Gupta
138 Forecasting Exchange Rate Density Using Parametric Models: May/2007
the Case of Brazil
Marcos M. Abe, Eui J. Chang and Benjamin M. Tabak
139 Selection of Optimal Lag Length inCointegrated VAR Models with Jun/2007 Weak Form of Common Cyclical Features
Carlos Enrique Carrasco Gutiérrez, Reinaldo Castro Souza and Osmani
Teixeira de Carvalho Guillén
140 Inflation Targeting, Credibility and Confidence Crises Aug/2007
Rafael Santos and Aloísio Araújo
141 Forecasting Bonds Yields in the Brazilian Fixed income Market Aug/2007
Jose Vicente and Benjamin M. Tabak
142 Crises Análise da Coerência de Medidas de Risco no Mercado Brasileiro Ago/2007 de Ações e Desenvolvimento de uma Metodologia Híbrida para o Expected Shortfall
Alan Cosme Rodrigues da Silva, Eduardo Facó Lemgruber, José Alberto
Rebello Baranowski e Renato da Silva Carvalho
143 Price Rigidity in Brazil: Evidence from CPI Micro Data Sep/2007
Solange Gouvea
144 The Effect of Bid-Ask Prices on Brazilian Options Implied Volatility: a Oct/2007
Case Study of Telemar Call Options
Claudio Henrique da Silveira Barbedo and Eduardo Facó Lemgruber
145 The Stability-Concentration Relationship in the Brazilian Banking Oct/2007 System
Benjamin Miranda Tabak, Solange Maria Guerra, Eduardo José Araújo Lima and Eui Jung Chang
146 Movimentos da Estrutura a Termo e Critérios de Minimização do Erro Out/2007 de Previsão em um Modelo Paramétrico Exponencial Caio Almeida, Romeu Gomes, André Leite e José Vicente
147 Explaining Bank Failures in Brazil: Micro, Macro and Contagion Effects Oct/2007 (1994-1998)
Adriana Soares Sales and Maria Eduarda Tannuri-Pianto
148 Um Modelo de Fatores Latentes com Variáveis Macroeconômicas para a Out/2007 Curva de Cupom Cambial Felipe Pinheiro, Caio Almeida e José Vicente
149 Joint Validation of Credit Rating PDs under Default Correlation Oct/2007
Ricardo Schechtman
150 A Probabilistic Approach for Assessing the Significance of Contextual
Variables in Nonparametric Frontier Models: an Application for Brazilian Banks
Roberta Blass Staub and Geraldo da Silva e Souza
151 Building Confidence Intervals with Block Bootstraps for the Variance Ratio Test of Predictability
Eduardo José Araújo Lima and Benjamin Miranda TabakNov/2007
152 Demand for Foreign Exchange Derivatives in Brazil: Dec/2007
Hedge or Speculation?
Fernando N. de Oliveira and Walter Novaes
153 Aplicação da Amostragem por Importância Dez/2007 à Simulação de Opções Asiáticas Fora do Dinheiro Jaqueline Terra Moura Marins
154 Identification of Monetary Policy Shocks in the Brazilian Market Dec/2007 for Bank Reserves
Adriana Soares Sales and Maria Tannuri-Pianto
155 Does Curvature Enhance Forecasting? Dec/2007Caio Almeida, Romeu Gomes, André Leite and José Vicente
156 Escolha do Banco e Demanda por Empréstimos: um Modelo de Decisão Dez/2007 em Duas Etapas Aplicado para o Brasil Sérgio Mikio Koyama e Márcio I. Nakane
157 Is the Investment-Uncertainty Link Really Elusive? The Harmful Effects Jan/2008 of Inflation Uncertainty in Brazil Tito Nícias Teixeira da Silva Filho
158 Characterizing the Brazilian Term Structure of Interest Rates Feb/2008
Osmani T. Guillen and Benjamin M. Tabak
159 Behavior and Effects of Equity Foreign Investors on Emerging Markets Feb/2008
Barbara Alemanni and José Renato Haas Ornelas
160 The Incidence of Reserve Requirements in Brazil: Do Bank Stockholders Feb/2008 Share the Burden?
Fábia A. de Carvalho and Cyntia F. Azevedo
161 Evaluating Value-at-Risk Models via Quantile Regressions Feb/2008
Wagner P. Gaglianone, Luiz Renato Lima and Oliver Linton
162 Balance Sheet Effects in Currency Crises: Evidence from Brazil Apr/2008
Marcio M. Janot, Márcio G. P. Garcia and Walter Novaes
163 Searching for the Natural Rate of Unemployment in a Large Relative May/2008 Price Shocks' Economy: the Brazilian Case Tito Nicias Teixeira da Silva Filho
164 Foreign Banks' Entry and Departure: the recent Brazilian experience Jun/2008 (1996-2006)
Pedro Fachada
165 Avaliação de Opções de Troca e Opções de Spread Européias e Jul/2008 Americanas Giuliano Carrozza Uzêda Iorio de Souza, Carlos Patrício Samanez e Gustavo Santos Raposo
166 Testing Hyperinflation Theories Using the Inflation Tax Curve: a casestudyFernando de Holanda Barbosa and Tito Nícias Teixeira da Silva Filho
167 O Poder Discriminante das Operações de Crédito das Instituições Jul/2008
Financeiras Brasileiras
Clodoaldo Aparecido Annibal
168 An Integrated Model for Liquidity Management and Short-Term Asset Allocation in Commercial Banks
Wenersamy Ramos de Alcântara
169 Mensuração do Risco Sistêmico no Setor Bancário com Variáveis Contábeis e Econômicas
Lucio Rodrigues Capelletto, Eliseu Martins e Luiz João Corrar
170 Política de Fechamento de Bancos com Regulador Não-Benevolente: Resumo e Aplicação Adriana Soares Sales
171 Modelos para a Utilização das Operações de Redesconto pelos Bancos com Carteira Comercial no Brasil Sérgio Mikio Koyama e Márcio Issao Nakane
172 Combining Hodrick-Prescott Filtering with a Production Function Approach to Estimate Output Gap Marta Areosa
173 Exchange Rate Dynamics and the Relationship between the Random Walk Hypothesis and Official Interventions Eduardo José Araújo Lima and Benjamin Miranda Tabak
174 Foreign Exchange Market Volatility Information: an investigation of real-dollar exchange rate
Frederico Pechir Gomes, Marcelo Yoshio Takami and Vinicius Ratton Brandi
175 Evaluating Asset Pricing Models in a Fama-French Framework Dec/2008
Carlos Enrique Carrasco Gutierrez and Wagner Piazza Gaglianone
176 Fiat Money and the Value of Binding Portfolio Constraints Dec/2008
Mário R. Páscoa, Myrian Petrassi and Juan Pablo Torres-Martínez
177 Preference for Flexibility and Bayesian Updating Dec/2008 Gil Riella
178 An Econometric Contribution to the Intertemporal Approach of theDec/2008Current AccountWagner Piazza Gaglianone and João Victor Issler
179 Are Interest Rate Options Important for the Assessment of Interest Dec/2008 Rate Risk?
Caio Almeida and José Vicente
180 A Class of Incomplete and Ambiguity Averse Preferences Dec/2008
Leandro Nascimento and Gil Riella
181 Monetary Channels in Brazil through the Lens of a Semi-StructuralApr/2009ModelAndré Minella and Nelson F. Souza-Sobrinho
182 Avaliação de Opções Americanas com Barreiras Monitoradas de Forma DiscretaGiuliano Carrozza Uzêda Iorio de Souza e Carlos Patrício Samanez
183 Ganhos da Globalização do Capital Acionário em Crises Cambiais Abr/2009
Marcio Janot e Walter Novaes
184 Behavior Finance and Estimation Risk in Stochastic Portfolio Apr/2009 Optimization
José Luiz Barros Fernandes, Juan Ignacio Peña and Benjamin Miranda Tabak
185 Market Forecasts in Brazil: performance and determinants Apr/2009
Fabia A. de Carvalho and André Minella
186 Previsão da Curva de Juros: um modelo estatístico com variáveis Maio/2009 macroeconômicas
André Luís Leite, Romeu Braz Pereira Gomes Filho e José Valentim Machado Vicente
187 The Influence of Collateral on Capital Requirements in the Brazilian Jun/2009 Financial System: an approach through historical average and logistic regression on probability of default Alan Cosme Rodrigues da Silva, Antônio Carlos Magalhães da Silva, Jaqueline Terra Moura Marins, Myrian Beatriz Eiras da Neves and Giovani Antonio Silva Brito
188 Pricing Asian Interest Rate Options with a Three-Factor HJM Model Jun/2009
Claudio Henrique da Silveira Barbedo, José Valentim Machado Vicente and Octávio Manuel Bessada Lion
189 Linking Financial and Macroeconomic Factors to Credit Risk Jul/2009 Indicators of Brazilian Banks Marcos Souto, Benjamin M. Tabak and Francisco Vazquez
190 Concentração Bancária, Lucratividade e Risco Sistêmico: uma Set/2009 abordagem de contágio indireto
Bruno Silva Martins e Leonardo S. Alencar
191 Concentração e Inadimplência nas Carteiras de Empréstimos dos Set/2009 Bancos Brasileiros
Patricia L. Tecles, Benjamin M. Tabak e Roberta B. Staub
192 Inadimplência do Setor Bancário Brasileiro: uma avaliação de Set/2009 suas medidas
Clodoaldo Aparecido Annibal
193 Loss Given Default: um estudo sobre perdas em operações prefixadas no Set/2009 mercado brasileiro
Antonio Carlos Magalhães da Silva, Jaqueline Terra Moura Marins e Myrian Beatriz Eiras das Neves
194 Testes de Contágio entre Sistemas Bancários - A crise do subprime Set/2009
Benjamin M. Tabak e Manuela M. de Souza195 From Default Rates to Default Matrices: a complete measurement ofOct/2009Brazilian banks' consumer credit delinquencyRicardo Schechtman

196	The role of macroeconomic variables in sovereign risk Marco S. Matsumura and José Valentim Vicente	Oct/2009
197	Forecasting the Yield Curve for Brazil Daniel O. Cajueiro, Jose A. Divino and Benjamin M. Tabak	Nov/2009
198	Impacto dos Swaps Cambiais na Curva de Cupom Cambial: uma análise segundo a regressão de componentes principais Alessandra Pasqualina Viola, Margarida Sarmiento Gutierrez, Octávio Bessada Lion e Cláudio Henrique Barbedo	Nov/2009
199	Delegated Portfolio Management and Risk Taking Behavior José Luiz Barros Fernandes, Juan Ignacio Peña and Benjamin Miranda Tabak	Dec/2009
200	Evolution of Bank Efficiency in Brazil: A DEA Approach Roberta B. Staub, Geraldo Souza and Benjamin M. Tabak	Dec/2009
201	Efeitos da Globalização na Inflação Brasileira Rafael Santos e Márcia S. Leon	Jan/2010
202	Considerações sobre a Atuação do Banco Central na Crise de 2008 Mário Mesquita e Mario Torós	Mar/2010
203	Hiato do Produto e PIB no Brasil: uma Análise de Dados em Tempo Real Rafael Tiecher Cusinato, André Minella e Sabino da Silva Pôrto Júnior	Abr/2010
204	Fiscal and monetary policy interaction: a simulation based analysis of a two-country New Keynesian DSGE model with heterogeneous households Marcos Valli and Fabia A. de Carvalho	Apr/2010
205	Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions George Athanasopoulos, Osmani Teixeira de Carvalho Guillén, João Victor Issler and Farshid Vahid	Apr/2010
206	Fluctuation Dynamics in US interest rates and the role of monetary policy Daniel Oliveira Cajueiro and Benjamin M. Tabak	Apr/2010
207	Brazilian Strategy for Managing the Risk of Foreign Exchange Rate Exposure During a Crisis Antonio Francisco A. Silva Jr.	Apr/2010
208	Correlação de default: uma investigação empírica de créditos de varejo no Brasil Antonio Carlos Magalhães da Silva, Arnildo da Silva Correa, Jaqueline Terra Moura Marins e Myrian Beatriz Eiras das Neves	Maio/2010
209	Produção Industrial no Brasil: uma análise de dados em tempo real Rafael Tiecher Cusinato, André Minella e Sabino da Silva Pôrto Júnior	Maio/2010
210	Determinants of Bank Efficiency: the case of Brazil Patricia Tecles and Benjamin M. Tabak	May/2010

211 Pessimistic Foreign Investors and Turmoil in Emerging Markets: the case of Brazil in 2002Sandro C. Andrade and Emanuel Kohlscheen
212 The Natural Rate of Unemployment in Brazil, Chile, Colombia and Sep/2010 Venezuela: some results and challenges Tito Nícias Teixeira da Silva
213 Estimation of Economic Capital Concerning Operational Risk in a Oct/2010 Brazilian banking industry case
Helder Ferreira de Mendonça, Délio José Cordeiro Galvão and Renato Falci Villela Loures
214 Do Inflation-linked Bonds Contain Information about Future Inflation? Oct/2010
José Valentim Machado Vicente and Osmani Teixeira de Carvalho Guillen
215 The Effects of Loan Portfolio Concentration on Brazilian Banks' Return Oct/2010 and Risk
Benjamin M. Tabak, Dimas M. Fazio and Daniel O. Cajueiro
216 Cyclical Effects of Bank Capital Buffers with Imperfect Credit Markets: Oct/2010 international evidence
A.R. Fonseca, F. González and L. Pereira da Silva
217 Financial Stability and Monetary Policy - The case of Brazil Oct/2010
Benjamin M. Tabak, Marcela T. Laiz and Daniel O. Cajueiro
218 The Role of Interest Rates in the Brazilian Business Cycles Oct/2010
Nelson F. Souza-Sobrinho

[^0]: *We thank Marco Avellaneda, Sylvie Mathérat, Amal Moussa, Benjamin Miranda Tabak, André Luiz Caccavo Miguel, and Carlos Donizeti Macedo Maia for helpful discussions and research support.
 ${ }^{\dagger}$ Department of Supervision of Banks and Banking Conglomerates, Banco Central do Brasil, São Paulo.
 ${ }^{\ddagger}$ Industrial Engineering and Operations Research Department, Columbia University, New York.

[^1]: ${ }^{1}$ Brazil is in the process of implementing the Basel II Accord guidelines, BIS (2005). Significant changes will occur mostly in required capital methodology, and not in tier I and tier II eligible capitals. Nonetheless, netting exposures, as contemplated in the Basel II Accord, is still not allowable by Brazilian legislation for most financial operations.

[^2]: ${ }^{2}$ We defined connectivity in a narrow context, which comprises only degrees. However this definition is not a consensus and other indicators that we explore latter in this paper, such as exposure size, clustering and assortativity are also considered measures of connectivity.

[^3]: ${ }^{3}$ One easy way to obtain a sequence of correlated uniforms is generating a sequence of $n_{t}+1$ IID standard normal $\mathcal{N}(0,1)$ random variables, such as $z_{0}, z_{1}, \ldots, z_{n_{t}}$. Let ρ be the desired correlation coefficient then, applying the gaussian copula, we have that

 $$
 u_{i}=\Phi\left(\sqrt{\rho} z_{i}+\sqrt{1-\rho} z_{0}\right)
 $$

 for $i=1, \ldots n_{t}$, where Φ is the cumulative density function of a standard normal distribution. In this case z_{0} could be interpreted as the systemic event and z_{i} the effects of systemic events on individuals financial conglomerates.

