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Abstract

We explore the structure and dynamics of interbank exposures in Brazil using

a unique data set of all mutual exposures of financial institutions in Brazil, as

well as their capital reserves, at various periods in 2007 and 2008. We show

that the network of exposures can be adequately modeled as a directed scale-

free (weighted) graph with heavy-tailed degree and weight distributions. We also

explore the relationship between connectivity of a financial institution and its

capital buffer. Finally, we use the network structure to explore the extent of

systemic risk generated in the system by the individual institutions.
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∗We thank Marco Avellaneda, Sylvie Mathérat, Amal Moussa, Benjamin Miranda Tabak, André
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1 Introduction

The recent financial crisis has emphasized the importance of systemic risk, defined as

macro-level risk which can influence the entire stability of a financial system. Control

over systemic risk has been the main motivation of the recent bailouts of large financial

institutions in United States. Regulators have had great difficulties anticipating the

impact of defaults partly due to a lack of both visibility and relevant indicators on the

structure of the financial system. Therefore the focus on Too big to fail, maybe is not

the right criterion, but contribution to financial stability and possibility for contagion

could be better ones, i.e., Too interconnected to fail, see Griffin (2008). Availability of

better indicators of systemic risk would have greatly helped formulating a consistent

approach to bailout. Elsinger et al. (2006), Furfine (2003), Forbes and Rigobon (2002),

Upper and Worms (2004), Wells (2004). In particular, Elsinger et al. (2004).

Section 2 provides details about the financial institutions and details about expo-

sures and capitals comprising the data sets. Section 3 provides an empirical analysis

of the topology of the interbank network for the Brazilian Financial System. As far as

we know this is the first study to provide a full detailed description of the interbank

topology considering only real data. Most of the studies so far have either focused on

clearing financial systems, e.g., Ágnes Lublóy (2006), Iori et al. (2008), Cajueiro and

Tabak (2008), Rørdam and Bech (2009) or considered incomplete sets of data, Elsinger

et al. (2004), Upper and Worms (2004), Degryse and Nguyen (2007), thereupon, com-

pleting the data set with methods such as maximizing entropy or cross-entropy. An

interesting approach was suggested by Elsinger et al. (2006), where the analysis of inter-

bank network was extended to other sources of risk, such as the credit and market risks

originated from non-financial institutions. However, it was required many assumptions

regarding the estimation of the data set. In Section 4, we study the relationship between

capital reserves and exposures. We propose a linear model for the concept of capital

buffer and provide additional insights for the distribution behavior of residuals of the

model proposed, therefore, complementing the previous section. Section 5 is mainly

concerned with systemic risk. We identify the impact of contagion if any particular

bank fails with its obligations with respect to other financial institutions. To analyze

contagion in this context, we define what is default in terms of tier I and tier II capital.

This is crucial and many authors usually don’t give it the proper importance, hence,

considering unrealistic assumptions, Mistrulli (2007), Cont and Moussa (2009). In this

section, we extend the systemic risk analysis incorporating other sources of risk, such

as market, credit and liquidity risks. Section 6 provides the conclusions for the study.
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2 Data Description

2.1 Mutual Exposures

The Brazilian Financial System encompassed 2,400 financial institutions chartered by

Banco Central do Brasil. Table 1 shows that the number of financial institutions of Type

I and Type II are less than of type III. Type I banking institutions have commercial

portfolios, and Type II represent all other banking institutions excluding Type III

which are subject to particular regulations. Despite their reduced number, financial

institutions of Type I and II accounts for the majority of total assets in the Brazilian

Financial System (close to 98%), see Table 2. This is intuitive, since the majority of

financial institutions that are of our interest are considered as either Type I or II, such

as multiple banks, savings banks, investment banks, development banks, and other

security brokerage or distribution companies. In addition, the majority of Type I and

Type II financial institutions, which can be seen as a good proxy of the Brazilian

Financial System, are mainly held by private capital (approximately 70%) and operate

as a financial conglomerate (approximately 75%).

Since most of the financial institutions belong to a conglomerate, it is quite mean-

ingful to analyze contagion from a consolidated perspective because funds and liquidity

are managed as if all affiliated financial institutions are only one. To cope with this fact,

we consider only consolidated information for financial conglomerates. The account-

ing standards for consolidation of financial statements were established by Resolutions

2,723 and 2,743, BCB (2000a,b), and they are very similar to IASB and FASB direc-

tives. If we regard financial institutions of Type I and II as conglomerates, the number

of institutions is reduced substantially.

In summary, our database considers 6 dates, i.e., June 2007, December 2007, March

2008, June 2008, September 2008 and November 2008. The interbank exposures for all

financial conglomerates contemplate all sources risk, that is, fixed-income instruments

(certificate of deposits and debentures), borrowing and lending (credit risk), derivatives

(including over-the-counter instruments such as swaps) and foreign exchange (curren-

cies). It is important to note that all derivatives were accounted by their market prices

when available, or fair value when a model-based valuation is required. It is also im-

portant to remark that all the exposures represent real operations.
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2.2 Capital Reserves

We consider three types of capital, as defined in the guidelines provided by Basel Accord

I, BIS (1988), that is, the Required Capital Cr, the Capital tier I C1 and the Reference

Capital C2.
1

Considering both the Brazilian legal system and the types of financial instruments

Brazilian banks have access to build their capitals, Banco Central do Brasil, in accor-

dance with the Basel I and II Accords, issued Resolution 3,444, BCB (2007a), deter-

mining that banks compute tier I Capital as the accounting concept of shareholder’s

equity plus net income (loss), deducted by redeemed preferred stocks, capital and reval-

uation of fixed assets reserves, deferred taxes, and non-realized gains (losses), such as

mark-to-market adjustments from securities registered as available-for-sale and hedge

accounting. Eligible tier II Capital is equal to the sum of these same deductions, ex-

cepted for the deferred taxes, in addition to complex or hybrid capital instruments and

subordinated debt. Reference Capital is just the sum of tier I and tier II capitals.

The Required Capital is a function of the associated risks regarding each financial

institution’s operations, whether registered in their balance sheets (assets and liabilities)

or not (off-balance sheet transactions), as defined in Resolution 3,490, BCB (2007b).

Roughly speaking, the Required Capital Cr, can be computed as

Cr = δ × Risk Base, (1)

where the δ is the minimum required Basel Index and Risk Base is the sum of the

following components: credit exposures weighted by their respective risk; foreign cur-

rencies and gold exposures; interest rate exposures; commodity prices exposures; stocks

prices exposures; and, operational risk exposures. It is important to remark not only

that these exposures include all the financial conglomerate counterparties, including

corporations, mutual and hedge funds, individuals and government, but also that the

maximum allowable leverage for the Brazilian financial institutions is approximately

9.10, instead of 12.50. This last observation is a consequence of the minimum required

Basel Index of δ = 0.11 which is different from the American financial system which

requires a minimum Basel Index of δ = 0.08 for its financial institutions.

1Brazil is in the process of implementing the Basel II Accord guidelines, BIS (2005). Significant
changes will occur mostly in required capital methodology, and not in tier I and tier II eligible capitals.
Nonetheless, netting exposures, as contemplated in the Basel II Accord, is still not allowable by
Brazilian legislation for most financial operations.
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3 Interbank Network Topology

3.1 Network Representation

We could view the interbank system as a directed network Γt for t = 1, 2, . . . , T .

The interbank system Γt is defined as the triplet Γt = (Vt,Lt, Ct), where the vertices

Vt = {1, 2, . . . , nt} are the existing financial conglomerates on time t, the matrix Lt
of dimension nt × nt represents the exposures among these financial institutions and

Ct = {Cr, C1, C2} is the capitalization structure. Each element `ij ∈ Lt represents that

bank i has an exposure to bank j, that is, if all exposures should be cleared in time t,

bank i should receive from bank j the amount `ij.

From Lt, we may define the adjacency matrix At of same dimension as Lt whose

elements are defined as the indicator function of the elements of the exposure matrix

Lt, that is aij = 1{`ij>0} for all aij ∈ At. We may also represent the adjacency matrix

At as a vector Et of edges, listing the financial conglomerates that are connected. The

elements are defined as positions of the elements of the adjacency matrix that are equal

to 1, that is, all the pairs {(i, j)} i, j ∈ Vt for which aij = 1. This representation will

be useful for the clustering and mixing assortativity analysis in Subsection 3.5.

For a directed network the number of edges in respect to a vertice is denoted degrees

and depends on the direction of the exposure. The in-degree kin,i and out-degree kout,i

of bank i ∈ Vt are defined as

kin,i =
∑
j∈Vin,i

aij, kout,i =
∑

j∈Vout,i

aji, (2)

where Vin,i = {j : aij = 1} and Vout,i = {j : aji = 1}. Consequently, the degree

of financial conglomerate i is equal to ki = kin,i + kout,i. From a statistical point of

view, the degree distribution of vertices plays a very important role to generate random

networks as shown in Subsection 3.2.

In a similar manner, the in-weighted degree win,i, out-weighted degree wout,i and

weighted degree wi of financial conglomerate i ∈ Vt are defined as

win,i =
∑
j∈Vin,i

`ij, wout,i =
∑

j∈Vout,i

`ji, (3)

and wi = win,i + wout,i. The weighted degree distributions are analyzed in Subsection

3.3.
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3.2 Connectivity

An important issue that has never been scrutinized in the financial literature due to

the lack of available data for different dates is whether the distribution of in-degree,

out-degree and degree are stationary, that is, they do not change across time. 2

Hypothesis 1 (Distribution Stationarity of Degrees). The in-degree P(Kin 6 k), out

degree P(Kout 6 k) and degree P(K 6 k) distributions are stationary.

Figure 2 shows the Q-Q Plot of the Cumulative Density Function (CDF) P(K 6 k)

of the degree distributions of two networks for consecutive dates. It is easy to verify that

data are plotted around a 45 degree line, indicating that the degree distribution doesn’t

change with time. The Komolgorov-Smirnov test between CDFs for consecutive dates,

see Massey Jr. (1951), can be written as KS = supk

∣∣∣F̂t+1(k)− F̂t(k)
∣∣∣, where F̂t(k) is

the empirical CDF of degrees in t = 1, 2, . . . , T−1. The p-values are all greater than 0.6,

suggesting that for relatively high levels of significance the null hypothesis H0 cannot

be rejected. Therefore, this strongly supports that the connectivity structure of the

Brazilian interbank network is stable over time. This is not what would be expected,

since the data spanned over turbulent times, such as the years 2007 and 2008, where

financial stability was a big issue.

Figures 3, 4 and 5 show, respectively, the log-log plot of the empirical complementary

cumulative distribution for in-degree P̂(Kin > k), out-degrees P̂(Kout > k), and degrees

P̂(K > k), for k > 1. It is possible to notice that above a particular threshold kmin

the distributions demonstrate a linear decay in the tail, suggesting a power-law nature

of the distribution. This property is typical of scale-free networks such as the World

Wide Web. For a comprehensive description of scale-free graphs see Albert-Lászó et al.

(2003) and Newman et al. (2006).

Hypothesis 2 (Power Distribution of the Tail of Degrees). The tail distributions of

in degrees P(Kin = k|k > kmin), out degrees P(Kout = k|k > kmin) and degrees P(K =

k|k > kmin) follow a discrete power law with parameters α and kmin defined as

P(K = k|k > kmin) = η k−α, (4)

where

η = 1/ ζ(α, kmin), (5)

2We defined connectivity in a narrow context, which comprises only degrees. However this definition
is not a consensus and other indicators that we explore latter in this paper, such as exposure size,
clustering and assortativity are also considered measures of connectivity.
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and η is the reciprocal of the Hurwitz (or Generalized) Riemann Zeta function ζ(α, kmin) =∑∞
k=kmin

k−α.

The power law distribution is characterized by the slope of the linear relation

log(P(K > k)|k > kmin) = −α log(k) + c where c is a constant and α is called the

tail exponent. Applying the MLE approach introduced by Clauset et al. (2009), we

may jointly estimate the tail exponent α and the minimum threshold kmin by maximiz-

ing the likelihood function, see equation (25) in the Appendix.

Table 3 shows some statistics for the MLE estimates for in-degree, out-degree and

degree distributions’ parameters α̂ and k̂min. It is possible to see that the MLE estimate

ranges from 2 to 3. Although these results agree with those found for the Austrian

interbank network, see Elsinger et al. (2004), the Austrian network estimates did not

considered the joint estimate of α and kmin. They determined an arbitrary value for

kmin, which greatly impact the estimated value of α.

It is important to notice that MLE estimates are not consistent in case of misspecifi-

cation of the distribution for the data generating process underlying the tails of degrees.

Therefore, a better way to test the goodness-of-fit of the power law distribution is inves-

tigating the null hypothesis H0 via Komolgorov-Smirnov test for CDF (cumulative dis-

tribution function) of a power law distribution, i.e., KS = supk>kmin

∣∣∣F̂ (k)− F (k|α, kmin)
∣∣∣,

where F̂ is the empirical CDF and F the power-law with parameters α and kmin. The

results in Figures 3, 4 and 5 provide ample evidence that that the power-law distribu-

tion null hypothesis should not be rejected. This is supported through the p-values of

KS test that are all greater than a 1% level of significance for all distributions, except

for both June 2007 and September 2008 out-degrees distributions. Nevertheless, the

total degree for these same dates do not reject the null hypothesis.

3.3 Exposures’ Sizes

Following the same pattern for degrees, the distribution of exposures indicates that

exposures also behave in accordance to the power law.

Hypothesis 3 (Power Distribution of the Exposures’ Sizes). The tail of the distribution

for exposures dP( Lij 6 `|` > `min) i, j ∈ Vt follows a continuous power law with

parameters α and `min, i.e.,

dP(Lij 6 `|` > `min) = η `−α, (6)

where η = (α− 1)`α−1
min .
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The last column of Table 3 shows some statistics of the MLE parameters (α̂, ˆ̀
min)

estimates for the power law distribution of the exposures, see equation (27) in Appendix.

It is important to remark that for all in-exposures exist an analogous out-exposure, so

under this circumstance, the distribution of in and out exposures are equal. The only

difference is how this exposures are allocated among the banks, that is, how we allocate

these exposures within the rows and columns of matrix Lt. Following the same modus

operandi for the degrees’ tail distribution, Figure 6 shows that under a 1% level of

significance it is not possible to reject the null hypothesis that the exposures for all

dates are generated by a power law distribution.

3.4 Relationship between exposure size and connectivity

Another important property that we shall probe is the relationship between degrees and

exposures’ size. It is intuitive that if financial conglomerate i ∈ Vt has a low (high) level

of connectivity, i.e., a small number of degrees ki, it should have less (more) weighted-

degrees wi. The reverse is also true, the higher the number of degrees, the higher the

amount of exposures. However, a more meaningful way to determine whether there is

a relationship between degree and exposures is to investigate the relationship between

degrees ki and the mean weighted-degree wi/ki.

Hypothesis 4 (Degrees and Weighted Degrees Dependence). The the number of degrees

k and the mean weighted-degree wi/ki for i ∈ Vt are not independently distributed.

There is strong evidence that we cannot reject the null hypothesis H0 that a linear

relationship between the two variables does not exist. Table 4 shows the Pearson Co-

efficient ρPearson for the Brazilian network and their respective p-values, where ρPearson

gauges the strength and direction of the linear relationship between these variables.

Nevertheless, just looking for linear relationships is not sufficient to guarantee that de-

gree ki and the mean weighted-degree wi/ki are independently distributed, this would

only be true for a multivariate normal distribution, and the previous results show that

this is not the case.

Table 4, also shows the Kendall tau τKendall and the Spearman coefficient ρSpearman.

On one’s hand, the τKendall is a non-parametric correlation coefficient that can be used

to assess correlations between the distributions of the variables, and, on the other hand,

ρSpearman is a rank correlation coefficient and measures how well an arbitrary mono-

tonic function could describe the relationship between two random variables without

making any assumption about their distributions. The p-values for both the Spearman
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coefficient and the Kendall tau test the null H0 that there is no relationship between

degree ki and the mean weighted-degree wi/ki. The results are complementary to the

Pearson Coefficient ρPearson, in the sense that the p-values indicate that we should re-

ject the null hypothesis for both the ρSpearman and τKendall, therefore, not rejecting the

alternative hypothesis Ha that there is a non-linear relationship between the number

of degrees ki and the expected exposures wi/ki. As a consequence, forasmuch there is

evidence in favor a non-linear relationship, we should consider modeling these variables

as dependently distributed. The source of this dependence appears to be represented

by a logarithmic shape between these variables.

3.5 Clustering and Assortativity

The clustering and mixing assortativity (or affinity) provide aditional information about

the network representation. Following Watts and Strogatz (1998), the local clustering

coefficient ci ∈ [0, 1] for i ∈ Vt assesses the connectivity density of vertices’ neighbors.

If ci = 0 then all possible vertices are directed disconnected, and if ci = 1 then all

possible vertices are directed connected. Moreover, the local clustering coefficient ci of

financial conglomerate i is the ratio of the number of directed connected neighbors of

i and the maximum possible number of connections among these neighbors given the

degree ki.

Figure 7 shows the relationship between the local clustering coefficient and number

of degrees for the Brazilian interbank network. The negative slope of the plots shows

that financial conglomerates with fewer connections (degrees) have counterparties that

are more connected to each other than financial conglomerates with many connections.

We may appreciate this property as existence of fierce competition among highly con-

nected financial conglomerates. For example, highly connected financial conglomerates

compete for businesses with same less connected financial institutions, but they do

transact that much with each other. On the other hand, less connected financial con-

glomerates tend to operate more often with each other, possible because of the lack of

power for choosing their counterparties.

The assortativity coefficient measures how connected financial conglomerates are

to other financial conglomerates with the same properties. Therefore, we might inter-

pret mixing assortativity as a means to verify affinity within financial conglomerates,

for example, affinity of degrees ρk or exposures ρ`. One compelling way to calculate

mixing assortativity patterns is the approach proposed by Newman (2003), which eval-

uates linear dependence of edges’ properties. Since each directed edge (i, j) ∈ Et and
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i, j ∈ Vt can be associated with both degrees (kin,i − 1, kout,j − 1) and weighted degrees

(win,i, wout,j), Newman (2003) approach for directed networks is to calculate the Pear-

son correlation of this pairs, see equations (31) and (32). As a result, the assortativity

coefficient assumes values in the range ρ ∈ [−1, 1], so that in case ρ = −1, it means

that the network is perfectly mixing dissortative, and in case ρ = 1, it means that the

network is perfectly mixing assortative, and, lastly, ρ = 0 means that there is no clear

mixing assortative pattern.

Corroborating the clustering analysis, in the Brazilian network, the assortativity

coefficient ρk shows that highly connected financial conglomerates tend to be linked to

low connected financial conglomerates, see Table 4. This property can be verified by

the significant negative sign of the coefficient for all dates ρk < 0, and their respective

small standard deviations. Following the same reasoning, the analysis of ρ` shows that

there is no clear mixing assortativity pattern. That means that financial conglomerates

with large exposures tend to be either connected to financial conglomerates with small

or large exposures. However, the sign ρ` < 0 changed over time from positive to

negative, which could also means a tendency for more concentration of exposures in

the prospective future. Merges of financial conglomerates with large weighted degrees

in Brazil during 2008 could be the explanation for that characteristic, suggesting that

if this trend persists in the future, then financial conglomerates with large exposures’

will be more likely to be connected to financial conglomerates with small exposures.

4 Capital Structure

To avoid any abuse of notation, we will denote B̄2 as total capital buffer adjusted for

non-banking activities, B̄1, Tier I capital buffer adjusted for non-banking activities,

B2, total capital buffer. Therefore, the bar means the necessary adjustments that will

be made for non-banking activities, see equation (9). We will still continue with the

previous notation C2 total capital, C1 tier I capital, and Cr required capital.

4.1 Cross-Sectional patterns of Capital Buffer

As we point out in Section 2, Reference Capital (tier I plus tier II capitals) depends on

the Risk Base, which is a measure of risk for all operations, and not just risk generated

by interbank transactions. In this sense, Reference Capital is not a good measure

for liquidity reserves to cover interbank losses. Moreover, in Brazil, some interbank

operations do not require capital allocation, such as REPO’s (repurchase agreements)
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and reverse REPO’s, since the majority of these transactions are collateralized with

Brazilian government securities which are exempted from capital requirements.

Therefore, models that consider only minimum Basel ratio requirements such as

δ = 0.11 in the case of Brazil are not very meaningful when we deal with contagion

under a short term perspective. Another issue are the costs involved when banks want to

increase or reduce their capital. This is more clear for banks that have shares traded in

stock exchanges. Raising money to finance capital usually required preparing financial

statements and auditing expenses. So it is natural that banks allocate their capital in

respect to what risk they expect to bear from their current and future operations. A

more interesting way to analyze systemic risk is to consider the capital buffer B as a

proxy for liquidity reserves, i.e.,

B2 = C2 − Cr. (7)

Table 6 shows different plausible linear models for the capital buffer B2 as defined

in equation (7). Although, the results contemplate pooled data from all dates, the ro-

bustness was also verified within individuals dates. The regressors that were considered

in our analysis were in-degree kin, out-degree kout, weighted in-degree win, weighted

out-degree wout, and the interaction among these variables, more especially, win × kin,

wout × kout, win × wout, and kin × kout. Initially, we consider OLS estimates for betas

coefficients, given that there is no evidence that the residuals will follow a normal

distribution.

Hypothesis 5 (Capital Buffer Linear Model). The weighted in-degree win is the variable

that most explains the Capital Buffer B2 in a linear model.

The plausibility of these models were verified by the F -statistic p-value. Under very

small levels of significance level all models in Figure 6 did not reject the null hypothesis

that the β coefficients were jointly different than zero.

Nevertheless, not all the t-statics from individuals β’s of each model seem to be

significantly different than zero. For example, models 3 and 4, which do not include

exposures as regressors, suggest that the constant is not different than zero. In addition,

interaction between degrees and exposures usually have p-values for the t-statistics

greater than 1%, except for model 14, giving evidence that interaction doesn’t improve

the regression substantially.

Moreover, the R2 shows that there are models that explain more than others. Ex-

cept for models 2, 3 and 4, all models have a very similar R2 ranging around 0.44.
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Nonetheless, model 1 which is very parsimonious, considers only one regressor, i.e., the

weighted in-degree win and it has approximately the same explanatory power of all

other competing models. This means that including other variables is actually not very

helpful. From the R2 of models 1 and 2, it is clear that weighted out-degree wout have

little relevance in explaining capital buffer B2, while the weighted in-degree seems to

dominate the set of relevant information.

From the Akaike (AIC) and the Bayesian (BIC) Information Criteria, see respec-

tively Akaike (1974) and Schwarz (1978), we can corroborate that models 1 and 10

represent the best model alternatives. However, as pointed earlier, not all β’s from

from model 10 could be considered significantly different than zero. Since the BIC

penalizes the inclusion of more regressors, and both the R2 and the adjusted R2 are

very close to those of model 1, we have that model 1 is the most parsimonious model.

In view of these facts, we select model 1 as the most appropriate for modeling the

behavior of capital buffer B2, i.e.,

B2,i = β0 + β1 × win,i + εi. (8)

Model 1 also has a meaningful economic interpretation. It would be natural to expect

that capital buffer B2 depends on the weighted in-degree, since this is the main coun-

terparty source of risk. A financial conglomerate with have higher level of weighted

in-degree win will be more susceptible to their conterparties because the effect in term

of losses in case some of them default is likely to be greater. On the other hand, it is

natural that out-exposures and out-degree will play no role in the allocation of resources

to capital buffer, since there is no counterparty risk in this exposures for the financial

conglomerate.

On this ground, the greater the number of counterparties (in-degrees) ki and the

higher the average weighted in-degree wi/ki, the higher the weighted in-degree wi will be

for financial conglomerate i and, consequently, the greater the amount of resources will

be allocated for capital buffer. Surprisingly, model 1 shows that, if banks i and j have

the same level of connectivity in terms of in-degree ki = kj, and the same amount of

weighted in-degree wi = wj, but bank i is mainly concentrated to only one counterparty,

while bank j has even exposures to all its counterparties, they will allocate the same

amount of capital buffer regardless that bank i seems to be riskier, these structures will

have different impact on systemic risk.

The OLS estimates for the parameters were β0 = 50.8826 and β1 = 0.1887. β0 means

that independent of the size of the financial conglomerate, it will have minimum capital
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buffer to operate a banking business of BRL 50.9 million of BRL, and β1 indicates that

for each BRL of weighted in-degree the bank will allocate BRL 0.1887 to its capital

buffer. Figure 9 (upper left plot) shows the regression plot of the model 1 described in

equation (8).

4.2 Distribution of Residuals and Leverage

The residuals of the model presented in equation (8) can be viewed as shocks in the

capital buffer B2. Since financial conglomerates are dynamic entities, the remaining

capital buffer that is not explained by the linear model in equation (8) can be understood

as resources allocated to capital buffer to cover risks associated with their non-banking

operations. The shocks εi seem to be generated by a distribution with fat tails.

Hypothesis 6. The residuals ε of the capital model proposed in equation (8) follow a

scaled t-student distribution

d

dε
P(ε) =

Γ
(
α+1

2

)
σ
√
απ Γ

(
α
2

) [1 +

(
ε−µ
σ

)2
α

]−(α+1
2 )

, (9)

where µ is the location parameter, σ > 0 is the scale parameter, 0 < α < 1 is the shape

parameter, and Γ is the Gamma function Γ(z) =
∫∞

0
ξz−1e−ξdξ.

Figure 9 (upper right plot) shows the Normal Probability plot for the fitted residuals

ε̂i for i ∈ Vt. The 45◦ line represents the cumulative distribution of a standard normal

distribution. It is clear that the fat tails are relevant in the analysis. On the other hand,

the fitted residuals show a behavior similar to the Scaled t-student distribution. The

parameters of the distribution were obtained numerically maximizing the log-likelihood

function. In addition, under high levels of significance the Komolgorov-Smirnov test

p-value (0.42) gives strong evidences that we cannot reject the null hypothesis that the

liquidity shocks follows a Scaled t-student distribution.

Moreover, Figure 9 (upper left plot and lower plots) provides enough evidence that

α < 1. Both the MLE estimate for the parameter α = 0.5962 and the hill estimator of

the tail exponent α = 0.7260 corroborate that the tail behavior has an exponent index

less than one. Remark that we calculated the Hill estimator following the approach

presented by Resnick (2006), Section 4.4. The heavy tail of the scaled t-student distri-

bution has to be analyzed carefully, especially in the context of OLS regression, where

the residuals mean and variance must be finite, i.e., E(ε) < ∞ and σ2(ε) < ∞. This

is clearly not the case when α < 1, since the scaled t-distribution will not have a well
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defined mean E(ε) and its variance will be infinite σ2(ε) = ∞. As a consequence we

could not guarantee that the β’s for the regression models presented in Table 6 would

be stable in terms of consistency. However, this seem to be case, since after regressing

the same models in Table 6 via MLE considering the scaled t-distribution we find very

similar values for the β’s providing evidence of the robustness of the results for the OLS

estimators.

Furthermore, if we rewrite equation (8) as

B2,i − β0

win,i
= β1 + ε̄i, (10)

where ε̄i = εi/win,i then we could interpret β1 as the leverage coefficient. Adopting the

same modus operandi we find that leverage also follows a student t-scaled distribution

and its tail coefficient α = 0.6966 is less then one. Since the coefficient does’t change

this provides additional evidence for the scaled t-student distribution not just for the

leverage but also for the model presented in equation (8).

5 Systemic Risk

As we noted before, supervisory agencies, such as central banks, demand that financial

conglomerates maintain minimum capital requirements. Therefore, if a financial con-

glomerate shows a Basel Index smaller than what was established, then it is susceptible

to legal sanctions. The Basel Index is defined as

IBasel =
C2

Risk Base
> δ, (11)

where the Risk Base was defined in equation (1). For the Brazilian case δ = 0.11 and

for the United States financial system δ = 0.08. There is a strong connection between

the Basel Index IBasel and the capital buffer B2. Since they both depend on the same

variables, you may also state an equivalent condition in terms of capital buffer B2, i.e.,

B2 > 0. (12)

It is important to remark that capital and exposures should represent the same basis

of assets. Since we have considered only interbank exposures in our matrix Lt, then

the capital buffer should be calculated accordingly. Since capital are only required for

in-exposures, an interesting approach should be adjust the required capital for these
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sources of risk. Therefore, our capital buffer will only represent all capital available to

absorb losses not related to non-banking exposures.

Definition 1 (Capital Buffer). The capital buffer of financial institution i ∈ Vt is

defined as

B̄2,i = C2,i − Cr,i − δ ×
∑
j∈Vin,i

`ij. (13)

In this sense, capital buffer will represent all required capital for banking expo-

sures (interbank exposures) and any discretionary additional capital that the financial

conglomerate management considers necessary.

Therefore, in our model we will establish that a financial conglomerate is not in

condition to absorb losses spilled over from its exposures if the financial conglomerate

is not well capitalized. Although the terminology may be used in different contexts, we

will define this situation as a default.

Definition 2 (Default). A financial conglomerate i ∈ Vt is in default if the banking

capital buffer is negative, i.e.,

B̄2,i < 0. (14)

In the Brazilian case, this situation could mean, in extreme cases, the intervention in

the financial conglomerate’s management or liquidation of its assets by Banco Central

do Brasil.

5.1 Contagion via Default

A contagion model is concerned with risk propagation. This means that when a financial

conglomerate defaults, a natural question arises: What would be the impact of this

default to other financial conglomerates?

To answer this question, it is important to notice that exposures don’t represent

cash flows until they are due. Therefore, a realistic approach is to consider losses as

write-offs to the capital buffer, which is in accordance to banking practices. If in time

t, financial conglomerate j has good reason to believe that its counterparty i will not

honor exposure `ij when it is due, then, in time t, financial conglomerate i has to write-

off exposure `ij from its asset portfolio, and this procedure will negatively affect its

capital buffer in the same amount. As a consequence from the initial defaulting state,

some financial conglomerates in i ∈ Vt could also default in the subsequent state, and

this process of defaulting financial conglomerates causing other financial conglomerates
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to default could go on for several rounds (defaulting states) until the system achieves

an equilibrium (final state). Clearly, write-offs will drive the default mechanism of our

contagion model.

Definition 3 (write-off procedure). Let the set

D (s) =
{
j ∈ Vt : B̄

(s)
2,j < 0

}
(15)

represent the financial conglomerates in default in state s, where B̄
(s)
2,i for all i ∈ Vt

are the capital buffers in this state s. Then the write-off procedure will be given by the

capital buffer dynamics

B̄
(s+1)
2,i = B̄

(s)
2,i −

∑
j∈D(s)

`ij, (16)

where s+ 1 is the subsequent state.

Note that the our analysis comprises a short-term perspective, where the financial

institution is required to write-off the losses in its financial reports, but has no sufficient

time to recover some of all of its losses. This doesn’t mean that the financial institution

will not take advantage of any legal procedure it has to execute liens and guarantees.

On the other hand, it is easy to generalize the above equation rewriting the right-hand

sided term as
∑

j∈D(s)(1−rj)`ij, where rj is the recovery rate for financial conglomerate

j. From Definition 3, it is possible to calculate the contagion impact of each financial

conglomerate. The contagion impact is the sum of the losses suffered by all financial

conglomerates within a financial system given that a set of financial conglomerates

default. Initially, we arbitrarily established a set of defaulting financial conglomerates

D0. The set of defaulted financial conglomerates in state s = 0 will be given by

D (0)
0 = D (0)

⋃
D0, (17)

where the superscript indicates that D (s)
0 will depend on the choice of the initial set

D0. If we choose a nonempty set D0 6= ∅, then, according to the write-off procedure,

financial conglomerates Ω \ D0 will suffer losses, and their capital buffers in the next

state will be given by

B̄
(1)
2,i = B̄

(0)
2,i −

∑
j∈D

(0)
0

`ij. (18)

Then on the next state s = 1, some financial conglomerates in Ω \ D0 will eventually
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join the set

D (1)
0 =

{
j ∈ Vt : B̄

(1)
2,j < 0

}
(19)

and, as a consequence, new losses will be incurred by financial system. This processes

can take many states until the financial system finds an equilibrium state s∗ character-

ized as

s∗ = inf
{
s : D (s)

0 \D (s+1)
0 = ∅

}
. (20)

Consequently, the dynamics presented through equations (17), (18), (19) and (20) will

represent our contagion mechanism, which is similar to the one presented in Mistrulli

(2007), Cont and Moussa (2009), however adapted to our context.

Suppose we choose that our initial defaulting set comprises only one financial con-

glomerate, i.e., D0 = {j} for one j ∈ Vt, then it is possible to verify how much losses

other financial conglomerates will suffer and eventually come up with the most conta-

gious financial conglomerate in the system.

Definition 4 (Default Impact). The default impact DIj of financial conglomerate j ∈
Vt for t = 1, . . . , T is defined as

DIj =

∑
i∈Vt

{
max

(
B̄

(0)
2,i , 0

)
−max

(
B̄

(s∗)
2,i , 0

)}
∑

i∈Vt B̄2,i

, (21)

given that the initial defaulting set is D0 = {j}.

From this definition it is clear that a financial conglomerate cannot lose more than

its capital, and that the DIj is the sum of the losses suffered by the system, in case

financial conglomerate j defaults, expressed as a percentage of the total capitalization of

the system. Therefore, DIj ∈ [0, 1] for j ∈ Vt represents the percentage of capitalization

that is destroyed if bank j defaults. From a regulatory agency perspective the DI

is an important measure because it shows both which financial conglomerates poses

more risk to the system stability and how the losses propagates throughout financial

conglomerates, helping these agencies to allocate their resources in the supervision of

the most riskier financial conglomerates.

Figure 8 (lower left plot) shows the histogram of the DI distribution. It is possible

to notice that there is an exponential shape, which means that most of the financial

institutions will destroy not more than 4% of the system capitalization. However, there

are few financial institutions which are very risky, that could destroy as much as 15%

of the system capitalization. We argue that central banks should focus its efforts in

19



supervising those more risky financial conglomerates in terms of DI.

5.2 Market and Credit Risks

Following the terminology presented by Bandt and Hartmann (2000), it would be in-

teresting to introduce an index for the systemic risk that considers not only contagion

such as the DI but also systemic events, such as exogenous shocks that incorporates

market and credit information that could affect the capital buffer of all financial con-

glomerates at the same time. We will follow the idea proposed by Cont and Moussa

(2009), however adapted to the results presented in Subsection 4.2.

Definition 5 (Systemic Risk Index). The Systemic Risk Index of financial conglomerate

i ∈ Vt is given by

SIi = E
[
DIεi | B̄2,i + σiεi < 0

]
(22)

where the Default Impact DIεi is computed considering capital buffer after the effects of

exogenous shock εi and σi is a scale factor to adjust the exogenous shocks for the credit

risk.

Following this definition the SIi is the expected contagion loss considering scenarios

where capital buffer of financial conglomerate i is wiped out by systemic events. Re-

mark that the exogenous shocks will comprise the market and credit risk information.

Let u1, u2, . . . , ui, . . . , unt be a sequence of correlated uniform random variables.3 Lehar

(2005) gives estimates for volatilities and correlations of assets of international banks.

Following his estimates, we considered a correlation coefficient of 0.4 for the uniform

sequence. From the uniform sequence we generate a sequence of heavy tail random vari-

ables ε1, ε2, . . . , εi, . . . , εnt obtained from the inverse of the cumulative density function

of the scaled student distribution with parameters given by the MLE estimates found

in Subsection 4.2.

Although the moments are not well defined when the tail exponent is less than 1,

the cumulative density function F is well established, and therefore we can find σi, such

3One easy way to obtain a sequence of correlated uniforms is generating a sequence of nt + 1 IID
standard normal N (0, 1) random variables, such as z0, z1, . . . , znt

. Let ρ be the desired correlation
coefficient then, applying the gaussian copula, we have that

ui = Φ
(√

ρ zi +
√

1− ρ z0
)
,

for i = 1, . . . nt, where Φ is the cumulative density function of a standard normal distribution. In this
case z0 could be interpreted as the systemic event and zi the effects of systemic events on individuals
financial conglomerates.
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that the cumulative density function matches the probability of default πi of financial

conglomerate i. Since the condition B̄2,i + σiεi < 0 is equivalent to εi < −B̄2,i/σi,

follows that the constant σi is

P
(
εi < −

B̄2,i

σi

)
= F

(
−B̄2,i

σi

)
= πi ⇔ σi = − B̄2,i

F−1 (πi)
. (23)

To compute the Systemic Risk Index given by equation (22), we consider Monte

Carlo simulation with 10,000 number of iterations and applied the Importance Sampling

to improve the performance of the algorithm, see for example Asmussen and Glynn

(2007), Chapter V. Moreover, the probabilities of default π were basically obtained

from credit rating agencies, such as Standard & Poor’s, Moody’s, and Fitch Ratings.

Figure 8 (upper left plot) shows the histogram of the SI distribution. It is possible to

notice the log normal shape of the distribution with a positive skewness. The skewness

suggests heterogeneity among the SI of Brazilian financial conglomerates, and could

be explained mainly by the fat tails of the scaled student distribution and idiosyncratic

probabilities of default, respectively, representing market and credit risk factors. In

addition, we have that a mode within the range of 15% to 20% which is relatively

higher then the DI. Following the same analysis, there are few financial institutions

which are very risky, that could destroy as much as 40% of the system capitalization.

5.3 Liquidity Effect

Besides market and credit risks, during financial crisis, systemic events are reinforced by

lack of liquidity. Therefore, liquidity risk plays a crucial role in the analysis of systemic

risk under stress conditions. Encompassing liquidity risk in our analysis can be easily

accomplished by considering capital buffer of financial conglomerates in terms of tier I

capital C1. This is equivalent to substituting the Reference Capital C2 to only tier I

capital C1, yielding capital buffer equal to

B̄1,i = C1,i − Cr,i − δ ×
∑
j∈Vin,i

`ij. (24)

The idea behind this analysis is to consider only capital that can be redeemed at the

option of the the financial institution shareholders. Therefore, tier I capital is the only

capital that is really under the financial management’s control, and, consequently the

only instrument available to manage liquidity and leverage, especially during crisis.

Accordingly, we share the view that tier I capital is a conservative way to measure the
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bank’s financial strength from a regulator’s point of view. This view is also shared by

representatives of other governmental and non-governmental regulatory organizations,

such as the U.S. Securities and Exchange Commission and Financial Services Authority

(FSA) representatives, see Cox (2008). In this framework, tier I capital C1 is seen as a

metric of permanent capital which yields a better measurement of the banks’ available

capital to absorb losses in the short term, that is, in a going-concern perspective.

Figure 8 (upper and lower right plots) shows respectively the histogram of the SI

and DI distributions considering the stressed scenario where financial conglomerates

can rely only on tier I capital. The shape of the distribution are clearly the same as if

there was no liquidity risk, notwithstanding, we can notice that the distributions shift

in time. It would be natural to expect that the most right histogram would indicate

periods where liquidity matters, such as crises. This is exactly what we observe for both

the SI and DI. The left most histogram represents the data from June/2007 and the

right most histogram is the June/2008, where the former could be associated with the

development phase of the financial in the United States where negative news from bond

and credit markets were affecting investors confidence and the latter date is associated

with the apogeu of the same crises where banks such as Lemon Brothers and Merrill

Lynch filed for bankruptcy and Citibank were suffering losses and liquidity difficulties.In

addition, we have that in June/2008, the Systemic Risk Index SI comprised financial

conglomerates that could destroy the financial system capitalization as much as double

what would be destroyed without liquidity effects, that is 80%, and for the Default

Impact DI this were even more dramatic, indicating destruction as much as six times

if liquidity risk were not taken in consideration.

6 Conclusions

In the preceding sections, we explore the structure and dynamics of interbank exposures

using a unique data set of all exposures of financial institutions in Brazil, as well as their

capital reserves, at various periods in 2007 and 2008. We also explore the relationship

between connectivity of a node and its capital buffer. We have tried to present, in

some detail, a set of statistical facts which emerge from the empirical study of an

interbank network topology. The properties mentioned here are model free in the sense

that they do not result from a parametric hypothesis on the network topology but

from rather general hypothesis of qualitative nature. As such, they should be viewed

as constraints that a random graph describing the behavior of an interbank network
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has to verify in order to reproduce the statistical properties of the network accurately.

Unfortunately, most currently existing models fail to reproduce all these statistical

features at once, showing that they are indeed very constraining. Nevertheless, it

seems that an interesting model that could actually and adequately capture most of

these properties adequately would be a directed scale-free (weighted) graph with heavy-

tailed degree and weighted distributions.

Finally, we should point out several issues we have not discussed here. One impor-

tant question is whether these properties are relevant from an economic point of view.

In other words, can these empirical facts be used to confirm or rule out certain modeling

approaches used in economic theory? Another question is whether these empirical facts

are useful from a supervisory agency perspective, such as central banks. For exam-

ple, does the presence of heavy tail distributions in connectivity and exposures imply

more systemic risk and eventually more capital requirements. Maybe the answer to this

question is yes, but we have not explored this subject closely to withdraw any scientific

conclusions. In addition, we have not explored the effects of using estimation technics

for the data base, such as minimum entropy, and how these methods can be used to

complete a data set without losing the statistical properties verified in this paper. We

leave these questions for future research.

7 Appendix

7.1 Maximum likelihood estimates

According to Clauset et al. (2009), the likelihood function for the joint estimates of the

parameters of the discrete power law random variables is given by

(α̂, k̂min) = arg max

{
nt log(ζ(α, kmin))− α

nt∑
i=1

log(ki)

}
, (25)

and the error of the estimate α̂ is given by

σ(α̂) =
1√

nt

[
ζ′′(α̂,k̂min)

ζ(α̂,k̂min)
−
(
ζ′(α̂,k̂min)

ζ(α̂,k̂min)

)2
] , (26)

where ζ ′(α̂, k̂min) and ζ ′′(α̂, k̂min) are respectively the first and second derivatives of

zeta function ζ in respect to α̂.
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Similarly, the likelihood function of the joint estimate of the parameters of the

continuous power law random variable is given by

(α̂, ˆ̀
min) = arg max

1 + nt

[
nt∑
i=1

log

(
`i

`min − 1
2

)]−1
 , (27)

and the error of α̂ is equal to

σ(α̂) =
α̂− 1
√
nt

. (28)

7.2 Mixing Coefficient

Following Newman (2003), we have that the assortativity coefficient for the pairs

e
(i,j)
y,k = (kin,i − 1, kout,j − 1) (29)

and

e
(i,j)
y,` = (win,i, wout,j) , (30)

can be expressed as

ρ =

∑Et
y=1 e

(i,·)
y e

(·,j)
y − 1

Et

∑Et
y=1 e

(i,·)
y

∑Et
y′=1 e

(·,j)
y′

σ
(
e
(i,·)
y

)
σ
(
e
(·,j)
y

) , (31)

where

σ2
(
e(i,·)y

)
=

Et∑
y=1

(
e(i,·)y

)2 − 1

Et

(
Et∑
y=1

e(i,·)y

)2

, (32)

σ2
(
e(·,j)y

)
=

Et∑
y=1

(
e(·,j)y

)2 − 1

Et

(
Et∑
y=1

e(·,j)y

)2

, (33)

where y = 1, . . . , Et is the enumeration of edges and Et = #{(i, j) ∈ Et}, and the

variance of ρ is given by

σ2(ρ) =
Et∑
y=1

(ρ− ρy)2 (34)

where ρy is the value of ρ in case we exclude edge ey from the network.
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Newman, M., Albert-Lászó, E. M. Barabási, and D. J. Watts (2006). The Structure and Dy-

namics of Networks. Princeton Studies in Complexity. Princeton: Princeton University

Press.

Newman, M. E. J. (2003, February). Mixing patterns in networks. Physical Review Let-

ters 67 (2), 026126.

Resnick, S. I. (2006). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer

Series in Operations Research and Financial Engineering. New York: Springer.

Rørdam, K. B. and M. L. Bech (2009). The topology of danish interbank money flows.

Working Paper 2009/01, Finance Research Unit Department of Economics, University

of Copenhagen, Copenhagen, Denmark.

Schwarz, G. (1978, March). Estimating the dimension of a model. The Annals of Statis-

tics 6 (2), 461–464.

Upper, C. and A. Worms (2004). Estimating bilateral exposures in the german interbank

market: Is there a danger of contagion? European Economic Review 48 (4), 827–849.

Watts, D. J. and S. H. Strogatz (1998, June). Collective dynamics of ‘small-world’ networks.

Nature 393 (4), 440–442.

26



Wells, S. (2004). Financial interlinkages in the united kingdom’s interbank market and the

risk of contagion. Working Paper 230, Bank of England, London.

27



Figure 1: Brazilian interbank network as in date December 2007.
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Figure 2: Q-Q plot for the Brazilian interbank network degree distribution for consec-
utive dates.
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In-Degree Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 Mean

Ê(Kin) 8.6 8.6 8.8 9.0 9.0 7.9 8.6
σ̂(Kin) 10.8 10.9 10.6 11.2 11.3 11.0 11.0

min(kin) 0 0 0 0 0 0 0.0
max(kin) 54 54 51 57 60 62 56.3
α̂MLE 2.1997 2.7068 2.2059 3.3611 2.1610 2.1320 2.4611

σ̂
(
α̂MLE

)
0.4887 0.4692 0.4756 0.5336 0.4722 0.4417 0.4802

k̂MLE
in,min 6 13 7 21 6 5 9.7

Out-Degree Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 Mean

Ê(Kout) 8.6 8.6 8.8 9.0 9.0 7.9 8.6
σ̂(Kout) 8.7 8.8 9.0 9.4 9.4 8.8 9.0

min(kout) 0 0 0 0 0 0 0.0
max(kout) 36 37 39 41 39 44 39.3
α̂MLE 1.9855 3.4167 3.4000 2.9110 2.4302 2.8861 2.8383

σ̂
(
α̂MLE

)
0.6359 0.5914 0.4884 0.4384 0.4174 0.4955 0.5112

k̂MLE
out,min 5 15 16 12 9 11 11.3

Degree Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 Mean

Ê(K) 17.1 17.2 17.5 18.0 18.0 15.8 17.3
σ̂(K) 17.5 17.5 17.5 18.2 18.6 18.3 17.9

min(k) 1 1 1 1 1 1 1.0
max(k) 86 87 80 87 90 106 89.3
α̂MLE 2.6163 3.3750 2.2997 2.4840 2.2705 2.2311 2.5461

σ̂
(
α̂MLE

)
0.5222 0.4767 0.4834 0.4124 0.4394 0.3580 0.4487

k̂MLE
min 17 34 12 15 12 10 16.7

Exposures* Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 Mean

Ê(L) 1,214.8 872.5 914.3 954.0 977.1 1,364.8 1,049.6
σ̂(L) 3,785.5 1,952.6 2,029.6 2,018.3 2,309.9 3,565.7 2,610.2

min(`) 0.0 0.3 0.5 0.0 0.1 0.0 0.2
max(`) 30,106.6 12,874.9 12,979.5 12,863.2 15,814.1 23,664.9 18,050.5
α̂MLE 1.9792 2.2297 2.2383 2.3778 2.2766 2.5277 2.2716

σ̂
(
α̂MLE

)
0.0260 0.6000 0.2140 0.6920 0.3840 0.9820 0.4830

ˆ̀MLE
min 39.5 74.0 80.0 101.7 93.4 336.7 120.9

*values in millions of BRL (Brazilian Reals)

Table 3: General statistics and MLE estimates for the power law distribution param-
eters: tail exponent α, minimum tail value for in-degree kin,min, out-degree kout,min,
degree kmin, and exposures `min.
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kin vs. win/kin Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08

ρPearson 0.0381 -0.0353 -0.0410 -0.0359 -0.0379 -0.0303
(p-value) (0.6900) (0.7082) (0.6724) (0.7047) (0.6915) (0.7523)

τKendall 0.2839 0.2554 0.2294 0.2648 0.2409 0.2144
(p-value) (0.0000) (0.0001) (0.0006) (0.0001) (0.0002) (0.0013)

ρSpearman 0.3907 0.3508 0.3109 0.3642 0.3328 0.2876
(p-value) (0.0000) (0.0001) (0.0010) (0.0001) (0.0003) (0.0022)

kout vs. wout/kout Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08

ρPearson 0.0315 0.2456 0.2415 0.2543 0.2302 0.0200
(p-value) (0.7402) (0.0104) (0.0126) (0.0071) (0.0137) (0.8301)

τKendall 0.2728 0.2807 0.3143 0.3274 0.3440 0.3025
(p-value) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

ρSpearman 0.3787 0.3969 0.4329 0.4562 0.4704 0.4241
(p-value) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

k vs. w Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08

ρPearson -0.0130 -0.0573 -0.0607 -0.0531 -0.0539 -0.0280
(p-value) (0.8854) (0.5270) (0.5085) (0.55610 (0.5489) (0.7552)

τKendall 0.2460 0.2487 0.2179 0.2378 0.2386 0.2309
(p-value) (0.0001) (0.0001) (0.0005) (0.0001) (0.0001) (0.0002)

ρSpearman 0.3370 0.3550 0.3086 0.3337 0.3336 0.3329
(p-value) (0.0001) (0.0001) (0.0006) (0.0001) (0.0001) (0.0001)

Table 4: Brazilian interbank network: Pearson ρPearson, Kendall τKendall and Spearman
ρSpearman coefficients for in-degree kin vs. in-exposures win, out-degree kout vs. out-
exposures wout, and degree k vs. exposures w.

Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08

ρk -0.2546 -0.2870 -0.2783 -0.2972 -0.3207 -0.3548
σ2(ρk) 0.0008 0.0008 0.0009 0.0008 0.0008 0.0008

ρ` 0.0262 0.0070 0.0115 -0.0196 -0.0102 -0.0578
σ2(ρ`) 0.0019 0.0013 0.0013 0.0011 0.0012 0.0009

E(c) 0.1759 0.1718 0.1745 0.1774 0.1960 0.1951

d 2.7043 2.7103 2.7313 2.6651 2.6460 2.6618

Table 5: Brazilian interbank network: assortativity coefficient for adjacency matrix
ρk and for exposure matrix ρ`, their respectives variances σ2(ρk) and σ2(ρ`), global
clustering coefficient E(c) and network diameter d.
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